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MicroRNA-19b Associates with Ago2 in the Amygdala
Following Chronic Stress and Regulates the Adrenergic
Receptor Beta 1
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Activation of the stress response in the presence of diverse challenges requires numerous adaptive molecular and cellular changes. To
identify specific microRNA molecules that are altered following chronic stress, mice were subjected to the chronic social defeat proce-
dure. The amygdala from these mice was collected and a screen for microRNAs that were recruited to the RNA-induced silencing complex
and differentially expressed between the stressed and unstressed mice was conducted. One of the microRNAs that were significantly
altered was microRNA-19b (miR-19b). Bioinformatics analysis revealed the adrenergic receptor B-1 (Adrbl) as a potential target for this
microRNA with multiple conserved seed sites. Consistent with its putative regulation by miR-19b, Adrb1 levels were reduced in the
basolateral amygdala (BLA) following chronic stress. In vitro studies using luciferase assays showed a direct effect of miR-19b on Adrb1
levels, which were not evident when miR-19b seed sequences at the Adrbl transcript were mutated. To assess the role of miR-19b in
memory stabilization, previously attributed to BLA-Adrb1, we constructed lentiviruses designed to overexpress or knockdown miR-19b.
Interestingly, adult mice injected bilaterally with miR-19b into the BLA showed lower freezing time relative to control in the cue fear
conditioning test, and deregulation of noradrenergic circuits, consistent with downregulation of Adrb1 levels. Knockdown of endoge-
nous BLA-miR-19b levels resulted in opposite behavioral and noradrenergic profile with higher freezing time and increase 3-methoxy-
4-hydroxyphenylglycol/noradrenaline ratio. These findings suggest a key role for miR-19b in modulating behavioral responses to chronic

stress and Adrb1 as an important target of miR-19b in stress-linked brain regions.
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Introduction

The amygdala has a central role in regulating the behavioral stress
response following stressful and emotional stimulation (Galvez
et al., 1996). Amygdalar adrenergic receptor 8 1 (Adrbl) was
previously shown to affect anxiety-like behavior (Rudoy and Van
Bockstaele, 2007; Fu et al., 2008) and fear memory (Roozendaal et
al., 2004, 2006a). The Adrb1 is expressed in various stress-related
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brain nuclei including the amygdala, hippocampus, and paraven-
tricular nucleus of the hypothalamus (PVN). Infusion of
B-adrenergic receptor antagonists into the amygdala blocks the
modulation of memory storage by the stress-related hormones
epinephrine and glucocorticoids (McGaugh et al., 1996), whereas
drugs that enhance memory increase levels of noradrenaline in
the amygdala (Hatfield and McGaugh, 1999). Interestingly, stud-
ies have convincingly demonstrated that the consolidation of
aversive memories is facilitated by crosstalk between glucocorti-
coids, noradrenergic, and cannabinoid signaling in the basolat-
eral nucleus of the amygdala (BLA; Roozendaal et al., 2006b). The
regulation of the adrenergic receptor protein levels in the BLA is
important for consolidation of emotionally aversive memories
and coping with stressful challenges (Hill and McEwen, 2009).
However, data regarding stress-dependent mechanisms mediat-
ing the protein levels of adrenergic receptors in the BLA is lim-
ited. Regulation at the transcript level of these receptors might
enable a fast response during changing conditions and may be
mediated by specific microRNA (miRNA) molecules.

miRNAs are short (~22 nucleotide), endogenous, single-
stranded RNA molecules that regulate gene expression by pro-
moting RNA transcript degradation or translation inhibition of
target mRNAs. Several studies have reported that a range of be-
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havioral and pharmacological manipulations alters miRNA levels
in adult mouse or rat brain structures (Uchida et al., 2008; Meer-
son etal., 2010; Lin et al., 2011; Issler et al., 2014). We previously
reported an increase in several miRNAs including miR-34c in
the amygdala 90 min following acute restraint stress (Hara-
mati et al.,, 2011). miR-34c was found to regulate the stress-
related corticotropin-releasing factor receptor type 1, and had a
protective effect against stress-induced anxiety when lentivirally
overexpressed in the mouse central amygdala. In addition, the
brain enriched miRNA, miR-128b, was found to be upregulated
following fear-extinction (Lin et al., 2011). Notably, changes in
miRNA levels are not necessarily indicative for their immediate
activity; it is only when a specific miRNA has matured, and has
been incorporated into the RNA-induced silencing complex
(RISC) in the presence of argonaute RISC catalytic component 2
(Ago2), where it associates with its target mRNA, that it is truly
active (Meister et al., 2004).

To identify specific miRNAs that are activated (recruited to
the RISC complex) following chronic stress, we have isolated and
analyzed the Ago2-associated miRNAs in the amygdala of mice
subjected to a social defeat protocol. One such prominent
miRNA is miR-19b, which we further demonstrated both in vitro
and in vivo to be a major regulator of Adrb1 levels and related
behavioral functions.

Materials and Methods

Animals

Male C57BL/6] and ICR (outbred mice strain, also known as CD1) mice
(Harlan) were maintained in a pathogen-free temperature-controlled
(22 = 1°C) mouse facility on a reverse 12 h light/dark cycle at the Weiz-
mann Institute of Science, according to institutional guidelines. Food
(Harlan) and water were given ad libitum. The total number of animals
used for the Ago2 IP was 30 (18 social defeat and 12 control). The total
number of animal used for the lentiviruses injected mice was 40 in total
(10/group).

Chronic social defeat

Ten-week-old C57BL/6] mice were subjected to a social defeat protocol
as previously described (Krishnan et al., 2007). Briefly, the mice were
placed in a homecage of an aggressive ICR mouse and allowed to physi-
cally interact for 5 min. During this time, the ICR mouse attacked the
intruder mouse and the intruder displayed subordinate posturing. A
perforated clear Plexiglas divider was then placed between the animals
and the mice remained in the same cage for 24 h to allow sensory contact.
The procedure was then repeated with an unfamiliar ICR mouse for each
of the 10 consecutive days. Control mice were housed in the same room
as the social defeat mice but were escorted out of the room during the 5
min interaction with the ICR. Control mice were handled daily and
housed two in a cage with a perforated clear Plexiglas divider placed
between the two mice.

