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Abstract

More than two-thirds of patients suffering from stress-related disorders are women but

over two-thirds of suicide completers are men. These are just some examples of the many

sex differences in the prevalence and manifestations of stress-related disorders, such as

major depressive disorder, post-traumatic stress disorder, and anxiety disorders, which

have been extensively documented in clinical research. Nonetheless, the molecular origins

of this sex dimorphism are still quite obscure. In response to this lack of knowledge, the

NIH recently advocated implementing sex as biological variable in the design of preclinical

studies across disciplines. As a result, a newly emerging field within psychiatry is trying to

elucidate the molecular causes underlying the clinically described sex dimorphism. Several

studies in rodents and humans have already identified many stress-related genes that are

regulated by acute and chronic stress in a sex-specific fashion. Furthermore, current

transcriptomic studies have shown that pathways and networks in male and female indi-

viduals are not equally affected by stress exposure. In this review, we give an overview of

transcriptional studies designed to understand how sex influences stress-specific trans-

criptomic changes in rodent models, as well as human psychiatric patients, highlighting

the use of different methodological techniques. Understanding which mechanisms are

more affected in males, and which in females, may lead to the identification of sex-

specific mechanisms, their selective contribution to stress susceptibility, and their role in

the development of stress-related psychiatric disorders.
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1 | INTRODUCTION

Stress-related disorders, such as major depressive disorder (MDD),

post-traumatic stress disorder (PTSD), and anxiety disorders, affect

more than 500 million people worldwide.1 Notably, women are two to

three times more at risk to develop these disorders1,2 and furthermore,

the symptomatology, development, and responsiveness to treatment

differ between genders.3-5 For instance, women suffering from
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depression have greater symptom severity and a higher chance of

developing metabolic and sleep disturbances than men. On the other

hand, men more often report symptoms of anger and aggression, and

comorbidity with alcohol and substance abuse.6,7 Finally, some evi-

dence suggests that antidepressants’ efficacy changes according to the

sex of the patients.8-11 Unfortunately, the current biological knowledge

of the mechanisms behind this dimorphism is scarce compared with

the abundant clinical evidence, which remains mostly unexplained.

However, mood disorders, anxiety disorders, and trauma- and stress-

related disorders have in common a strong association to stress expo-

sure as a risk-factor.12 Since sex has been shown to modulate the

stress response and processing at multiple levels, studying how the

male and female biological systems process stress might help to under-

stand the origin for sex differences in psychiatric disorders.

The biological systems known to be activated by stressors include

neurobiological systems, such as the hypothalamus-pituitary-adrenal

(HPA) axis, the cortico-limbic, and the sympathetic adrenomedullary

(SAM) systems, which interact with each other to coordinate the

stress response.13,14 Importantly, exposure to stress activates the par-

aventricular nucleus of the hypothalamus (PVN), which leads to a bio-

logical cascade that produces glucocorticoids, predominantly cortisol

in humans and corticosterone (CORT), in rodents. These steroid hor-

mones cross the blood-brain barrier thus acting directly on the brain,

modulating its functions mostly through regulation of gene expres-

sion. Both the hypothalamus and the cortico-limbic system which

includes the amygdala, the hippocampus, and the orbital/prefrontal

cortex, have shown sexually dimorphic patterns of activation and mor-

phology (Figure 1). In particular, women and female rodents have

been shown to have higher HPA axis activation in response to stress

and lower negative feedback.15,16 Similarly, other regions, such as the

hippocampus and the amygdala, have higher activation for women in

response to negative emotions.17,18 Many of these regions also show

sex dimorphism in structure,19-27 connectivity,28 cell composition,29,30

and transcriptional profile31-36 (Figure 1).

The transcriptional profile or transcriptome of a tissue is the col-

lection of gene transcripts present in its cells. Over the last decade,

we have seen transcriptomic studies rising in popularity in several

fields of biomedical research. This is mostly because different factors

make the transcriptome an interesting and insightful target of

research. First, the transcriptome provides a window on a tissue or

cell phenotype and its molecular dynamics.37 Second, the trans-

criptome is highly dynamic and reflects fast adaptation to the

F IGURE 1 Sex dimorphism in the human brain stress system. Schematic representation of the main brain regions of the stress system that
have been shown to be sexually dimorphic in adulthood. Dimorphism in size or volume has been found in the amygdala,18-23,26 frontal
cortex18-23,26 and hypothalamus.26 Connectivity has been shown to be different in the sexes in the frontal cortex,28 whereas neuronal activity
differs in the hippocampus,17 hypothalamus,15 frontal cortex,17 amygdala,17 and pituitary gland.15 Cell composition of the frontal cortex,29,30

