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Abstract

We examine a set of analytical solutions based on the continuous time random walk (CTRW) approach, which can be eval-
uated numerically and used to analyze breakthrough data from tracer tests. Practical application of these solutions, with discussion
of the physical meaning of the relevant model parameters, is emphasized. The CTRW theory accounts for the often observed non-
Fickian (or scale-dependent) dispersion behavior that cannot be properly quantified by using the advection-dispersion equation.
The solutions given here, valid for a wide range of dispersive behaviors of conservative tracers, and useful for both characteri-
zation and prediction, have been integrated into a library of external functions for use with the GRACE graphical display and
analysis package. Example applications of these solutions are presented. The library and graphics software are freely accessible

from a Web site.

Introduction

Ground water movement in naturally fractured and heteroge-
neous porous aquifers is highly complex, due to strongly varying
velocity fields. A key problem is how to describe tracer and con-
taminant movement in such systems. Realistic quantification of this
movement is complicated by the uncertainty in characterization of
aquifer properties.

Transport is almost invariably treated by using some form of
the advection-dispersion equation (ADE) (Bear 1972), or by using
related approaches, such as standard particle tracking random walk
techniques, that are based on the same assumptions as the ADE
(Kinzelbach 1988). These treatments include deterministic and
stochastic approaches (Dagan and Neuman 1997). However, as
demonstrated frequently in the literature, these approaches often fail
to capture contaminant migration even in many “homogeneous”
systems. This failure is most clearly evidenced by the finding of
scale-dependent dispersion: contrary to the fundamental assump-
tions underlying use of the ADE, the rate of plume spreading is not
constant, and the very nature of the dispersive transport seems to
change as a function of time or distance traveled by the contami-
nant (Gelhar et al. 1992). This scale-dependent behavior (also
sometimes referred to as preasymptotic, anomalous, or non-
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Gaussian) is what we shall refer to as non-Fickian transport. Other
evidence of non-Fickian behavior lies in the often observed unusu-
ally early breakthrough times, and unusually long late time tails, in
measured breakthrough curves (Hatano and Hatano 1998; Sidle et
al. 1998).

The generally accepted explanation for non-Fickian transport
is that heterogeneities which cannot be ignored are present at all
scales. One approach to address this difficulty is to attempt to
resolve the hydraulic conductivity (or velocity) field at a suffi-
ciently high level and apply a numerical code that incorporates the
ADE (using either partial differential equation or particle tracking
formulations) at the scale of these blocks. However, even highly dis-
cretized systems (e.g., with block sizes of the order of 10 m? in large
aquifers, which are often much smaller than the degree of resolu-
tion of available measurements) have not adequately captured the
migration patterns (Eggleston and Rojstaczer 1998); such results sug-
gest that unresolved heterogeneities also exist at these relatively
small scales. Maybe somewhat surprisingly, non-Fickian trans-
port has been observed even in small-scale, relatively homogeneous,
laboratory-scale models (Berkowitz et al. 2000). We note, paren-
thetically, that the all-too-frequent patch solution, involving use of
a functional form for dispersion which allows the dispersivity to
change with travel distance or time, is mathematically incorrect, and
contradicts the fundamental assumptions used to develop the ADE
(Berkowitz and Scher 1995).

The ADE formulation assumes Fickian transport. In simple
terms, this formulation assumes that the center of mass of the con-
taminant plume advances with the average (macroscopic) fluid
velocity, while the contaminant spread about this center of mass (due
to both mechanical and molecular diffusion effects) is a purely
Fickian process. While these assumptions may seem to be a rea-
sonable working hypothesis, and the ADE has in some cases pro-
vided reasonable first-order estimates of how a contaminant plume
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will migrate, the underlying conceptual picture and mathematical
framework is in fact valid only under highly restrictive conditions.
Details of these conditions, which in simple terms require a very high
degree of homogeneity in the hydraulic conductivity, can be found
in Berkowitz and Scher (2001).

Thus, in spite of at least four decades of intensive research
efforts, we are still in the process of developing tools to quantita-
tively capture contaminant plume migration behavior. Specifically,
we require an easily applicable framework to deal with non-Fickian
transport in realistic, heterogeneous geological formations.

Such a general, physically based approach to quantify non-
Fickian transport is based on continuous time random walk (CTRW)
theory. It was first applied to calculate impurity conduction in semi-
conductors (Scher and Lax 1973a, 1973b) and to analyze properties
of amorphous semiconductors (Montroll and Scher 1973; Scher and
Montroll 1975). An excellent pedagogical treatment of these analy-
ses is given in Scher et al. (1991). In the context of geological mate-
rials, CTRW theory was developed and applied to numerical studies
of transport in fracture networks (Berkowitz and Scher 1995, 1997,
1998), to consideration of the oft-cited MADE tracer experiment
(Berkowitz and Scher 1998), to the analysis of a tracer test in fractured
till (Kosakowski et al. 2001), and to modeling tracer transport in lab-
oratory flow cells containing porous media (Hatano and Hatano
1998: Berkowitz et al. 2000). Berkowitz and Scher (2001) recently
demonstrated how the CTRW framework accounts for a wide range
of non-Fickian and Fickian transport behaviors, and how the ADE (as
well as fractional derivative transport equations) can be derived from
it under specific, well-defined conditions. Margolin and Berkowitz
(2000) have further extended the theory.

The references just mentioned focus largely on theoretical
and mathematical aspects of the CTRW, considering the underly-
ing conceptual picture of transport in heterogeneous systems, and
lay the groundwork for widespread application of the theory. In this
contribution we demonstrate how the relatively complex mathe-
matical framework of the CTRW approach can be practically
implemented to examine tracer test measurements and analyze the
transport characteristics of fractured and heterogeneous porous
media. In the next section, we briefly introduce the CTRW for-
malism and discuss its physical meaning. We then summarize
available analytical expressions for tracer breakthrough curves
(also referred to as first passage time distributions), for the full range
of possible transport behaviors. We derive some additional forms
of these solutions, and further develop them in order to discuss the
physical meaning of the relevant model parameters. A later section
titled “Application of the FPTD Solutions” describes how to imple-
ment these solutions, and discusses an accompanying software
library we have developed which can be downloaded freely from
a Web site. We note that if desired, the reader can skip the mathe-
matical details in the section titled “First Passage Time Distribution
(FPTD) Solutions” and move directly to the next one. Example
applications of these solutions to the analysis of measurements
from laboratory and field tracer tests are provided. Throughout
the discussion, we contrast the CTRW and ADE solutions.