Microdissection of brain sites for Ago2 IP

Amygdala samples were collected from social defeat and control mice 8 d
after the end of the social defeat protocol. Tissue collection and process-
ing was as previously described (Sztainberg et al., 2010; Lebow et al.,
2012). Briefly, after removing the brain and placing it on an acryl 1 mm
brain matrix (Stoelting, Catalog #51380), slices of 2 mm were taken using
standard razor blades (GEM, 62-0165) based on designated anatomical
markers. Blunted syringes at different diameters were used to extract the
amygdala from slices removed from the matrix.

Immunoprecipitation of Ago2 protein

Pools of three amygdala from three mice from the same treatment group
(either social defeat n = 18 or control n = 12) were homogenized in
NP40 buffer, which was supplemented with RNase inhibitor, protease
inhibitor and phosphatase inhibitor (Roche). The samples were con-
stantly agitated for 2 h at 4°C. Samples were then centrifuged for 20 min
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at 12,000 rpm at 4°C in a microcentrifuge; the supernatant was placed in
a fresh tube kept on ice and the pellet was discarded. Magnetic protein G
beads (Dynabeads, Invitrogen) were incubated with the Ago2 monoclo-
nal antibody (WAKO) with rotation at room temperature for 10 min.
After several washes, the samples were added to the Ago2-coated protein
G beads and incubated overnight at 4°C under agitation. The following
day the beads were washed three times with PBS. For RNA purification,
the beads were homogenized in RLT buffer (RNeasy kit, miRNA supple-
mentary protocol). For Western blot analysis, the beads were boiled in
sample buffer to release the protein from the beads.

RNA purification and microarray

RNA from the Ago2 immunoprecipitation samples was isolated using the
RNeasy plus kit (Qiagen) following Qiagen supplementary Protocol 1:
purification of total RNA containing miRNA. RNA for all other purposes
was isolated from frozen brain punches using miRNeasy mini kit (Qia-
gen) according to the manufacturer recommendation. RNA derived
from tissues of stressed mice following Ago2 immunoprecipitation was
further analyzed on Affymetrix miRNA 2.0 array (enriched RNA
protocol).

Bioinformatic analysis of microRNA microarray results

miRNAs and genes were tested in 3 different web based programs in
search for a seed match between a miRNA and a 3’ UTR: Target Scan
(http://www.targetscan.org), Miranda (http://www.microrna.org; Betel
etal., 2008), and Pictar (http://pictar.mdc-berlin.de).

Cloning of 3" UTRs into Psicheck2 luciferase expression plasmid

3" UTR sequence of Adrbl was PCR amplified from mouse genomic
DNA using a forward primer with an Ndel site: CATATGGCTTCTC
CTCGGAGTCCA, and a reverse primer: CCATCAACTCAATAACATA
ATAGACAA. The DNA sequence for the mutated form of Adrbl
(lacking all 4 seed sites of miR-19b) was purchased from Epoch Life
Science. 3" UTR fragments were then ligated into pGem-T easy vector
(Promega) according to the manufacturer’s guidelines, and further sub-
cloned into a single NotI site at the 3’ end of luciferase in the Psicheck2
reporter plasmid (Promega). Cloning orientation was verified by diag-
nostic cuts and sequencing.

Transfections and luciferase assay

HEK293T and HT-22 cells were grown on poly-L-lysine-coated 48-well
plates to a 70—85% confluence and transfected using polyethylenimine
with the following plasmids: 5 ng of Psicheck2-3’" UTR plasmid and 215
ng of EGFP overexpressing vector for either a specific miRNA, or an
empty EGFP plasmid. Twenty-four hours following transfection, cells
were lysed and luciferase reporter activity was assayed as previously de-
scribed (Chen et al., 2005). Renilla luciferase values were normalized by
control luciferase levels (transcribed from the same vector but not af-
fected by the 3’ UTR tested) and averaged across eight well repetitions per
condition.

miRNA RT-qPCR expression analysis

Quantitative miRNA expression was acquired and analyzed using a step
one thermocycler (Applied Biosystems), using primers that were de-
signed for specific miRNA. RNA samples were assessed using miScript
Reverse transcription kit and SYBRGreen PCR kit (Qiagen) according to
the manufacturer’s guidelines. U6 snRNA was used as internal control.
Gene expression was obtained using the High Capacity kit and cybr green
PCR master mix (Applied Biosystems). The real time PCR primers for
Adrb1 were as follows: forward: TCATGGCCTTCGTGTACCTG; and
reverse: TTACCTGTTTTTGGGCCTCG.

Western blot analysis

Frozen brain samples were homogenized in RIPA buffer supplemented
with proteinase inhibitors (Sigma-Aldrich) and were incubated on ice for
10 min. After 10 min centrifugation, the supernatant was transferred to a
new tube and sample buffer was added to the sample, which was then
boiled for 5 min and placed on ice. The samples were separated in a 10%
PAGE. Transfer was performed using an assembly of nitrocellulose
membrane and Whatman paper. The transfer was performed at 100 V,
350 mAmp for 1 h. After washes with PBST (PBS + 20% Tween 20)
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membrane was blocked with 10% milk. The first antibody was added
(rabbit anti-Adrbl, Santa Cruz Biotechnology, sc-568; mouse anti-
GAPDH, Abcam, ab8245) to PBST and placed on constant shaking at 4°C
overnight. The second antibody (anti-rabbit HRP, anti-mouse HRP) was
added in 10% milk for 1 h. Each step was separated by additional washes
with PBST. Finally, ECL was added to the membrane, which was then
exposed to film.