amygdala,29,30 and hypothalamus29,30 and the transcriptional profile of the pituitary gland,31,32 frontal cortex,31-33,35 hippocampus,31-33

hypothalamus,31,32 and amygdala,33 were also found to be sex specific
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environment. For instance, transcriptomic changes on immediate early

genes can be observed in a matter of minutes following a stimulus.38

Third, a wide range of techniques for interrogating the transcriptomic

state of a tissue or cell have been developed through the years.39

These methods can be divided into two main categories: low- and

high-throughput. To the first group classically belong techniques such

as northern blot (NB), in situ hybridization (ISH), or quantitative real-

time polymerase chain reaction (qPCR). The second group contains

methods with wider targets such as microarrays and the so-called

next-generation sequencing methods (NGS or RNA-sequencing).

These approaches are characterized by increased sensitivity, higher

throughput, and ability to detected novel transcripts.40 Their differ-

ences in sensitivity are particularly relevant when comparing results

across techniques. Analyzing these limitations in depth is outside the

scope of the current review, but detailed discussions can be found in

the following reviews.40-42 Thanks to characteristics of the trans-

criptome, its study is particularly suitable to investigate the brain, a

complex and dynamic organ with high sensitivity to the environ-

ment.43 Transcriptomic studies have indeed already been insightful in

the fields of neurobiology and neuroscience by elucidating molecular

mechanisms behind diseases such as Alzheimer's disease44 and alco-

hol addiction,45 and basic molecular processes, such as the develop-

ment of the central nervous system46 and aging.47,48 Moreover, some

studies have already shown that the study of sex differences could

benefit from using a transcriptomics approach.49

Understanding why and which molecular pathways are differen-

tially regulated in response to stress in a sex-specific manner is crucial

to understand the mechanisms involved in the etiology of stress-

related psychiatric disorders. Most importantly, understanding these

differences can lead to the development of sex-oriented approaches,

both in diagnosis and treatment. In this review, we focus on how sex

influences stress-specific transcriptomic changes in rodent models, as

well as in psychiatric patients. We will discuss how different modali-

ties of stress (acute or chronic) affect males and females differently.

Furthermore, we will highlight the use of different methodological

techniques used to address these changes and provide a general over-

view of the field and current status of the research.

2 | HUMAN STUDIES

Over the years, several studies have shown transcriptomic changes in

post-mortem brains from psychiatric patients.50-57 More specifically,

these studies identified gene expression changes affecting different

neurobiological systems in depressed and suicidal patients such as the

GABAergic and glutamatergic systems, the monoaminergic system,

the dopaminergic and reward system,58 the brain-derived neuro-

trophic factor (BDNF) pathway, and the immune system50 (for a com-

prehensive review see59). Gene expression changes in the

somatostatin and acetylcholine systems, metallothionein proteins,

metal-ion binding proteins, and the MAPK/ERK signaling have been,

on the other hand, described in bipolar patients.51,55,60 Finally, only

few transcriptomic studies on PTSD patients can be found in

literature and they point at mitochondrial disfunction61,62 and alter-

ations in the immune system63 as PTSD transcriptional signatures.

However, most of these studies have been focused solely on male

patients or did not stratify by sex. Thus, very little information is avail-

able on how conserved these changes are in women or how sex mod-

ulates these transcriptional signatures. Surely several factors

contribute to the scarce presence of sex as a biological variable in

transcriptomic studies. We can hypothesize that the reasons contrib-

uting to the bias in preclinical research64-67 are also, at least partially,

the same for human studies as well. For instance, the misconception

about the increased female66,68,69 variability—often argued because

of the fluctuating sex64 hormones—and the misguided assumption

that the biological sex does not influence the function of the central

nervous system are among them, especially in the fields of neurosci-

ence and psychiatry.65 In addition, human brain samples are difficult

samples to collect in big numbers,53 especially from psychiatric

patients.70-72 Many of these samples come from patients who died

from suicide73 and men are twice as likely to be suicide completers.74

As such, restricted sample availability and the limited statistical power

and possibility of sex stratification that comes with it, together with

the misconceptions might have contributed to the sex bias.

Nevertheless, there is a growing interest in analyzing sex as a bio-

logical variable to study transcriptional changes using both male and

female psychiatric patients. As a result, new and interesting studies

are emerging in literature. To date, however not all stress-related dis-

orders have witnessed the same rate of inclusion of sex as a variable.

For some of them, such as PTSD, no transcriptomic studies looking at

sex differences have been published to the best of our knowledge.