The Continuous Time Random Walk (CTRW)
Approach

We review here briefly the conceptual picture and mathemat-
ical language associated with the CTRW approach. Extensive dis-
cussion of the entire theory can be found in the references cited in

594 B. Berkowitz et al. GROUND WATER 39, no. 4: 593-604

the previous section. A major advantage of the CTRW theory is that
the resulting solutions are robust over a wide range of cases, and
require a minimum of fitting parameters.

We consider the movement of water and (conservative) chem-
ical species (i.e., tracers) moving through a geological formation.
Clearly, heterogeneities occur on a broad range of scales in most geo-
logical formations. These heterogeneities can consist of fractures
(joints and/or faults), variations in the rock matrix (e.g., grain
sizes, mineralogy, layering, and lithology), and/or large-scale geo-
logical structures. Under an external pressure gradient, the veloc-
ity and flux distributions are determined by the liquid properties and
by the structure of the aquifer heterogeneities. Tracer particles
(representing the contaminant mass) transported within the water
move through the formation via different paths with spatially
changing velocities. Different paths are traversed by different num-
bers of particles. Typically, heterogeneous systems show a broader
distribution of velocities than homogeneous systems.

This kind of transport can in general be represented by a joint
probability density function, y(s,t), which describes each particle
transition over a distance and direction, s, in time, t. Of course, par-
ticle movement occurs along continuous paths; our definition of dis-
crete transitions here refers to a conceptual discretization of these
paths, which can be made at as high or as low a resolution as
desired. By coupling particle migration in space and time, such a
function naturally accounts for particle transitions that extend over
short and long distances, and over short and long times. Similar to
any probabilistic/stochastic approach, we define y(s,t) for an
ensemble average over many possible realizations of the medium.
As such, we are assuming that the formation properties are stationary
(i.e., statistical properties are the same at any location in the system),
although the system itself is not homogeneous. _

Identification of y(s,t) lies at the heart of the CTRW theory. It
can be shown that the principal characteristics of tracer plume
migration patterns are dominated by the behavior of y(s,t) at large
(or asymptotic) times. In the context of the CTRW theory, it turns
out that large time is in practice rather small, and is for all intents
and purposes reached almost immediately (Berkowitz and Scher
1998). Simple asymptotic forms of y(s,t) which can exist include
exponential decay and power law (algebraic) decay. It can be
shown that exponential decay leads to Fickian transport (Margolin
and Berkowitz 2000). More interesting is the power law decay,
whose long time behavior we can approximate as y(s,t) ~ t1-8, with
the (constant) exponent > 0.

The exponent B controls the particle migration behavior, and
thus functionally quantifies the dispersion behavior. We stress,
however, that the parameter B is fundamentally more general than
the dispersivity parameter in the ADE. The very nature of the dis-
persion (e.g., Fickian or non-Fickian) can be characterized by the
value of B, and falls into three possible ranges:

@  For 3 > 2 the first two (temporal) moments (mean and standard
deviation) of y(s,t) are finite, and the behavior of the tracer
plume will be Fickian. In this case, the tracer plume center of
mass, or mean location of the plume, €, travels at the average
fluid velocity (and therefore scales as time t), while the stan-
dard deviation G scales as t'2. The ratio of these parameters
decays with time and distance, 6/€ ~ t1/2 ~ £-12_and the rel-
ative spatial plume distribution narrows with growing length
or time scales. This case is equivalent to the ADE, and the value
of the dispersion coefficient, D, is determined by the limiting
form of the Laplace transform of y(s,t).




@ For 1 <P <2 the second (temporal) moment of y(s,t) is infi-
nite, and the mean of the tracer plume moves with a constant
velocity (which is for all practical purposes equal to the aver-
age fluid velocity), whereas the standard deviation increases as
382 Here, 6/€ ~ t1-B2 ~ ¢1-BV2 and there is a relative (spa-
tial) narrowing of the plume distribution with growing length
scale, although slower than that for the ADE.

® For 0 <p <1 the first two (temporal) moments of y(s,t) are infi-
nite, and both the mean and the standard deviation of the
tracer plume distribution scale as tP (i.e., 6/€ ~ constant). As
a result, breakthrough curves associated with this latter case
look similar on different spatial scales.

We stress that the behavior of the ratio of the plume standard
deviation to the mean is critical. For all cases where P < 2, fitting
the central region of the breakthrough curves (as is usually done,
where the relative concentration is 0.5) with the ADE model yields
poor results, particularly in the early and late time regions of the
curves. Moreover, such erroneous fitting leads to the often observed,
apparent increase in the effective dispersivity with time (or distance),
as discussed in the Introduction.

First Passage Time Distribution (FPTD) Solutions

Background

Tracer test measurements often consist of one-dimensional
(averaged) tracer concentration breakthrough curves, as a function
of time t, at selected distances from the tracer source. The break-
through usually refers to the plane of exiting particles, and the
(noncumulative) curve corresponds therefore to what is known
historically as a first passage time distribution (FPTD). In terms of
the CTRW formulation, the FPTD is defined as the probability per
time for a tracer particle to reach the measurement plane at time t
for the first time. Averaging over the coordinates parallel to the exit
plane yields the average distribution of tracer per unit time. Thus,
the solutions presented herein are applicable to breakthrough curves
in time, i.e., to contaminant distributions measured at fixed distances
downstream of the point of tracer injection. We note that this prob-
abilistic formulation of tracer distribution is-equivalent to that of flux-
averaged concentration values.

As already stated in the previous sections, many of the solu-
tions presented below appear, in various forms, in the literature cited
in the first section; we refer the interested reader to these sources
for the detailed derivations. We also derive some new formulations
of the solutions (detailed in Appendices A and C), and develop
means to interpret the physical meaning of the model parameters
(detailed in Appendices B and D), emphasizing aspects relating to
the practical application of these solutions.