Design, construction, and validation of miR-19 lentiviruses
miR-19b overexpression vector was cloned as follows: the enhanced form
of human synapsin I promoter (Hioki et al., 2007) was PCR amplified
(forward primer: ttttttatcgatctcgagtagttattaatagtaatc; reverse primer:
ttttttaccggtggegegeccgecgeagegeagatggt) from pENTRIA-E/SYN-GFP-
WRPEI (kindly provided by Dr Takeshi Kaneko, Department of Mor-
phological Brain Science, Graduate School of Medicine, Kyoto
University, Kyoto, Japan) and inserted between Clal and Agel restriction
sites to replace the CMV promoter in pCSC-SP-PW-GFP (kindly pro-
vided by Dr Inder Verma, The Salk Institute for Biological Studies, La
Jolla, CA). Following the Synapsin promoter the precursor for miR-19b
was inserted as follows: GTCCTGTTATTGAGCACTGGTCTATGGTT
AGTTTTGCAGGTTTGCATCCAGCTGTATAATATTCTGCTGTGCA
AATCCATGCAAAACTGACTGTG. The HI-miR-19b KD and its con-
trol scramble sequence were obtained from GeneCopoeia and subcloned
into the Nhel site of the p156RRL-CMV-GFP viral plasmid. High titer
lentiviruses were produced as described previously (Tiscornia et al.,
2006). Briefly, recombinant lentiviruses were produced by transient
transfection in HEK293T cells. Infectious particles were harvested at 48
and 72 h post-transfection, filtered through 0.45-um-pore cellulose ac-
etate filters, concentrated by ultracentrifugation, redissolved in sterile
HBSS, aliquot, and stored at —80°C.

Stereotactic intracranial injections

A computer-guided stereotaxic instrument and a motorized nanoinjec-
tor (Angle Two Stereotaxic Instrument, myNeurolab) were used as pre-
viously described (Elliott et al., 2010; Kuperman et al., 2010; Regev et al.,
2012). Mice were anesthetized using 1.5% isoflurane and 1 ul of the
lentiviral preparation was delivered to each basolateral amygdala using a
Hamilton syringe connected to a motorized nanoinjector system at a rate
of 0.2 ul per min (coordinates relative to bregma: AP = —1.58 mm, L =
*3.3 mm, H = —4.6 mm). Mice were subjected to behavioral studies
following a 2 week recovery period.

Behavioral assessments

All behavioral assessments were performed during the dark active phase
of the mice following habituation to the test room for 2 h before each test.
Behavioral tests were conducted as previously described (Haramati et al.,
2011; Lebow et al., 2012) in the following order, from the least stressful
procedure to the most and ending with homecage locomotor testing:
Open-field, dark/light transfer test, elevated plus maze, fear condition-
ing, and homecage locomotion.

Open-field test. The open-field test was performed in a 50 X 50 X 22
cm white box, lit to 120 lux. The mice were placed in the box for 10 min.
Locomotion in the box was quantified using a video tracking system
(VideoMot2; TSE Systems).

Dark/light transfer test. The dark/light transfer test apparatus consists
of a polyvinyl chloride box divided into a black dark compartment (14 X
27 X 26 cm) and a connected white 1200 lux illuminated light compart-
ment (30 X 27 X 26 cm). During the 5 min test, time spent in the light
compartment, distance traveled in light, and number of light/dark tran-
sitions were quantified with a video tracking system (VideoMot2; TSE
Systems).

Elevated plus-maze. This apparatus in this test is designed as a plus sign
and contains two barrier walls and two open arms. During the 5 min test,
which is performed in relative darkness (6 lux), number of entries, dis-
tance traveled and the time spent in the open arms is automatically
scored using a video tracking system (VideoMot2, TSE Systems).

Fear conditioning. A computer-controlled fear-conditioning system
(TSE Systems) monitored the procedure while measuring freezing be-
havior (defined as lack of movement except for respiration). On the first
day, mice were habituated for 5 min to the fear conditioning chamber, a
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clear Plexiglas cage (21 cm X 20 cm X 36 cm) with a stainless steel floor
grid within a constantly illuminated (250 lux) fear conditioning housing.
Conditioning took place on day 2 in one 5 min training session. Mice
initially explored the context for 2 min. Thereafter, two pairings of a
coterminating tone [conditioned stimulus (CS): 30 s, 3000 Hz, pulsed 10
HZ, 80 dB (A)] and shock [unconditioned stimulus (US): 0.7 mA, 2 s,
constant current] with a fixed intertrial interval (ITI) of 60 s. The US was
delivered through the metal grid floor. Mice were removed from this
chamber 1 min after the last CS-US pairing. The chamber was cleaned
thoroughly with 10% ethanol before each session. The ventilating fan of
the conditioning box housing provided a constant auditory background
noise [white noise, 62 dB(A)]. Context-dependent memory was tested
24 h after the conditioning by re-exposure to the conditioning box for 5
min without any stimuli. The tone-dependent cued-memory test was
performed 1 d after the contextual memory test in a novel context: the
walls and floor of the box were opaque black Plexiglas (dimensions were
similar to the conditioning box), and the apparatus house lights and
ventilating fan were turned off. Behavior was monitored for 2 min with-
out any stimulus before the CS (tone) presentations; thereafter two CSs
were presented, separated by a fixed 1 min ITL. Mice were removed from
this box 1 min after the last CS.

Homecage locomotion. Homecage locomotion was assessed using the
InfraMot system (TSE Systems). Mice were housed individually for 72 h,
in which the first 24 h were considered habituation to the individual
housing conditions. Measurements of general locomotion consisted of
two light and two dark cycles in the last 48 h collected at 10 min intervals.