Instead, most of these emerging works have focused on MDD. The

following sections of the review will reflect this trend in the literature,

presenting mostly results from studies on MDD patients. Some of

these studies have chosen a targeted approach focusing on a specific

subset of genes. Others have started to explore the transcriptome at

the genome-wide level, using high-throughput approaches. Both

approaches are discussed below.

2.1 | Targeted studies

To date, only a handful of studies have shown gene expression

changes in psychiatric patients in a sex-specific matter. These studies

include changes in several systems, such as serotoninergic,75

somatostatin,76 and other less explored systems such as the galanin

system.77 Apart from neuropeptide systems, other candidate genes

have been investigated and found to be regulated by stress and sex.

Among them, the CRF system showed selective changes in the amyg-

dala of bipolar male patients at the level of the CRF binding protein

mRNA, but not in females nor MDD patients.78 In addition, genes

from the sex steroid hormone pathways have often been considered

an interesting candidate to study sex differences. In fact, change of

susceptibility to depressed mood, and fluctuation of neuropsychiatric

symptoms across menstrual cycle and menopause have long pointed

at a possible role of estrogens in depression and neuropsychiatric
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disorders. In support of this idea, the levels of the estrogen receptor α

(ERα, ESR1) in the post-mortem dorsolateral prefrontal cortex

(DLPFC) of psychiatric patients were found upregulated in men, but in

contrast downregulated in women, as compared with psychiatrically

healthy controls.79 The implication of ERα levels in stress susceptibil-

ity has also been suggested by a recent study in mice.80 Finally, sexu-

ally dimorphic transcriptional changes can also be found in other less-

explored regions such as the internal capsule, a bundle of white mat-

ter that participates in the corticostriatum-thalamic circuitry and is

structurally altered in psychiatric patients.81,82 Interestingly, Barley,

Dracheva, and Byne83 found evidence in this region for a sex-specific

transcriptomic signature of oligodendrocytes in MDD and bipolar dis-

order. Overall, targeted studies have proven useful to explore specific

candidate genes that were suspected to contribute to the sex dimor-

phism in psychiatry. Nevertheless, their low throughput and power is

still a significant limitation for discovering novel genes and pathways

involved in psychiatry.

2.2 | High-throughput studies

Genome-wide transcriptional studies investigating the role of sex in

psychiatric disorders are also starting to emerge. Compared with

targeted studies, high-throughput studies allow for a broader over-

view of the transcriptome landscape and thus the possibility to study

transcriptional signatures in the context of pathways and networks. A

representative example of the potentialities of this strategy is the

work of Labonté et al.84 Labonté et al studied sex-specific transcrip-

tional signatures in the brains of depressed men and women as com-

pared with healthy controls. The power of their study lies in the use

of a large cohort of male and female human post-mortem brain sam-

ples, the inclusion of multiple brain regions, the advanced bioinfor-

matic tools, as well as the comparison between clinical and preclinical

samples. The six different regions analyzed show different degrees of

overlap in gene expression patterns between patients and controls.

More interestingly, their results show that the amount of MDD-

related transcriptional changes in common between men and women

depends on the region observed but is overall limited. In fact, only as

little as 30% of differentially expressed genes (DEGs) are shared

between men and women. Notably, this number drops further if the

directionality of the change is taken into consideration. Moreover,

gene network and gene ontology analyses showed that only a small

percentage of the expression modules are present in both sexes with

MDD, and they represent different pathways. This approach allowed

the authors to identify new potential sex-specific players in depres-

sion. Similar results were obtained by Seney et al85 with a large-scale

gene expression meta-analysis across three corticolimbic structures of

men and women MDD patients and controls. In accordance with

Labonté et al, a small number of DEGs was shared among the sexes,

but overall gene expression changes converged on similar pathways.

Interestingly, the authors highlighted that these changes in the path-

ways are often in the opposite direction. For example, MDD men

have decreased synapse-related genes, whereas women have an

increased number. Notably, both studies identified a possible different

involvement cell types in MDD between sexes. In addition to brain

studies, genome-wide transcriptomic studies in peripheral blood sam-

ples of PTSD patients, such as by Breen et al,86 have identified an

analogous pattern of opposite gene expression changes between

sexes and a possible involvement of different cell types.87 Taken

together, the high-throughput studies presented so far suggest that

the male and female brains respond to stress in a different and region-

specific way. In particular, pathway analysis indicates that synaptic

function and structure might be differently affected by stress in the

two sexes. Exploration of synaptic density and functionality especially

across the corticolimbic structures would be an interesting and wor-

thy path to analyze. Further studies might identify structural differ-

ences arising from stress exposure specific for one or the other sex

and potentially identify new sex-specific therapeutic targets. In addi-

tion, inflammation seems to be regulated by a stress x sex interaction

and suggests that different cell types might be involved in the stress

response in the two sexes. Lastly, the nucleus accumbens (NAc) is the

only region showing highly similar stress signatures between the

sexes. However, the reward system, to which the NAc belongs, has

been shown in human and animal models88-90 to be affected by stress

exposure in a sex-specific fashion. Investigating how similar gene

expression changes might lead to divergent functional outcome may

be of great interest to the field. Overall, high-throughput studies on

human post-mortem samples indicate that male and female psychiat-

ric patients do not differ only in clinical manifestations but also in their

molecular organization.