FPTD Solutions for 0 < B <1

Anomalous transport for the case 0 < B < 1 was first investi-
gated by Montroll and Scher (1973) and by Scher and Montroll
(1975). They derived a solution for the average distribution of
tracer per unit time, the FPTD function f(L,t), for a pulse injection.
Following Montroll and Scher (1973), f(L,7) is given by

fL0) = £ {exp(-bub)) M

where L is the distance between the inlet (origin) and the outlet (mea-
surement) planes, T is a dimensionless time, £-! denotes the inverse

Laplace transform, and u is the (dimensionless) Laplace variable.
The constant b is defined here as b = b L/(l) where (1) is the
average length of a single particle transition and bgisa dimensionless
constant defined at a fixed (1).

Implementation of this solution uses the formulas from
Appendix C in Scher and Montroll (1975). The exact inverse
Laplace transform solution of Equation 1 is

G+ 1)

| =
FPTD = ——n-g, —x)’sm(nJB)r(J_l_l) @

where x = b/1P. Numerically we can evaluate Equation 2 only for
small to moderate values of x, because of the j exponent. For large
X, we can approximate Equation 1 by Scher and Montroll (1975):

FPTD ~ 7~ (21|: (1- 5))_'/2 (\/ﬁ)#

P ( - (%_ﬁ) (B")li_ﬁ) ©)

Often, it is more convenient to examine breakthrough data in
terms of cumulative FPTD (CFPTD) curves. As discussed in
Berkowitz et al. (2000), the CFPTD curves for a pulse input are
equivalent to the (noncumulative) curves for a step input. We
derive in Appendix A the following expressions for the CFPTD for
0<Pp<l.

Similar to the FPTD solutions, the same two cases introduced
by x arise. The exact solution, which can be evaluated up to mod-

erate values of x, is

T (jB)

CFPI'D—1+n2(—x)'sm(1tJB)r(+1) @)

j=1

while the approximation for large x (>>1) is

oo -5

V2r(1 - B) (Bx)T-B

CFPTD =

)

The crossover point between the two solutions for the FPTD
and CFPTD curves depends upon the value of (. By estimating visu-
ally the optimal crossover point, X, for different p (or, alterna-
tively, by defining two criteria at the crossover point: the two solu-
tions, and their slopes, must coincide), we interpolate between
these points and find that for 0.9 < B <0.97,

= 163.12 - 485.58 B + 489.72P? - 166.26 ° 6)

CTOSS

while for 0.1 < <0.9,

=25+ 18.443 B — 40.041B2 + 21.971 P>~ 1.8145 B* (7)

Cl‘OSS

If x is smaller than x ., we use the exact solution (Equation 2 or
4); otherwise we use the solution for large x (Equation 3 or 5).

B. Berkowitz et al. GROUND WATER 39, no. 4: 593-604 595




20

PR S |

| S

05 0.6

O‘O- NPT BT /TN —taaaia Rl PN
1073 1072 107! 10° 10! 10?

1.0 AR AL

0.8

M(L,T)

0.4

O.OP N R I | .
1073 1072 107" 10° 10’ 107
/6"

10°

(b))

0.5

0.0
107"

10!

1.0 ”
[ (d)

0.8

0.6

M(L,T)

04

0.2

0.0. s ot e el iy
107! 10° 10" 10°
/6"

Figure 1: A series of typical FPTD and CFPTD curves for a range of 3 values (0 < § < 1). Shown here are semilog plots for a range of FPTD
curves (b¥8f(L,T)) and CFPTD curves (M(L, 7) = [ f(L,7')d T') versus T/b'%, for a range of B. (a) b¥*f(L,T) versus t/b'?, B = 0.33, 0.50, 0.65,
(b) bB(L,7) versus /b, B = 0.75, 0.80, 0.90 (c) M(L,T) versus 7/b'P, B = 0.33, 0.50, 0.65, and (d) M(L,T) versus U/b'P, B = 0.75, 0.80, 0.90 (after

Berkowitz et al. 2000).

Shown in Figure 1 is a series of typical FPTD and CFPTD
curves for a range of B values (0 < B < 1). From Figure 1, it is evi-
dent that as B increases, the cumulative breakthrough curves
(CFPTD solutions) become sharper and less disperse. Note that the
curves are not symmetrical, and that the long tails persist. Because
the mean and standard deviation of the plume distribution both scale
as tP, the shapes of the FPTD and CFPTD curves are functions only
of B, and are similar on different spatial scales.

The temporal x-axis scale in Figure 1 is given in dimension-
less units of T/b!/® (with respect to the FPTD, division of T by b'/B
on the x-axis scale requires multiplication of the y-axis scale by b'/P,
in order to preserve normalization for [ FPTD (t) d T=1). In order
to allow comparison of the FPTD and CFPTD curves to measure-
ments, a multiplicative shift factor, x4, is used to translate between
dimensionless temporal units (from theory) and dimensional tem-
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poral units (from measurements). This factor, which scales the
time, contains parameters that correspond to a characteristic tracer
particle velocity v (distinct from the average fluid velocity) for a
given length scale of the medium. In the case 0 < B < 1, V is
always larger than the average fluid velocity, and we can write
(Berkowitz and Scher 1998) 1 = tv/ (I). The derivation of X is
shown in Appendix B, and its actual application to data analysis is
discussed later.

FPTD Solutions for 1 < <2

The FPTD solution for 1 < B < 2 is similar to that for the case
0 < B < 1. Margolin and Berkowitz (2000) start from a simplifica-
tion of the transition time density function (s, t). Considering the
leading terms of the Laplace transform of this density function,
denoted y*(u), they obtain for small u



vw=1-(Hu+ cﬁuﬁ ~exp(-{u+ cBuB) ®)

where ¢, denotes a positive constant and {t) represents a mean
transition time for {1). Details of the solution derivations can be found
in Margolin and Berkowitz (2000); here we provide only the solu-
tions. We note here that these particular solutions assume no tracer
transport upstream of the point of injection; this approximation is
applicable for many practical situations, and certainly valid at suf-
ficient measurement distances from the input source.