Microdissections, sample preparation, and HPLC-ED analysis of
NE and MHPG concentrations

Microdissections were performed as previously described (Palkovits and
Brownstein, 1988; Evans et al., 2008; Neufeld-Cohen et al., 2010). Briefly,
coronal brain sections (300 uwm) were taken using a Leica CM1950 cry-
ostat (North Central Instruments), mounted onto glass slides, and mi-
crodissected on a cold plate at —10°C under a stereomicroscope using
microdissection needles with varying inner diameters. Each microdis-
sected brain structure for each subject was put into separate individual
tubes each containing 100 ul of acetate buffer (3.0 g/L sodium acetate, 4.3
ml/L glacial acetic acid, pH adjusted to 5.0), which were rapidly frozen on
dry ice and stored at —80°C. Next, samples were thawed and then cen-
trifuged at 4°C and 13,000 rpm for 3 min. The supernatant was aspirated
and 50 pl of the supernatant was used for detection of noradrenaline
(NE) and 3-methoxy-4-hydroxyphenylglycol (MHPG) using high per-
formance liquid chromatography with electrochemical detection
(HPLC-ED), which has been previously described (Heal et al., 1989;
Evans et al., 2008), but with slight modifications. The pellet was recon-
stituted with 175 ul of 0.2 M NaOH for later assay of protein content.
Samples were placed in an ESA model 542 autosampler to automatically
inject the samples into the HPLC system. The HPLC system also con-
sisted of an ESA Model 582 Solvent Delivery Module to pump the mobile
phase (0.1 M sodium acetate/citric acid buffer dissolved in HPLC grade
H,O, pH 4.40, adjusted with semiconductor grade NaOH, containing
8% HPLC grade methanol (v/v), and 4.6 mm octanesulphonic acid)
through the chromatographic system. The stationary phase, where chro-
matographic separation occurred, consisted of an integrated precolumn/
column system [Ultrasphere 5 ODS (C18) precolumn (45 X 4.6 mm)/
Ultrasphere 5 ODS (C18) column (250 X 4.6 mm); MAC-MOD Analyt-
ical] maintained at RT. Electrochemical detection was accomplished us-
ing an ESA Model 5200A Coulochem IT detector with dual potentiostats
connected to an ESA 5021 Conditioning Cell with the electrode potential
setat 0 mV and an ESA 5014B Microdialysis Cell with the channel 1 and
channel 2 electrode potentials set at —200 and 400 mV, respectively. For
each run, the average peak heights of known concentrations of NE and
MHPG were determined manually using chromatography analysis soft-
ware (EZChrom Elite for Windows, v2.8, Agilent Technologies) and used
to calculate the concentration of the unknown samples. Tissue concen-
trations of NE and MHPG were standardized to the amount of protein in
each microdissected structure.
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Figure 1.

Control - Social defeat Control Social defeat

miR-19b is upregulated in amygdala-Ago2 extract following chronic stress. A, Ago2-RNA IP was performed and RNA extracted from the Ago2 complex was analyzed on an Affymetrix

array. B, C, The validity of the Ago2-RNA IP was confirmed using Western blot (B) and RT-PCR (C). D-F, The Ago2 IP revealed a robust elevation of miR-19b (D) a slight elevation of miR-19a (E) and

no change in miR-124 levels (F).

Statistics

The Student’s ¢ test was used to assess significance. For behavioral results
of lentiviral-injected mice, Student’s ¢ test was used between control and
miR-19b overexpression (OE) or knockdown (KD)-injected mice. Fac-
tor analysis was performed using SPSS software to determine which
scores should be given to which tests. For the miRNA array results a g
value correction was performed.

Results

MiR-19b associates with Ago2 in the amygdala following
chronic stress

To identify miRs recruited to the RISC complex specifically dur-
ing chronic stress we immunoprecipitated (Rodriguez-Gonzalez
et al., 2008) Ago2 and its associated RNAs from the amygdala of
chronically stressed mice (Fig. 1A). To validate that the immuno-
precipitation indeed resulted in RNA bound to Ago2, the protein
soluble fraction from total brain tissue was extracted, and the
Ago2 protein-RNA complex was precipitated using anti-Ago2-
coated beads. As a control we used nonspecific IgG1-coated beads
(Fig. 1B). The RNA fraction was extracted from the Ago2 immu-
noprecipitated material by conventional methods. To verify that
miRNAs were indeed precipitated with Ago2, we performed real
time PCR with primers specific to miR-124 or U6. MiR-124 is

highly abundant in the brain and indeed its levels were found to
be 2200-fold enriched in the Ago2 IP fraction relative to the con-
trol (Fig. 1C). The levels of U6, which is not expected to be asso-
ciated with Ago2 in the RISC complex were only elevated 11-fold
in the Ago2 IP (Fig. 1C) demonstrating the specificity of the Ago2
IP. To identify the entire repertoire of miRs associated with the
RISC complex we performed a miRNA microarray (Exiqon) with
the RNA fraction extracted from the amygdala Ago2 IP of the
chronically stressed or control mice.

Analysis of the miRs that were specifically associated with Ago2 in
the brains of chronically stressed mice relative to the control group
identified miR-19b as the miR that showed a maximal elevation
(~2-fold, F, gy = 41.14, p < 0.001; Fig. 1D). This increase was spe-
cific to miR-19b, as the levels of miR-19a were only slightly elevated
(~1.2-fold, F, o) = 9.043, p < 0.05; Fig. 1E) and miR-124 was not
significantly increased following a similar treatment (Fig. 1F). An
additional group of miRs that were elevated 1.5-fold included ~30
miRs of 757 in total (data not shown).

miR-19b regulates Adrb1 levels
Bioinformatic analysis revealed Adrb1 as a possible mRNA target
of miR-19b. This receptor has four seed matches for miR-19b,
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[ Conserved miR-19b binding site
1 Non conserved miR-19b binding site

Mouse Adrb1 3'UTR (1090 bases)
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Amygdala Adrb1 protein levels are reduced in mice subjected to chronic social defeat paradigm. 4, Real-time PCR analysis of Adrb1 RNA levels in the BLA of mice subjected to chronic

social defeat. B, WB analysis of Adrb1 levels in WT, Adrb1 = and Adrb1 ~/~ mice. C, D, WB analysis of Adrb1 protein in the BLA of mice subjected to chronic social defeat paradigm. Representative

blot (€) and quantification of four repetitions (D) are presented.

three of these are conserved and one is present only in mouse and
rat (Fig. 2).