Nevertheless, studies on human tissues are unfortunately strongly

affected by unavoidable complications, like intrinsic variability

because of treatment history, age, post-mortem indices, and

processing. These factors are known to confound studies, especially

when looking for transcriptional alterations.91 For these limitations,

preclinical work is a very valuable tool for studying the molecular con-

sequences of stress, providing direct access to the brain and a high

control over temporal resolution.

3 | RODENT STUDIES

Given the limitations associated with human samples, rodents are a

proven useful tool to study the stress response.92-96 Preclinical

models of mice and rats have been developed to study both the acute

and chronic stress response.

3.1 | Acute stress

Acute stressors are known to activate a biological response that cul-

minates in the production of glucocorticoids. Prolonged high glucocor-

ticoid levels are known to increase susceptibility to psychiatric

conditions through the sustained activation of glucocorticoid recep-

tors in the stress system.13,97,98 Sex modulates the extent of this

stress response, both in the corticolimbic structures and in the HPA
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axis, but a thorough characterization of which exact molecular mecha-

nisms are activated in the two sexes is still missing. The molecular

mechanisms activated by acute stress have therefore become the

focus of many researchers’ interest and among them, many have tried

to tackle this issue looking at the mRNA levels of various known medi-

ators of the stress response after exposure to an acute stressor.

3.2 | Targeted studies

So far, rodent studies have employed different types of acute

stressors, which can be divided into two main categories: physical and

psychological stressors. Both types have shown to be informative in

the research of sex differences. Physical stressors such as restraint,

forced swim test or electroshock have been shown to alter gene

expression in a sex-specific way in different brain regions (Tables 1

and 2). For instance, the glucocorticoid (Nr3c1, referred as GR) and

mineralocorticoid (Nr3c2, referred as MR) receptors—the direct

responders to CORT—are affected at the mRNA level by the combina-

tion of acute stress and sex in different brain areas. An overview

of these changes in the hypothalamus, hippocampus, and pituitary of

male and female rats after acute restraint can be found in the work of

Karandrea, Kittas, and Kitraki.99 Their data suggested that MR and GR

plasticity to stress is modulated by sex and that the GR:MR ratio is

adjusted in a sex-specific way in response to stress. Interestingly in a

follow-up study, the same authors showed that the GR:MR ratio is

regulated specifically according to the type of stressor.100 In accor-

dance with this idea, for example, GR levels in the hypothalamus were

reported to be changed in an opposite direction in males and females

after restraint,99 but unchanged in both after footshock exposure.101

It is interesting to note that GR knock-out animals show an alteration

in the feedback inhibition on ACTH and CORT levels in response to

an acute stressor only in males.102 This reinforces the idea of a sex-

specific mechanism of action for GR or MR regulation. On the other

hand, other stress-associated genes, such as oxytocin (Oxt), arginine

vasopressin (Avp), and corticotropin-releasing factor (Crf ) have been

also studied in recent works. Nonetheless, there is still a lack of agree-

ment on how these gene changes are indeed regulated by sex and by

the type of stressor. For instance, Lu et al101 reported no sexually

dimorphic changes for these genes after acute footshock in the hypo-

thalamus, whereas, Guo et al reported male-specific increased levels

of Avp after an acute footshock, in the same region.103 Although they

used the same animal model (Sprague Dawley rats), stress paradigm

(footshock) and molecular assay (qPCR), Lu and colleagues101 col-

lected their samples within a bigger time window after stress com-

pared with Guo et al.103 Therefore, the timing of tissue collection

might contribute to the observed inconsistency in these works. Other

regions such as the central amygdala (CeA) have shown discrepant

results in other stress-related genes such as Crf104,105 (see Table 1 for

more details). Specifically, the work from Sterrenburg et al shows

upregulation in both sexes that is not found from Viau et al. It is

important to notice that despite using the same molecular technique

(ISH), the authors not only collected the samples at a different

timepoint, but also used two different strains of rats (Wistar vs

Sprague Dawley) and different durations for their restraint paradigms.