We must first introduce a dimensionless time T =t/ (t) and the
dimensionless parameters h = (1-7)/b'8, b= Ibg, and bg=cg/ {08,
with 1= L/ {1). The exact solution for the FPTD is

_ 1 <IN B Cn(+1)
FPTD = ———nB(t)b'/BJg:‘,( hY r(j+1)sm B

©
For large positive h we approximate the FPTD by

(h/B)@~BVRE-1I o }
bl/B<t>(2ﬂB(ﬁ_1))1/2exp{ (B — 1)(h/B)® )}10

FPTD ~

and for large negative h we have

1 i 1
~ 2 2 (~ h)~® sin (njB) F‘Jg: 1))

1)

Note that here we must consider three functional forms for the FPTD
solution over the complete range of h, whereas only two functional
forms arise in the FPTD solutions for0 < < 1.

As in the previous section, we consider also the cumulative
FPTD (CFPTD) solutions. The derivation of the CFPTD solutions
is shown in Appendix C. The exact solution is

crrm = 1oL S npain (51)TOD

B nB= TG+1)
12)
For large positive h we use
cpprp = &L= (B — 1) (/B¥C™ ")
(13)

\/ B
2% BB — 1)(b/B)P!

and for large negative h

' (B)

CFPID = 1+ — 2( h)'lﬁsm (TC_]B)F(J Y1) (14)

Similar to the 0 < B < 1 solutions, here the crossover points
between the three different solutions for the FPTD and CFPTD
curves depend upon the value of B. We estimate visually the opti-
mal crossover points for different B, and interpolate between these
points. The crossover points depend on h. We define

130 — 308 148 — 40P
hmin,FPTD = W ’ hmin,CFPTD = W (15) .
for the FPTD and CFPTD solutions, respectively, and
120 — 40p — 1.3
hmax 1001/ﬁ (16)

for both cases. If h > h,_; | we use Equations 10 and 13 for the FPTD
and CFPTD solutions, respectively. Forh <-h_,_Equations 11 and
14 are used, and in all other cases the exact Equations 9 and 12 are
applied.

The resulting FPTD and CFPTD curves for 1 < B < 2 are
similar to those shown in Figure 1: the cumulative breakthrough
curves (CFPTD solutions) become sharper and less disperse as
increases, and again, the curves are asymmetric with long tails.
However, in contrast to the Figure 1 curves, and because the mean
of the transition time (i.e., the first moment of y(s,t)) is finite, the
shapes of the FPTD and CFPTD curves are functions of the actual
spatial scale, as well as functions of B.

In order to compare the FPTD and CFPTD curves to mea-
surements, we must translate between the dimensionless variable
h and the dimensional temporal unit, t, for breakthrough measure-
ments at a distance L. Because of the dependence of the solutions
on the spatial scale L, and as shown in Appendix D, two parameters
must be determined to permit this translation. One of these param-
eters, denoted later by t_ . . is analogous to the multiplicative shift
factor, X4, defined for the case 0 < B < 1, while the second
parameter depends on bg. The derivation of these translation param-
eters is shown in Appendix D, and their actual application to data
analysis is discussed in a later section titled “Application of FPTD
Solutions for1 < f <2.”

Convolution Solutions for Transport Through
Multiple Layers and Variable Input Boundary Conditions

As already discussed, the transport solutions presented in the
previous sections allow determination and prediction of break-
through curves at specified distances from the inlet boundary.
These solutions are valid as long as the overall behavior of the flow
field does not change, so that [} remains constant. Moreover, the solu-
tions have been developed for the case of either a pulse or step func-
tion tracer input condition. Clearly, in many experimental sys-
tems, either the input boundary condition is different (e.g., a
decaying step input), or transport occurs through regions with dis-
tinctly different properties (e.g., through two or more sedimentary
layers). Conveniently, convolution techniques can be used in a
straightforward manner to deal with these situations.

We define first an input function, F(t), and a response function
for the medium G(t), which corresponds to the FPTD solution for
a pulse input. The convolution of F(t) with G(t), H(t), is defined for-
mally as

H(t) = F()*G(t) = fot F(t — 7)G(t)dt an

where H(t) is the resulting breakthrough curve. This flexible and con-
venient formulation allows us to consider both of the situations just
outlined. In the case of transport through two characteristically dif-
ferent layers, we can analyze tracer transport through each of the
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layers individually, defining two [3 values [and thus two FPTD solu-
tions, F(t) with G(t)]. The overall breakthrough curve that develops
after transport through the two layers is given by the convolution
of these two solutions. For the second case of a variable inlet
boundary condition, G(t) represents the FPTD solution with a spe-
cific B value (assuming a pulse inlet boundary condition), while F(t)
represents the functional form of the tracer input. Applications of
convolution methods in this context have been presented by
Kosakowski et al. (2001), and are demonstrated in the section
titted “Convolution Solutions for Transport Through Distinct
Heterogeneity Layers/Regions.”

Application of the FPTD Solutions

Basic Approach

We now describe how the solutions given previously can be
applied to analyze measurements from laboratory and field tracer
tests. These solutions, strictly valid for an infinite flow domain, can
be used for both characterization and prediction of tracer migration.
Input data for the analyses consist of breakthrough curve mea-
surements, in the form of pairs of concentration versus time values
at (one or more) given distances from the tracer inflow to the
domain. The concentration measurements may be either cumulative
or noncumulative. We emphasize that we consider here averaged,
one-dimensional concentration measurements, corresponding to
one-dimensional or nondiverging/nonconverging, averaged, two-
or three-dimensional flow fields, and line (or areal, in three dimen-
sions) tracer input sources. In addition, at sufficiently large mea-
surement distances, the theoretical solutions can be applied to
cases of point sources in two- and three-dimensional systems.
The FPTD solutions can be evaluated numerically with rela-
tive ease. We have developed a series of subroutines written in the
C programming language, which are evaluated within the GRACE
graphical analysis package. The solutions, along with experimen-
tal data which are to be analyzed, can then be plotted, and iterative
fitting or straightforward comparison of the solutions to the data
points can be achieved.

Regardless of the analysis to be performed (i.e., fitting with
FPTD or ADE solutions), two important issues should be kept in
mind. First, it is critical that reliable, high-resolution (flux-averaged)
concentration data be available, especially at early and late times.
Otherwise, it is difficult to properly distinguish the nature of the
transport, whether it be Fickian or non-Fickian, and the appropri-
ate value of B (for further discussion, see Berkowitz and Scher
[2001]). Second, to further aid proper analysis, the availability of
two sets of breakthrough measurements, at two distances from the
tracer source, are useful (e.g., to check variations in parameter
fits). Although these two requirements represent an ideal case,
their importance should not be underestimated.