Adrenergic receptors in the BLA have been reported to play a
role in memory consolidation. Enhanced noradrenaline release
in the BLA promotes memory consolidation. To examine
whether the levels of Adrb1 are altered during social defeat in the
BLA, brain tissue punches from the BLA were collected from
chronically stressed and control mice and the mRNA and protein
levels of Adrbl were analyzed using real time PCR and Western
blot analysis, respectively (Fig. 3). Real-time PCR analysis
showed a decrease of ~25% (Fig. 3A) in the Adrbl transcript
levels of the stressed mice (n = 5, F(; o) = 6.393, p < 0.05). To
confirm the observed changes of Adrbl transcript levels in the
protein levels, we first validated the specificity of the anti-Adrb1
antibody. Isolated BLA tissue obtained from WT, Adrbl * and
Adrbl ~/~ mice was analyzed using Western blot. Figure 3B
clearly shows that Adrb1 is not detected in the Adrb1-deficient
mice, supporting the specificity of the anti-Adrb1 antibody used.
Western blot analysis showed that the levels of Adrb1 were de-

creased by ~30% (Fig. 3C,D) in the BLA of chronically stressed
mice relative to control (n = 4, F, o) = 6.394, p < 0.05).

To address a functional link between miR-19b and Adrb1, we
expressed the luciferase gene fused to wild-type Adrb1 3’ UTR or
mutated Adrbl 3" UTR lacking all four seed sites (Fig. 4A) in
neuronal hippocampal cell line (HT-22) and compared the lu-
ciferase activity produced by the two constructs. The HT-22 neu-
ronal cells express very low endogenous levels of miR-19, and
consequently no difference was detected between the two con-
structs carrying wild-type or mutated luciferase-Adrbl 3" UTR
sequence (Fig. 4B). However, cotransfection of the HT-22 with
miR-19b expression construct, led to reduction of ~50% (n = 8,
F1s = 69.19, p < 0.001) in the luciferase activity of the
luciferase-Adrb1 3" UTR relative to the control (Fig. 4C). The two
luciferase-Adrbl 3’ UTRs were also transfected into HEK293T
cells, which express endogenously high levels of miR-19b. This
resulted in a relative reduction of 50% (n = 8, F(, ;5 = 121.348,
p < 0.001) in the luciferase activity in an Adrbl 3" UTR-
dependent manner (Fig. 4D). Together, these experiments dem-
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Figure 4.

miR-19b regulates Adrb1 levels in vitro by binding toiits 3" UTR. A, Schematicillustration of the mutated form of the Adrb1 3" UTR, lacking the four seed matches for miR-19b. B-D, In

vitro luciferase assay assessing the effect of miR-19b on the 3" UTR of Adrb1 transcript. Luciferase assay in HT-22 cells that express low endogenous levels of miR-19b, without the presence of
miR-19b (B) or in the presence of exogenous miR-19b (C). Luciferase assay in HEK293T cells that express high endogenous levels of miR-19b (D).

onstrate that miR-19b in culture conditions is capable of
efficiently regulating Adrb1 through its 3" UTR.

BLA-specific miR-19b overexpression or knockdown affects
auditory fear memory but not anxiety-like behavior

To examine the behavioral effects of miR-19b overexpression in
the BLA of adult mice, a lentiviral vector expressing miR-19b
under the neural-specific promoter synapsin was designed, con-
structed and produced (Fig. 5A). The precursor of miR-19b was
cloned into a lentiviral construct and GFP sequences were fused
at the 3’-end of the miR. A similar vector lacking the miR-19b
sequences was used as a control (Fig. 5A4). Viral infection of the
two constructs into the hypothalamic mouse cell line N42 fol-
lowed by real time PCR analysis indicated that the RNA levels of
miR-19b were elevated ~6-fold (n = 3, F(; 5, = 148.909, p <
0.001) in the infected cells (Fig. 5B), indicating an efficient pro-
duction of the miR by the viral vector. A lentiviral vector
expressing miR-19b knockdown or scramble sequences under
the H1 promoter was designed, constructed, and produced
(Fig. 5C). Infection of HEK293T cells with the knockdown
viruses resulted in ~2-fold decrease in endogenous miR-19b
levels relative to scrambled control (n = 3, F, 5) = 13.435,p <
0.05; Fig. 5D), indicating an efficient inhibition of the miR by
the viral infection.

To analyze the behavioral effect of BLA-miR-19b overexpres-
sion or knockdown in adult mice, the viruses were injected bilat-
erally into the BLA of 10-week old C57BL/6] mice (n = 10 in each
group; Fig. 5E-H ). Following 3 weeks of recovery, the mice were
subjected to the fear-conditioning test, which assess learning and
memory performance following an aversive stimulus. According
to previous reports (Qu et al., 2008), decreased levels of Adrb1 are
associated with reduce freezing time in the fear-conditioning
procedure. Based on our analysis above it was predicted that
overexpression or knockdown of miR-19b in the BLA would lead
to a decrease or increase of Adrbl1 levels, respectively. In the first

day of the experiment (habituation) no differences were observed
in the basal freezing levels between the different groups (Fig.
6A,E). Following a day of conditioning (Fig. 6 B, F), in which the
mice received two electrical shocks paired with a conditioned
stimulus (tone), a “context test” (Fig. 6C,G) and a “cue test” (Fig.
6D,H) were performed. Freezing behavior during the context
test, which are primarily associated with the hippocampus (Kim
and Fanselow, 1992), was not significantly different between the
overexpressing or knockdown groups of mice and their respec-
tive controls (Fig. 6C,G). However, in the cue test, we found that
mice overexpressing miR-19b froze 40% less (n = 10, F(, ;o) =
6.234, p < 0.05) than the control group (Fig. 6D), suggesting a
reduced memory consolidation. Intriguingly, mice injected with
miR-19b knockdown viruses froze 60% more (n = 10, F(, ,,) =
4.922, p < 0.05) than the control scrambled injected group
(Fig. 6H).