Sterrenburg et al104 used a longer stressor (1 hour instead of

30 minutes) and collected their results an extra hour after the ending

of the paradigm, whereas Viau et al105 had a shorter restraint session

(30 minutes) and collected the sample immediately. The shorter

stressor or the time of collection might have compromised the ability

of the authors to induce or observe changes in Crf expression. Impor-

tantly, the two studies still agree on the absence of sex differences.

Discrepancies in transcriptomic studies are likely to arise from differ-

ences in stress paradigms employed, molecular techniques, and time-

point of tissue collection. Further studies exploring these factors and

aiming at replicating the current results are needed to give a clearer

picture of sex differences and their source.

Furthermore, an interesting study by Iwasaki-Sekino et al106 sug-

gests that timing, at least for some genes and brain regions, might

indeed play a role in finding sex dimorphism at the transcriptomic

level. The authors showed that Crf mRNA levels after footshock

change following different time course in the two sexes. Females had

similar total change to males, but they achieved it an earlier time point

in the PVN and it subsisted for longer both in the PVN and CeA.106 A

different kinetic in cFos levels upregulation was also found in the pre-

frontal cortex (PFC) of rats after an inescapable stressor.107 In this

study, however, female upregulation seemed slower and more persis-

tent. These partially discordant results probably suggest that sex-

specific stress responses at the transcriptomic level differ between

regions not only for the genes involved but also for their temporal

regulation. Currently, few other studies support the idea that the tem-

poral dynamics of stress-response might differ between the sexes, in

a region-specific fashion.108-110 Further, it has been recently discov-

ered that acute stress also elicits long-term alterations in neuronal

function in mice,111 which is reasonable to think could be associated

with long-term alterations in the transcriptome. If so, these alterations

might manifest in sex-specific ways too. Accordingly, the mRNA

expression of Avp and Oxt is sexually dimorphic in the PVN and BNST

even weeks after 3 days of defeat in mice112-114 with Avp being

downregulated in the PVN of males only and Oxt upregulated in the

BNST of females only. Apart from the classic stress-related genes

presented so far, other genes have been reported to modulate their

expression in a sex-specific way. For example clock genes,115 genes

involved in the sex steroid system,101,103 and genes encoding for epi-

genetic mediators.104,116,117

The gene expression changes described so far have been specifi-

cally observed in the context of physical stressors. In contrast, psy-

chological stressors, such as footshock witnessing, have unfortunately

received less attention. Nonetheless, the work from Iwasaki-Sekino

et al106 also suggests that the two types of stressors elicit a different

stress response. This difference might originate from a different per-

ception and process of the types of stress between the two sexes. In

support of this idea, handling alone, which is recognized to be a mild

stressor,118,119 induced cFos transcription in the male hippocampus,

but not in females.109 Correspondingly, there is evidence that female

and male perception of and susceptibility to psychological stressors
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TABLE 1 Stress-related genes regulated by acute and subchronic stress in males and females