A critical aspect of any model is the number of fitting param-
eters used in its application. The ADE model in fact has two
explicit fitting parameters: the average velocity, and the dispersiv-
ity (or, alternatively, the coefficient of dispersion). While the aver-
age velocity may not seem to be a fitting parameter, but rather a
given of the system, we emphasize that imposition of the ADE
model on a transport process assumes Fickian transport, which
leads to the average tracer velocity being identical to the average
fluid velocity. ;

The FPTD solutions for 0 < < 1 involve two explicit fitting
parameters: B, which characterizes the dispersive process, and
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Xy Which characterizes the effective tracer velocity at a given dis-
tance (i.e., the effective, average arrival time of tracer particles). In
contrast, the FPTD solutions for 1 < [} < 2 require three fitting param-
eters: B, t_ . and bg. The latter two parameters are contained in the
dimensionless parameter h, which is the variable of the FPTD
solution (compare, e.g., Equations 2 and 9). Note that in the case
0 < <1, the parameter by is absorbed in x . Although it is moot,
we could argue that the ADE solution (which corresponds to the
FPTD solutions for B > 2) also requires three fitting parameters, if
we account for the implicit choice B = 2.

Use of the GRACE Graphical Analysis Package

The codes we have developed to evaluate the FPTD solutions
are currently implemented as a shared library of functions for use
with GRACE (http://plasma-gate.weizmann.ac.il/Grace). However,
if desired, the codes can be run independently or in conjunction with
other graphics software. The GRACE graphical analysis package
produces a powerful array of two-dimensional data plots, working
within a WYSIWYG user environment. As noted in the GRACE
user manual (http://plasma-gate.weizmann.ac.il/Grace), GRACE
.. . runs under various (if not all) flavors of Unix with X11 and
Motif (LessTif). It also runs under VMS, OS/2, and Windows
(95/98/NT). Its capabilities are roughly similar to GUI-based pro-
grams such as Sigmaplot or Microcal Origin plus script-based
tools such as Gnuplot or Genplot. Its strength lies in the fact that it
combines the convenience of a graphical user interface with the
power of-a scripting language which enables it to do sophisticated
calculations or perform automated tasks. ... GRACE can access
external functions present in either system or third-party shared
libraries or modules specially compiled for use with GRACE.”

The ability of GRACE to support extended automated fitting
of data and advanced visualization, as well as the portability across
different OS platforms, are good reasons for using GRACE instead
of programming our own environment. In order to work with the
CTRW library as it is presented in this paper, it is necessary to down-
load either the source file or the binary library for the relevant plat-
form. Once downloaded, the file must be uncompressed and
untarred; installation instructions appear in the README file.
After successful installation of GRACE, four additional functions
specific to the FPTD solutions must be downloaded (as described
in the following and on the Web homepage).

The software library can be downloaded free by following
instructions on our CTRW homepage: http://www.weizmann.
ac.il/ESER/People/Brian/CTRW. A Web link and instructions to
access and download the GRACE graphical analysis package are
also provided. Listings of the programs, input instructions and
example input/output files, and a tutorial (including sample screens
from GRACE) are also provided on this web site. It is of course not
necessary to access this Web site in order to apply the FPTD solu-
tions previously presented (and the interested reader can program
the solutions independently), but we note that the program names
and implementation described in the following sections corre-
spond to those in the Web site software library.

Application of FPTD Solutions for 0 < § <1

The software library contains two programs. The first program,
ctrw01(xshift, beta, time), provides the FPTD solution for a pulse
source (solving Equations 2 and 3, and using Equations 6 and 7),
while the second program, ctrw(1i(x_shift, beta, time), provides the
FPTD solution for a step injection (Equations 4 and 5, which is iden-
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Figure 2. Comparison of CFPTD solution (solid line), with § = 0.87 and
Xgin = 390, to measured concentrations (points) at a distance L=1.37m
from the inlet (data from Silliman and Simpson 1987).

tical to the cumulative (integrated) FPTD, or CFPTD, for the pulse
solution). The variable names x_shift and beta refer, respectively,
10 X . and B, while time is a (dimensional) time corresponding to
an actual experimental measurement in the data set being consid-
ered. It should be.observed that because of computational sensi-
tivities in the current numerical implementation, these solutions are
limited to the range 0.1 < < 0.97. However, our analyses to date
of realistic formations have not found dispersive transport charac-
terized by P values less than about 0.3.

The nonlinear curve fitting option in GRACE can be used to
fit the two parameters B and X to the experimental data. While
the fitting routine is in this case relatively robust, we caution that
nonlinear curve fitting routines often have difficulty differentiating
among multiple local minima, and can be sensitive to the initial esti-
mates of parameter values. As such, it is important to test carefully
the optimal parameter values returned by the routine, by using a vari-
ety of initial parameter estimates. For the CFPTD calculations, a con-
venient initial estimate of Xy, is given by the time at which the rel-
ative concentration is about 0.5. Alternatively, trial-and-error
variation of these parameters can be used to obtain a suitable fit. The
programs return a value of the FPTD and CFPTD for each time spec-
ified in the input file. Once the parameter estimates (x5, ) are
available, for the tracer breakthrough at some distance L from the
plane of tracer injection, predictions for the FPTD and the CFPTD
can be made for the breakthrough behavior at any distance AL
from this inlet by calling the program with the parameters ()\I’Bxshiﬁ,
B) and a specified time.

To illustrate the application of these solutions, we consider
briefly two examples of breakthrough curve analyses. One break-
through curve consists of measurements in a laboratory flow cell
(2.13 m in length) containing a uniformly heterogeneous packing
of sand (Silliman and Simpson 1987). Tracer (chloride) was intro-
duced as a step concentration at the flow cell inlet, and concentra-
tion measurements were made downstream. As shown in Figure 2,
we find (using the nonlinear curve fitting option) estimates of B and
X¢in Which yield a CFPTD curve that fits well the measured con-
centration breakthrough. Full details of the analysis are presented
in Berkowitz et al. (2000).
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Figure 3. Comparison of CFPTD solution (solid line), with §§ = 0.61 and
Xy = 0.203, to measured chloride breakthrough data in a sampler at
a depth of 2.5 m (sampler CS5, data from Sidle et al. 1998). Note the
logarithmic time scale.