The overexpressing and knockdown groups of mice and their
respective controls were also subjected to anxiety-like behavior
assessments, including the open-field, dark/light transfer and the
elevated plus maze tests. In the open-field procedure no changes
were observed in time the mice spent in the center of the arena
(Fig. 7A, F). Similarly, in the dark/light transfer tests, no signifi-
cant differences between the groups were detected in the time
spent in the light compartment (Fig. 7 B, G). In addition, no sig-
nificant differences between the groups were observed in the time
spent in the open arms of the elevated plus-maze test (Fig. 7C,H ),
although the miR-19b knockdown group showed a strong ten-
dency (n = 10, F, ;) = 4.243, p = 0.054) for increased time in
the open arms (Fig. 7H). No significant differences were ob-
served in the homecage locomotor activity of the tested groups of
mice (Fig. 7D, E, I,]). Together, the behavioral experiments sup-
port a specific role for miR-19b in regulating auditory fear mem-
ory, which is potentially mediated by the influence of miR-19b on
Adrbl.
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Control miR-19b KD

Establishment and validation of miR-19b overexpressing and knockdown lentiviruses. 4, Schematicillustration of the Syn-miR-19b OE and control lentiviral constructs. B, Infection of

N42 cells with the Syn-miR-19b OE virus showed an elevation of ~6-fold in miR-19b levels. €, Schematic illustration of the miR-19b knockdown (KD) and control lentiviral constructs. D, Infection
of HEK293T cells with the miR-19b KD virus showed a decrease of ~2-fold in miR-19b levels. E, Schematic representation of site of delivery adopted from Paxinos and Franklin digital mouse brain
atlas. F, Enlargement of the basolateral amygdala region corresponding to the injection site. G, H, Representative microscope image of virally infected BLA at 10 weeks following miR-19b OE (G) or

miR-19b KD (H) virus injection.

Downstream effects of BLA-specific miR-19b regulation on
limbic circuits

The effects of noradrenaline-induced BLA activation on memory
consolidation are thought to be mediated by downstream signal-
ing to limbic forebrain structures including the hippocampus
and medial prefrontal cortex (Schwabe et al., 2012). Therefore,
we predicted that BLA-specific modulation of miR-19b might
alter signaling in downstream limbic structures. Noradrenaline
acts via 3 adrenergic receptors within the BLA to enhance excit-
atory neurotransmission both in vivo (Buffalari and Grace, 2007)
and in vitro (Gean et al., 1992; Huang et al., 1996; Ferry et al,,
1997). Because noradrenaline acts via 3 adrenergic receptors
within the BLA to activate glutamatergic projection neurons,
and glutamate acts on presynaptic noradrenergic terminals to
induce noradrenaline release in a number of limbic forebrain
structures, including the prefrontal cortex (Russell and Wig-
gins, 2000) and hippocampus (Howells and Russell, 2008;
Dazzi et al., 2011), we predicted that selective overexpression
of miR-19b, by downregulating Adrbl and noradrenaline-
mediated activation of glutamatergic projection neurons,
would decrease noradrenergic signaling in specific down-
stream targets of the BLA. Complementarily, knockdown of
miR-19b in the BLA may possibly result in an opposite affect
by increasing Adrb1 levels.

Following the behavioral and locomotor activity tests, miR-
19b overexpressing or knockdown injected mice were sacrificed
and noradrenaline and its degradation metabolite, MHPG, were
measured in specific brain nuclei (Fig. 8A-C). A treatment X
region interaction for the MHPG:NE ratio (F, 56 g2y = 3.38;p =
0.01; € = 0.285) was observed. The BLA-specific miR-19b over-
expression decreased the MHPG:NE ratio in the dorsal hip-
pocampus (CAld region) by ~20% (F(, ,,) = 5.213,p < 0.05) as
expected (Fig. 8D), suggesting that BLA-specific miR-19b over-
expression not only influences noradrenergic signaling within
the BLA, but also in a distributed system controlling memory
consolidation (Roozendaal, 2000). Interestingly, the miR-19b
knockdown group showed increase of ~25% in the MHPG:NE
ratio in the same brain region (CA1; F(, ,,) = 5.916, p < 0.05; Fig.
8G). The MHPG:NE ratios in the prelimbic (PrL) and infralimbic
(IL) structures were unchanged (Fig. 8 E,F, H,I). There was no
treatment or treatment X region interactions for either the
MHPG or NE concentrations alone.