Gene Region Paradigm
Tissue collection
(time after last stressor) Animal model

M

stress
vs ctrl

F

stress
vs ctrl Method References

Nr3c1 (GR) PIT 60 minutes restraint / Wistar rats " — NB 99

HPT 60 minutes restraint / Wistar rats " # NB 99

Footshock <30 minutes Sprague Dawley rats — — qPCR 101

20 minutes FST 60 minutes Wistar rats " — NB 100

PFC Footshock 5 minutes Sprague Dawley rats — — qPCR 103

20 minutes FST 60 minutes Wistar rats " # NB 100

HPC 60 minutes restraint / Wistar rats — — NB 99

Nr3c2 (MR) HPT 60 minutes restraint / Wistar rats — # NB 99

20 minutes FST 60 minutes Wistar rats " — NB 100

Footshock <30 minutes Sprague Dawley rats — # qPCR 101

Footshock 5 minutes Sprague Dawley rats — — qPCR 103

HPC 60 minutes restraint / Wistar rats — — NB 99

20 minutes FST 60 minutes Wistar rats # — NB 100

Crf HPT Footshock 30 minutes Sprague Dawley rats — — qPCR 101

Footshock 5 minutes Sprague Dawley rats — — qPCR 103

PVN 60 minutes footshock 30 minutes Wistar rats — — ISH 106

60 minutes footshock 60, 120 minutes Wistar rats — " ISH 106

60 minutes footshock 90 minutes Wistar rats " " ISH 106

60 minutes witnessing footshock 30, 60, 120 minutes Wistar rats — — ISH 106

60 minutes witnessing footshock 90 minutes Wistar rats — " ISH 106

1 hour restraint 1 hour Wistar rats " — ISH 104

30 minutes restraint / Sprague Dawley rats " — ISH 105

30 minutes restraint / Sprague Dawley rats F > Ma F > Ma FISH 157

CeA 60 minutes footshock 30, 60 minutes Wistar rats — — ISH 106

60 minutes footshock 90 minutes Wistar rats " " ISH 106

60 minutes footshock 120 minutes Wistar rats — " ISH 106

60 minutes witnessing footshock 30, 60, 120 minutes Wistar rats — — ISH 106

60 minutes witnessing footshock 90 minutes Wistar rats " — ISH 106

1 hour restraint 1 hour Wistar rats " " ISH 104

30 minutes restraint / Sprague Dawley rats — — ISH 105

BNSTov 1 hour restraint 1 hour Wistar rats " — ISH 104

BNSTfu 1 hour restraint 1 hour Wistar rats #t — ISH 104

MPOA 30 minutes restraint / Sprague Dawley rats F > Ma F > Ma FISH 157

Avp HPT Footshock <30 minutes Sprague Dawley rats — — qPCR 101

HPT Footshock 5 minutes Sprague Dawley rats " — qPCR 103

PVN 30 minutes restraint / Sprague Dawley rats " " ISH 105

Social defeat 2 weeks California mice # — qPCR 113

Oxt HPT Footshock <30 minutes Sprague Dawley rats — — qPCR 101

Footshock 5 minutes Sprague Dawley rats — — qPCR 103

PVN Social defeat 2 weeks California mice — — qPCR 112

BNST Social defeat 2 weeks California mice — " qPCR 112

Notes: Regions: PIT, pituitary gland; HPT, hypothalamus; PVN, paraventricular nucleus of the hypothalamus; PFC, prefrontal cortex; HPC, hippocampus;

CeA, central amygdala; BNST, bed nucleus of the stria terminalis; MPOA, medial preoptic area. Paradigm: FST, forced swim test. Tissue collection: /,

samples collected immediately at the end of the paradigm. Methods: NB, northern blot; ISH, in situ hybridization; FISH, fluorescent in situ hybridization;

qPCR, quantitative PCR. # down regulated; " upregulated; t, trend; ?, unclear|discordant results; —, no differential expression.
aNo control animals in the experiments.
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TABLE 2 Nonstress-related genes regulated by acute and subchronic stress in males and females

Gene Region Paradigm

Tissue collection

(time after last
stressor) Animal model

M

stress
vs ctrl

F

stress
vs ctrl Method References

Ar HPT Footshock <30 minutes Sprague Dawley rats — # qPCR 101

Footshock 5 minutes Sprague Dawley rats — # qPCR 103

Aro HPT Footshock 5 minutes Sprague Dawley rats # " qPCR 103

Esr1 HPT Footshock <30 minutes Sprague Dawley rats — — qPCR 101

Footshock 5 minutes Sprague Dawley rats — — qPCR 103

MeA 3 days social defeat 2 weeks California mice — — qPCR 116

Esr2 HPT Footshock <30 minutes Sprague Dawley rats — — qPCR 101

Footshock 5 minutes Sprague Dawley rats — " qPCR 103

MeA 3 days social defeat 2 weeks California mice ? ? qPCR 116

cFos PVN 30 minutes restraint / Sprague Dawley rats F > Ma F > Ma ISH 157

30 minutes restraint / Sprague Dawley rats " " ISH 115

30 minutes restraint 30 minutes Sprague Dawley rats F = M F = M ISH 110

PFC 100 minutes restraint +

tailshock

/, 60 minutes Sprague Dawley rats " " ISH 107

30 minutes restraint / Sprague Dawley rats " " ISH 115

cortex

(different

subregions)