The second breakthrough curve was measured in a field tracer
experiment in a fractured till (Sidle et al. 1998). A4 m X 4.8 m-areal
section was isolated vertically, and samplers were installed at
depths of 2.5 m and 4 m. The breakthrough of chloride introduced
as a step input concentration at ground surface was measured at these
two depths. Figure 3 shows the fitted CFPTD curve (using the non-
linear curve fitting option) to a measured concentration break-
through at the 2.5 m depth. Full details of the analysis are presented
in Kosakowski et al. (2001).

We stress that, as discussed by Berkowitz et al. (2000) and
Kosakowski et al. (2001), neither of the measured breakthrough
curves shown in Figures 2 and 3 could be fitted adequately by using
the standard ADE solution.

Application of FPTD Solutions for 1 < <2

As for the case 0 < B < 1, the software library contains twe pro-
grams. These programs, ctrw12(t_mean, beta, b_beta, time) and
ctrw12i(t_mean, beta, b_beta, time), provide the FPTD solution for
a pulse source, and the FPTD solution for a step injection (identi-
cal to the cumulative (integrated) FPTD, or CFPTD, for the pulse
solution), solving Equations 9-11 and Equations 12-14, respectively,
using terms 15 and 16 to determine the crossover points. The vari-
able names t_mean, beta, and b_beta refer, respectively, tot__... B,
and bB’ while time is a (dimensional) time corresponding to an actual
experimental measurement in the data set being considered. Because
of computational sensitivities in the current numerical implemen-
tation, these solutions are limited to the range 1.03 < 8 < 2. Note
that for this range of 3, as well as for B > 2, the mean velocity of
the tracer plume is essentially that of the average fluid velocity, so
thatt . is given by L divided the mean fluid velocity; this approx-
imation is increasingly good as B increases from unity.

The nonlinear curve fitting option in GRACE can be used to
fit the three parameters B, t_,., and bB to the experimental data.
Again, we caution that the existence of multiple local minima
necessitates careful testing of optimal parameter values returned by
the routine. In many cases, a good strategy is to obtain initial esti-
mates of t,..,, and by using a fixed value of B, and then to fit all three
free parameters. For the CFPTD calculations, a convenient initial
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Figure 4. Comparison of CFPTD solution (solid line), with B=2,and
the ADE solution (dashed line), to artificially generated breakthrough
concentrations. The CFPTD and ADE solutions are essentially iden-
tical, and capture the dispersive behavior demonstrated by the data
points. As discussed in the text, there is excellent agreement between
the CFPTD and ADE parameter values.

estimate of t_... is given by the time at which the relative concen-
tration is about 0.5. Alternatively, trial-and-error variation of these
parameters can be used to obtain a suitable fit. The programs return
a value of the FPTD and CFPTD for each time specified in the input
file. Once the parameter estimates (B, t,,.,,., and bﬁ) are available,
for the tracer breakthrough at some distance L from the plane of
tracer injection, predictions for the FPTD and the CFPTD can be
made for the breakthrough behavior at any distance AL from this
inlet by calling the program with the parameters B, Myeans
)\l‘ﬁbﬁ) and a specified time. Finally, as noted in Appendix C, the
solutions given here are valid only for bé’("ﬁ) >> 1. This condition
will be met in virtually all practical cases of interest, as long as suf-
ficient breakthrough data are available at early and long times.
Example applications of these codes are provided in the next
section, where we discuss solutions for both B > 2 and for the
ADE. We have, in the limited number of data sets analyzed so far,
not found any real data sets indicating dispersive behavior char-

acterized by 1 < B < 2.

Application of FPTD Solutions for § > 2

As shown from theoretical considerations (Margolin and
Berkowitz 2000), Fickian transport arises when [ > 2. In these sit-
uations, the classical ADE can be applied. For completeness here,
and to enable full data analysis within the software library that is
provided in this paper, the solutions presented in the previous sec-
tion for 1 < < 2 can also be applied using the value B =2. All solu-
tions for B > 2 are captured by using the solution for B =2, because
of an equivalence in the mathematical formulation (Margolin and
Berkowitz 2000). The program parameters are given exactly as
described in the previous section, with B =2.

If the match between the FPTD curve and the breakthrough
measurements is satisfactory, then it is recommended to continue
the analysis using the standard ADE solution. For convenience, this
solution is also provided in the Web site software library. However,
we strongly caution the reader that erroneous application of the ADE
is frequently made. Careful examination of the early and late time
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Figure 5. Hlustration of convolution solution application. Points indi-
cate measured chloride concentrations, for a sampler at the 2.5 depth
(sampler C5; triangles), and a sampler at the 4 m depth (sampler F5;
circles) (data from Sidle et al. 1998). Parameter estimates for the
individual breakthrough curves are B = 0.61, x,,, = 0.203 (for sam-
pler C5; long dashes) and B = 0.5, x . = 0.724 (for sampler F5; short
dashes). The convolution solution using the FPTD, shown as a solid
fine, is obtained by using the calculated breakthrough curve for the
upper layer (B, = 0.61) as the input function to the lower layer. Then
the fitted parameters for the lower layer are 3, = 0.41, x_ . = 0.158,
where the subscripts 1 and 2 denote the upper and lower layers,
respectively. Note the logarithmic time scale.

portions of the breakthrough curves is often necessary in order to
distinguish between Fickian (ADE) and non-Fickian (CTRW)
transport behavior.

To illustrate the application of these solutions, we consider an
artificially generated set of breakthrough curve data, based on per-
turbed (random noise) values calculated using the ADE solution with
an average velocity of 3.34 m/d and a dispersivity (o) of 0.068 m,
at a distance L = 3.39 m from the inlet. Shown in Figure 4 are the
concentration points, the fitted solution using the FPTD with p =
2, and the ADE solution. Clearly, the solutions are very similar, and
capture the dispersive behavior demonstrated by the data points. The
optimal estimate of t .. is 1.01, which is identical to L divided by
the average fluid velocity (recall Appendix D). Similarly, the opti-
mal value of bg is 0.02; it can be shown that bg is related directly
to the dispersivity (o) defined in the ADE, bB = o/L.