Discussion

Adrb1 was previously demonstrated to play a pivotal role in reg-
ulating memory consolidation and stabilization (Roozendaal et
al., 2004, 2006a) and anxiety-like behavior (Rudoy and Van
Bockstaele, 2007; Fu et al., 2008). Therefore, modulating Adrb1
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BLA-specific miR-19b overexpressing or knockdown mice showed changes in memory consolidation. A-H, Percentage of freezing in the fear conditioning paradigm (n = 10). Although

nossignificant changes were observed in the percentage of freezing in the habituation (4, E), fear training (B, F), or context test (C, G), the BLA-specific miR-19b OE mice showed significantly reduced
percentage freezing in the Cue test (D), whereas the BLA-specific miR-19b knockdown (KD) mice showed significantly elevated percentage freezing in the Cue test (H).

levels and/or activity was proposed to be important for the regu-
lation of stress-induced behavioral responses (Fortaleza et al.,
2012). Here we identify miR-19b as an important novel modula-
tor of Adrb1 in the BLA. MiR-19b levels were found to be signif-
icantly elevated in the RISC RNA-Ago2 complex in the amygdala
region following the application of chronic social defeat (CSD) in
mice, concomitant with a significant reduction in the transcript
and protein levels of its putative target, Adrbl. These findings
suggested a role for miR-19b in regulating amygdalar transcripts
following chronic stress, and revealed Adrb1 as a key target and
mediator of this process. Indeed our results demonstrate Adrbl

as a major target of miR-19b regulation. MiR-19b expression
reduced the levels of a luciferase reporter fused to the 3" UTR of
Adrbl in a manner that was dependent on the presence of four
miR-19b seeds in its 3" UTR. Furthermore, changing the levels of
BLA-miR-19b in adult mice using site-specific viral approach
resulted in changes in freezing duration in the cue test of the
fear-conditioning procedure. Whereas higher levels of miR-19b
in the BLA resulted in reduced freezing in the cue test, lower levels
of BLA-miR-19b caused an opposite effect, showing increased
freezing behavior. These behavioral changes were also reflected in
the opposed MHPG:NE ratio in the dorsal hippocampus suggest-
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Figure7. Intact anxiety-like behavior in mice expressing modified levels of miR-19 in the BLA. A-C, F—H, Anxiety-like behavior was assessed using the open-field (4, F), dark/light transfer (B,

G), and elevated plus maze (C, H) tests. The BLA—-miR-19b OE or miR-19b KD groups of mice (n = 10

) showed no significant differences in the anxiety parameters examined. D, E, 1, J, No significant

changes were observed in the homecage locomotor activity between the BLA-miR-19b OE mice and the control group (D, E) and the BLA—miR-19b KD mice and their respective control (/,J).

ing modified noradrenergic signaling in a distributed system
controlling memory consolidation. These results suggest that
BLA-miR-19b levels are important for the regulation of memory
stabilization in response to stressful challenge, which is mediated

primarily via modulating Adrb1 levels. The high BLA-miR-19b
levels in the Ago2 complex of chronically stressed mice reported
in this study may be directly linked to the long-term regulation of
the central stress response and related copying mechanisms. The
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miR-19b OE and KD mice showed a reduction of MHPG:NE ratio in the hippocampus. A-C, Schematic illustration adopted from Paxinos and Franklin digital mouse brain atlas showing

the nuclei analyzed in the MHPG:NE ratio measurements. Analysis of the MHPG:NE ratio in the CA1d (D, G), PrL (E, H), and IL (F, I) brain regions (n = 10).

regulation of Adrbl levels may be important for the coping of mice
with stressful challenges. Low levels of Adrb1 that mediate a decrease
in memory consolidation might pan out as beneficial to accommo-
date stressful events. Several previously published studies have
highlighted adrenergic dysregulation in PTSD human studies
(Southwick et al., 1999; Strawn and Geracioti, 2008; Krystal and
Neumeister, 2009; Liberzon et al., 2014), suggesting an important
role for the adrenergic system in coping with stressful events.

Social defeat mice have been shown previously to exhibit
higher freezing time in the auditory cue test (Yu et al., 2011). Our
current findings show that as a consequence of chronic stress,
miR-19b levels are elevated in the amygdala, and when chroni-
cally overexpressed in the BLA caused lowering of the freezing
time in the cue test. Although these findings may appear as con-
tradicting, the experimental approaches are fundamentally dif-
ferent and the final behavioral readout could be influenced by
multiple different factors. The CSD protocol is associated with
multiple molecular and cellular changes that collectively trans-
lated, among others, into increase freezing time in the auditory
cue test. Although miR-19b levels are upregulated following ex-
posure to CSD protocol, the overexpression of miR-19b in naive
mice are mechanistically very different from exposing the mice to
CSD. Clearly, the overexpression of BLA-miR-19b does not rep-
resent all the changes occurring following CSD protocol, which
will be also reflected in the behavioral and physiological pheno-
type of these mice. Additional possible factor that may contribute

for these differences is the expression kinetics of the endogenous
miR-19b in the BLA following stressful challenge. Here, we dem-
onstrate a significant increase in miR-19b in the BLA of mice 8 d
following the termination of the CSD protocol. This upregula-
tion could be transient, permanent, or even exhibit a more com-
plex pattern of expression kinetics and therefore the constitutive
overexpression of the virally mediated miR-19b in the BLA not
necessarily mimicked the endogenous situation. Nevertheless,
the demonstrated repressive effect of miR-19b on Adrbl levels
and its downstream behavioral and cellular effects persist.
Whereas the three subtypes of the 8 adrenergic receptors are
expressed in different tissues, i.e., betal is expressed by heart
cardiomyocytes, beta2 is the dominant subtype distributed in the
lungs (Carstairs et al., 1985), and beta3 is expressed in adipose
tissue (Kriefetal., 1993), all three are expressed in the CNS (Insel,
1993). Adrbl and Adrb2 are both expressed in neurons of the
BLA and not in astrocytes. In addition, whereas Adrb1 is uniquely
detected in the cytoplasm, Adrb2 has been shown to be present in
both the cytoplasm and nucleus (Qu et al., 2008). This may indi-
cate that each of these receptors have a distinct mechanism of
action and may be differentially regulated. Adrb2 has been shown
to be controlled in vitro in lung epithelial H292 cells by the miR
let-7f. Let-7 expression increases with age (Nishino et al., 2008)
and thus its regulation of Adrb2 in the BLA may be mediated
through an age-related mechanism, although our analysis shows
that Adrbl is regulated in the BLA by stress. Previously, it has
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Putative model illustrating the effects of either miR-19b OE (4) or miR-19b knockdown (KD; B) in the BLA on NE neurotransmission in downstream limbic structures, such as CA1d and