30 minutes restraint 30 minutes Sprague Dawley rats F < M F < M ISH 110

AC 30 minutes restraint / Sprague Dawley rats " " ISH 115

MPOA 30 minutes restraint / Sprague Dawley rats F > Ma F > Ma ISH 157

BNSTav 30 minutes restraint / Sprague Dawley rats F > Ma F > Ma ISH 157

HPC 6 minutes cold swim

stress

45 minutes c57BL6 mice " " qPCR 109

6 minutes restraint 45 minutes c57BL6 mice — " qPCR 109

30 minutes restraint 30 minutes Sprague Dawley rats F < Ma F < Ma ISH 110

MeA 30 minutes restraint 30 minutes Sprague Dawley rats F = Ma F = Ma ISH 110

VO 30 minutes restraint / Sprague Dawley rats " " ISH 115

RAI 30 minutes restraint / Sprague Dawley rats — — ISH 115

SCN 30 minutes restraint / Sprague Dawley rats " — ISH 115

LS 30 minutes restraint 30 minutes Sprague Dawley rats F = Ma F = Ma ISH 110

Bdnf PFC 100 minutes restraint +

tailshock

/ Sprague Dawley rats " — ISH 107

100 minutes restraint +

tailshock

60 minutes Sprague Dawley rats — — ISH 107

CeA 3 days social defeat 2 weeks California mice — — qPCR 116

BLA 3 days social defeat 2 weeks California mice — — qPCR 116

BNST 3 days social defeat 2 weeks California mice — — qPCR 114

Per1 PVN 30 minutes restraint / Sprague Dawley rats " " ISH 115

PFC 30 minutes restraint / Sprague Dawley rats " " ISH 115

AC 30 minutes restraint / Sprague Dawley rats " " ISH 115

HPC 6 minutes cold swim

stress

45 minutes c57BL6 mice " " qPCR 109

6 minutes restraint 45 minutes c57BL6 mice " " qPCR 109

SCN 30 minutes restraint / Sprague Dawley rats — — ISH 115

VO 30 minutes restraint / Sprague Dawley rats " " ISH 115

RAI 30 minutes restraint / Sprague Dawley rats "t "t ISH 115

(Continues)

BRIVIO ET AL. 7 of 22



differ at the behavioral level.120 Further studies are needed to eluci-

date if stress perception differs at the transcriptomic level between

the sexes.

Based on this collection of evidence, we can speculate that many

more regions and genes from the ones highlighted here might show

sex-specific spatial and temporal regulation after stress. Overall, more

comprehensive studies that include multiple regions and rigorous time

points are needed to characterize the effects of sex on the temporal

aspect of stress response. According to the studies reviewed here, the

time point of observation after stress is probably a key factor for iden-

tifying and characterizing sex differences. This temporal factor might

indeed account for the discrepancy found in literature.

3.3 | High-throughput studies

Given the fact that MR and GR are both two important transcrip-

tion factors and that epigenetic players such as DNA met-

hyltransferases seem to be modulated by sex in the context of

stress,116 it would not be surprising to find altered transcription

levels on a more general scale. Unfortunately, large-scale

approaches taking into consideration sex as a variable are still

poorly represented in stress research.121 Here, we review some

studies that did investigate the transcriptional response to acute

stress using high-throughput approaches and included sex as a bio-

logical variable in their design.

One of these studies, using RNA-sequencing on translating ribo-

some affinity purified (TRAP) pyramidal neurons of the hippocampus

CA3, recently explored the actively translated immediate early genes

in response to an acute forced swim test.122 The authors found that

while both males and females showed many DEGs (including the

expected cFos and Arc), female DEGs were found to be almost three

times more in number than the ones found in males. Interestingly,

the number of DEGs with same directionality shared between the

two sexes was found being less than 5%, similar to findings in

humans.84,85,123 Furthermore, the stress-affected pathways cor-

responded poorly between sexes and females had a higher number

of involved pathways. Thus, males and females in response to the

same acute stress showed not only different transcriptional plasticity

but also unique responses. A second research group showed that

altered gene expression after acute restraint stress in the hippocam-

pus is correlated with the epigenetic marker 5hmC.117,124 Interest-

ingly, 25% of the genomic regions that are regulated by 5hmC after

stress code for sex-specific DEGs. Moreover, the authors showed

that other epigenetic regulators, such as Dnmt3a, Hdac7, and

Hdac10, were altered in a sex-specific way. Overall their data cor-

roborate the idea that epigenetic mechanisms can play a role in the

sex-specific stress-induced transcriptomic alterations presented

so far.

To summarize, the male and female response to acute stress

seems to be processed in the brain differently (Figure 2, left panel).

When looking at transcriptional profiles of stressed and control

TABLE 2 (Continued)