Convolution Solutions for Transport Through Distinct
Heterogeneity Layers/Regions

As discussed earlier, convolution of the solutions just given can
be used to deal with experimental systems in which either the
input boundary condition is something other than pulse or step input,
or transport occurs through regions with distinctly different
properties.

Clearly, completely general, automated, software analyses
such as developed and explained earlier cannot be provided in
such cases; more direct user involvement is required. The software
library contains the basic programs to perform the convolution
calculations, once the relevant FPTD solutions, F(t) and G(t), and
corresponding P values have been specified.

We illustrate the application of these solutions by considering
again measured breakthrough curves in the fractured till field tracer




experiment of Sidle et al. (1998); as noted previously, the disper-
sive behavior displayed in these breakthrough curves could not be
captured by fitting the standard ADE solution. Sidle et al. (1998)
suggested that a change in heterogeneity patterns at the field site
might be present, leading to tracer migration through two layers with
different dispersive properties. Quantification of transport through
such a system can be treated easily by use of the convolution solu-
tions.

Recalling the analysis for Figure 3, we use an estimate of the
breakthrough curve at a depth of 2.5 m, based on a fitted B value
of B =0.61 (for sampler C5), as the input function to the lower layer.
Clearly, this input function, which we store in the software library
input data file, conv_in.dat, is distinct from the usual pulse and step
input functions.

The software library contains two programs. These programs,
conv01(x_shift, beta, time) and conv12(i_mean, beta, b_beta,
time), can. then be used to fit the breakthrough curve in the lower
layer. The solutions used in the programs are, of course, based on
those given in the previous sections; the variable names are defined
previously, and the same limitations on implementation are relevant
here. The resulting convolution solution, shown in Figure 5, is
obtained using the nonlinear curve fitting option. It is clear that, in
this example, both the single-region and the two-region convolu-
tion solutions provide excellent fits to the data. Thus, geological and
other considerations are necessary to select the most appropriate con-
ceptualization. Full details of the analysis are presented in
Kosakowski et al. (2001).

Discussion and Concluding Remarks

The CTRW theory captures a broad range of dispersive trans-
port behaviors. It can be applied to quantify the ubiquitous, non-
Fickian tracer migration patterns not accounted for by the ADE, as
well as Fickian (ADE) transport. Mathematically, the ADE can be
derived as a special, limiting case of the CTRW. Importantly, the
underlying conceptual and physical picture of tracer migration is
realistic and intuitively (and mathematically) satisfying. Moreover,
the resulting CTRW solutions are parsimonious, requiring a min-
imum number of fitting parameters.

The (3 parameter characterizes the functional nature of the
dispersion occurring in the system. As a consequence, in fractured
and heterogeneous porous media, this parameter may be expected
to vary as a function of the relative degree of heterogeneity. For
example, as the size of the heterogeneities becomes extremely
small relative to the length scale of interest over which transport
occurs, transport will tend to Fickian behavior (B > 2). However, as
is well known from field studies, Fickian transport is seldom
reached, even at extremely large length scales. In our analyses
here, we assume that B varies only very slowly with the length scale
of interest, so that for ail practical purposes p can be considered con-
stant. Our analyses to date support this assumption, and its precise
limits are currently under detailed investigation.

The FPTD solutions presented here can be readily used to
predict breakthrough curves for different values of L, once the rel-
evant parameters have been obtained by fitting the solutions to one
(or preferably two) breakthrough curves. However, it is important
to keep in mind that for very large L values, different scales of het-
erogeneity may be encountered in the field situation, which would
imply a change in the value of . This caution is of course relevant
also to application of the ADE (and the dispersion coefficient), when
transport is Fickian.

To date, we have considered the movement of water and (con-
servative) chemical species migrating through (fully water-saturated)
geological formations. We note that these solutions do not explic-
itly account for contaminant retardation (adsorption, desorption),
decay, and production processes. Similar non-Fickian transport
can in principle be expected in some partially saturated systems, and
in reactive transport systems. Moreover, solutions which apply to
(1) the spatial distribution of contaminant concentrations, (2) tem-
poral and spatial solutions valid for higher dimensional flow fields
and for radially convergent/divergent flow fields, and (3) point
sources remain to be fully derived. These and other features are cur-
rently under development, and will be incorporated into future
reports and versions of this software library.

Appendix A: Derivation of the CFPTD
for0<P<1

We derive here expressions for the CFPTD for 0 < B < 1. Because
these CFPTD solutions have not been published previously, we pre-
sent here the full derivations. There are in fact two possible ways
(at least) to derive the CFPTD. One method involves integrating the
already known solutions for the (noncumulative) FPTD. A second
method is now shown. It is known that

C+ioo

f ds exp(ts — bs®)

FPTD = £ '{exp ( — bsf)) =

2n i (o
(A1)
where c is a real, positive constant. Then
t 1 Ctico d
CFPTD = f FPID (V') dt’ = —— f S
o 2/i J_;. s
X (exp (ts) — 1) exp( — bsP) (A2)

With the change of variables 1 s = z, Equation A.2 becomes

c+ioodZ

1
FPTD = —— —= - xz i
CFPTD Mifc —exp(z—xf) (A3

—joo

where x = b/tB. In the last equality in Equation A.2, we used the fact
that

Cc+ice d
f ;Z exp (—xz%) =0

C— ico

(A4)
which also means that the CFPTD can be calculated as
t t
CFPTD = f FPTD (1') dt’ = f FPTD () dt’ (A.5)
——_— 0

In other words, no particles arrive at zero time or before it (as is phys-
ically correct). (This result does not hold for the case 1 < <2; see
Appendix C.)

Using the identity
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we have that
— < (_X)J Bi—1 g
CFPTD = 3, "5 szdz” (A7)

where here ¢ represents a contour integral and it is known that

1
r(1-8j)

f T o R — (A.8)

2w i
Since for j # 0,

1
r(1-Bj "

:llb—‘

L' (Bj)sin (npj) (A9)

Equation 4 follows immediately. This is an exact solution. For
relatively small times, when x >> 1, the method of steepest descent
gives from Equation A.3 the approximate solution 3.