the resulting changes in coping behavior. Stress-induced activation of NE afferents (Morilak et al., 2005; Itoi and Sugimoto, 2010) results in excitation of subpopulations of BLA principle neurons
through agonism of B-adrenergic receptors (Ferry and McGaugh, 2000; Buffalari and Grace, 2007); therefore, in A4, (1) miR-19b OE in the BLA reduces Adrb1 signaling through RNA transcript
degradation or translation inhibition, which leads to (2) reduced stress-induced activation of BLA glutamatergic projection neurons by NE afferents. Together with evidence that BLA glutamatergic
projection neurons target the hippocampal formation (Sparta etal., 2014), including the CA1d region (Pikkarainen etal., 1999; Pitkdnen etal., 2000), and these neurons are thought to be important
for fear-related behavioral responses and memory processes (Davis, 1992; Herry et al., 2008; Zimmerman and Maren, 2010), as well as evidence that glutamate regulates hippocampal NE release
through modulation of presynaptic NE terminals (Russell and Wiggins, 2000; Luccini et al., 2007; Howells and Russell, 2008; Dazzi et al., 2011), (3) it is probable that the decreased stress-induced
activation of BLA glutamatergic projections results in diminished stress-induced presynaptic stimulation of NE release in the CA1d and consequently, and (4) reduced stress-induced freezing in cued
fear conditioning and increased coping. Conversely, in B, (1) miR-19b KD in the BLA facilitates Adrb1 signaling resulting in (2) increased stress-induced activation of BLA glutamatergic projection
neurons by NE afferents. (3) The greater stress-induced activation of BLA glutamatergic projections results in augmented stress-induced presynaptic stimulation of NE release in the CA1d and

consequently, and (4) increased stress-induced freezing and decreased coping.

been shown that the blockade of Adrbl and Adrb2 in the BLA
immediately after conditioning of rats resulted in a significantly
lower freezing score in the auditory test performed 24 h postcon-
ditioning, indicating that both receptors are important for the
formation of auditory fear memory (Qu et al., 2008). Our data
implicate that miR-19b targets specifically Adrb1 and not Adrb2,
suggesting a nonredundant function for Adrb1 in the stress re-
sponse. This is consistent with studies by Qu et al. (2008) dem-

onstrating that blocking either Adrb1 or Adrb2 was sufficient to
cause a severe deficit in auditory fear memory. Consistent with
blocking specifically neuronal but not astrocyte Adrbl, the virus
used for injection in our miR-19b overexpressing experiments
included a neuronal specific synapsin promoter. However, it is
conceivable that the injection of miR-19b into the BLA affected
other potential mRNA targets in the neurons. For example, miR-
19b can potentially target the cannabinoid receptor type 1 (CB1).
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CB1 has a 3" UTR of 3.8 kb with two seed matches for miR-19b
(one conserved and one less conserved). CB1 plays an important
role in memory consolidation in the model proposed by Hill and
McEwen (2009) by releasing GABA inhibition in the BLA neu-
rons and inducing noradrenaline release, promoting memory
consolidation in the BLA.

Whereas the mice injected with miR-19b overexpressing or
knockdown viruses showed a significant difference in freezing
time in the cue test, no changes were observed in their freezing du-
ration in the habituation period. Similarly, no changes were ob-
served in their locomotor activity at the anxiety-like behavior tests or
the homecage locomotor measurements. Both observations indicate
that there were no motor differences between the groups and the
change in freezing time resulted from a specific change in memory
consolidation rather than alterations in motor function.

MiR-19b might be part of a group of miRs controlling different
target genes that contribute to memory consolidation. For example,
overexpression of miR-182 has been implicated recently in disrup-
tion of memory consolidation in the lateral amygdala of rats (Griggs
etal.,2013). Griggs et al. (2013) showed that overexpression of miR-
182 in the lateral amygdala represses expression of cortactin and
Ras-related C3 botulinum toxin substrate 1 (Rho family, small GTP
binding protein Racl; Racl) following auditory fear conditioning.
The levels of miR-128b were demonstrated to be elevated in the
infralimbic prefrontal cortex following fear extinction learning in
mice, suggesting a role for this miR in facilitating the formation of a
fear extinction memory through targeting of the plasticity-
related gene, regulator of calmodulin signaling (Rcs; Lin et al.,
2011). Finally, miR-132 overexpression was demonstrated to
cause impaired plasticity and a functional deficit in short-term
recognition memory (Scott et al., 2012).

In summary, we have identified miR-19b as an important
chronic stress-induced regulator of amygdalar Adrb1 and its sub-
sequent behavioral functions. A putative model illustrated in Fig-
ure 9 describe the effects of either miR-19b overexpression or
miR-19b knockdown in the BLA on NE neurotransmission in
downstream limbic structures, such as the CAl region of the
dorsal hippocampus, and the resulted changes in coping behav-
ior. MiR-19b overexpression in the BLA reduces Adrb1 signaling
through RNA transcript degradation or translation inhibition,
which leads to reduced stress-induced activation of BLA gluta-
matergic projection neurons by NE afferents. The decreased
stress-induced activation of BLA glutamatergic projection results
in diminished stress-induced presynaptic stimulation of NE
release in the CAld and consequently reduce stress-induced
freezing in the cued fear conditioning and increase coping. Con-
versely, miR-19b knockdown in the BLA facilitates Adrb1 signal-
ing resulting in increased stress-induced activation of BLA
glutamatergic projection neurons by NE afferents. The greater
stress-induced activation of BLA glutamatergic projections re-
sults in augmented stress-induced presynaptic stimulation of NE
release in the CAld and consequently increase stress-induced
freezing and decrease coping. Spatial regulation of Adrbl by
miRNA enables the neurons in the BLA to provide an appropriate
response in stress conditions enabling the animal to accommo-
date its behavior to the changing conditions.
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