Appendix B: Derivation of xg; for 0<f <1

A multiplicative shift factor, X, is used to translate between
dimensionless units in the FPTD and CFPTD solutions and the
dimensional temporal units of actual measurements. Here, we
derive explicitly how to work with this parameter. As seen in
Equation 2, the basic independent variable is x = b/tP. We define
(Berkowitz et al. 2000; Margolin and Berkowitz 2000)

E'<_<1>_)%
1) \bgL

where t is the dimensional time, T =tV /) and b=b L/(l) Using
the parameter v, =V b3'® (Margolin and Berkowitz 20()0), we have
from Equation B.1 that

l/B = I/B = =
1/x /b t/ X ise ®B.1)

1
e (B.2)

We can write this expression somewhat more conveniently. The
asymptotic form y(s,t) ~ -1, and the accompanying CTRW for-
mulation, are such that the mathematics (e.g., the result bg g (Bt
= constant) lead to expressions that can be shown to be indepen-
dent of the choice of (I) (Margolin and Berkowitz 2000). Then
choosing () = L and defining v, as the effective, average tracer
velocity over the length scale L, Equation B.2 can be simplified and
X g Can be defined simply as a mean effective time, t,,.,, ¢ for
tracer particles to reach the distance L:

Xepitt = LIVL = tinean oft 8.3

Our fitting procedure (the section titled “Application of FPTD
Solutions for 0 < B'< 1)” finds the optimal pair of values for § and
Xgf; at a given distance L from the tracer source. Since we have that
Vo~ ()-8 (Margolin and Berkowitz, 2000), then to make a pre-
diction of the FPTD at a distance AL, we write
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Xshift, L

(B4)

where the subscripts L and AL denote the distance from the inlet at
which the parameters are defined. Thus, given the parameter val-
ues (from fitting breakthrough measurements) for B and x,q, at dis-
tance L, the predicted FPTD and CFPTD curves at a distance AL
(as functions of time) are determined by evaluating the FPTD and
CFPTD with the parameter values f and AP x .0, .

Appendix C: Derivation of the CFPTD
for1<f<2

We derive here expressions for the CFPTD for 1 < B < 2. The
procedure is similar to that shown in Appendix A for 0 < <1, The
additional complications here are that

0
f FPTD (V') dt’ # 0 (C.1)

and that CFPTD(t = + o) =1 only if we evaluate the integral of
FPTD from — oo to t. The particles arriving during the time before
the pulse are an artifact of the approximations; the asymptotic
approximations made in the mathematical development (Margolin
and Berkowitz 2000) require the condition bé’“‘ﬁ) >> 1 at distance
L [see the following: CFPTD (t = 0) must be negligibly small; this
condition is required by Equation 13]. The reason is that for short
times, the tail approximation breaks down, and the real y(s,t)

" behavior must be considered. Due to normalization considera-

tions, Y(s,t) cannot scale as t1-8 for small t, because this will lead
to a divergence. (Note that this divergence does not cause any dif-
ficulties for the case 0 < 3 < 1 because the rate of divergence is

slower.)
‘We have then that
. 8 1 C+ieo
FPTD = %~ — s + bsP) t = f
{exp( s + bs )} g o
ds exp (s(’c -+ bsﬁ)
(C.2)

where c is a real, positive constant, and

t 1 c+ijeo ds
CFPTD (1) =f FPTD (t') dt’ = - f —
e 2mi ). S

— too

X exp (s('t -+ bsa)
(C3)

With the change of variables b X sP = z, Equation C.3 becomes

: c+i°Qgﬁex [(T - ]>z'/‘i + z] =
2miBl .z P\ 7P =

. i
1S (—hy 1 z g7}
X — /By = = s~ f
exp (z — hz'/P) sz_S_o FEELT cdzez C4)

CFPID (1) =

2miBl z

where c in the latter integrals represents a contour integral. Using
the identities in Equations A.8 and A.9, Equation 12 foliows imme-



diately. This is an exact solution. Note also that Equation 12 is equal
to 1/ when h = 0 (i.e, t =t ; see Appendix D), where for
Fickian transport (B = 2), Equation 12 equals 0.5. The approxima-
tion for large positive h is obtained by using the method of steep-
est descent. From Equation C.3, this yields Equation 13. Conversely,
for large negative h (i.e., T — o), from Equation C.3, and using the
change of variablesz = s (t — I)andy = b/ (t— DB = (—h) B then
we have

CEPTD(t) = — f”mﬁex (s(‘c—l)+ b)
2ni 4. S P &
1 c+|°°dz

= = B dze? 2B~ D
mi l’iw exp(z+vy2’) = 2]' sz ez

(C.5)

Using again the identity Equation A.8 leads to Equation 14.

Appendix D: Derivation of Axis Translation

Parameters for 1 < 3 <2

Two parameters must be defined in order to translate between
dimensionless units in the FPTD and CFPTD solutions and the
dimensional temporal units of actual measurements. As seen in
Equations 9 through 14, the basic independent variable is h. Because
of the form of h, the shift factor is not a simple multiplicative fac-
tor as it is for the case 0 < p < 1. Rather, as seen from the last equal-
ity in Equation D.1 which follows, two parameters control the
shift (i.e., the functional relationship between h and t is of the
form h = X t + X, for parameters X, and X,). Here, we derive
explicitly how to work with these parameters.

With the definitions T = t/(t), {t) = (1)/v (where v is the aver-
age tracer velocity, which for all practical purposes is equal to the
average fluid velocity; in contrast to the case 0 <P < 1, v is almost
independent of the length scale L), b = le, 1 =LAl and again sim-
plifying the analysis by choosing () = L (see Appendix B), we have
that

L
h=(@1-1)/b/t= 7B D.1)
B,L

with the mean time t_ - for tracer particles to reach the distance L
given by
toean = LIV

mean

D.2)

Our fitting procedure (section titled “Application of FPTD
Solutions for 1 < B < 2)” finds the optimal set of values for B, t ...
and b at a given distance L from the tracer source. Then at a dis-
tance AL, we have that tneanaL = AL/ = )\tmm,L, where the sub-
scripts L and AL denote the distance from the inlet at which the
parameters are defined. Moreover, because b (l)|3‘l = constant
(Margolin and Berkowitz 2000), i.e., by g, ~ FI) B, it follows that
bgaL = AP by, where in the last equahty, we used (1) =

Thus, the predlcted FPTD and CFPTD curves ata dlstance AL
(as functions of time) are given by solving the FPTD and CFPTD

with the parameter values B, At_,.,, and AP bg; -
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