Gene Region Paradigm

Tissue collection

(time after last
stressor) Animal model

M

stress
vs ctrl

F

stress
vs ctrl Method References

Per2 PVN 30 minutes restraint / Sprague Dawley rats — " ISH 115

VO 30 minutes restraint / Sprague Dawley rats — " ISH 115

6 minutes restraint 45 minutes c57BL6 mice " " qPCR 109

Cbp PVN 1 hour restraint 1 hour Wistar rats " — qPCR 104

Dnmt1 CeA 3 days social defeat 2 weeks California mice — # qPCR 116

MeA 3 days social defeat 2 weeks California mice — — qPCR 116

BLA 3 days social defeat 2 weeks California mice — — qPCR 116

Dnmt3a CeA 3 days social defeat 2 weeks California mice ? — qPCR 116

MeA 3 days social defeat 2 weeks California mice — — qPCR 116

BLA 3 days social defeat 2 weeks California mice — — qPCR 116

NAc 6 days sCVS 4 hours, 24 hours c57BL6 mice " " qPCR 148

Cnr1 cerebellum 3 days tailshock + ARS / Sprague Dawley rats # # qPCR 158

brain stem 3 days tailshock + ARS / Sprague Dawley rats — — qPCR 158

Cnr2 cerebellum 3 days tailshock + ARS / Sprague Dawley rats — — qPCR 158

brain stem 3 days tailshock + ARS / Sprague Dawley rats — — qPCR 158

Notes: Regions: HPT, hypothalamus; PVN, paraventricular nucleus of the hypothalamus; PFC, prefrontal cortex; HPC, hippocampus; CeA, central amygdala;

BLA, basolateral amygdala; MeA, medial amygdala; BNST, bed nucleus of the stria terminalis; LS, lateral septum; SCN, suprachiasmatic nucleus; AC,

anterior cingulate; VO, ventro-orbital cortex; RAI, rostral agranular insula; MPOA, medial preoptic area. Paradigm: sCVS, subchronic variable stress; ARS,

acute restraint stress. Tissue collection: /, collected right at the end of the paradigm. Methods: NB, northern blot; ISH, in situ hybridization; FISH,

fluorescent in situ hybridization; qPCR, quantitative PCR. # downregulated; " upregulated; t, trend; ?, unclear|discordant results; —, no differential

expression.
aNo control animals were used in the experiments.
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rodents, we can identify region-specific differences in stress-related

genes and epigenetic players. Importantly, in the current literature is

not uncommon to find discrepancy among studies. This inconsistency

might arise from different technologies employed which have differ-

ent sensitivity, but most importantly on the specific stress paradigm

chosen and the time point of analysis.

4 | CHRONIC STRESS

Chronic exposure to stressors tunes the stress system and is recog-

nized as a strong risk factor for the development of psychiatric disor-

ders.12 Thus, preclinical models of chronic stress exposure are

currently studied to elucidate the biological processes underlining the

pathogenesis of psychiatric disorders. Several of these models have

also been used to study the role of sex in these processes, either

exposing animals to single repeated stressors, or to more complex

protocols, which include combinations of multiple stressors like the

unpredictable chronic mild stress and its variant, the chronic variable

stress.125,126 Importantly, the classic paradigm of chronic social defeat

stress, which has been widely used to study chronic stress exposure

in male rodents, has recently been adapted for use in females of

nonaggressive strains.127-129 To the best of our knowledge, however,

molecular studies with this paradigm are still lacking. Overall, these

protocols have very different designs and limitations: an important

factor to consider when trying to compare results from different stud-

ies. For example, exposing animals to the same stress across days may

lead to stress habituation.130 Given the fact that males and females

differ in their molecular and behavioral coping strategies to stress

exposure, stress habituation is potentially a sexually dimorphic pro-

cess too.131-133 Indeed, the HPA axis negative feedback and the pro-

cess of adaptation to repeated homotypic stressors, such as restraint,

have been shown to be influenced by estrogens.130,134 However,

information on how these differences happen at the level of gene

expression are still lacking. Still, we can hypothesize that stress adap-

tation would show sex dimorphism also at the transcriptomic level. If

this is correct, sex-specific transcriptional signatures observed after

repeated stressors could result from the combination of stress and

habituation responses, which would need to be taken into consider-

ation when interpreting results. On the contrary, other more complex

chronic stress paradigms, such as chronic mild stress, try to avoid the

habituation process exposing the animals to various mild stressors

across many days.135 Nevertheless, no universal protocol for this par-

adigm exists, so a variety of stressor combinations, degrees of

unpredictability and length can be found in literature. Importantly,

chronic stress exposure is sometimes paired with tests to behav-

iorally assess the stress status of the animals. Exposure to com-

monly used tests such as the forced swim, tail suspension, or

elevated plus maze, when not part of the chronic stress paradigm,

can elicit an acute stress response. As a result, the observed

F IGURE 2 Genes differently affected by acute and chronic stress in male and female rodent brain regions. Schematic representation of genes
affected by either acute (left panel) or chronic (right panel) stress in the rodent brain in a sex-specific fashion. Several stress-related genes such as
Nr3c1, Crf, Avp, and activity-dependent genes such as Bdnf and cFos have been found to be regulated by acute stress in opposite directions in
several brain regions of male and female rodents. The GABAergic system (Pv, Gad65, Gad67, and Gabrr2), the dopaminergic system (Drd1, Nr2b,
and Maob) and stress-related genes (Nr3c1, Nr3c2, Crf, and Avp) seem to be regulated in opposite directions in the two sexes after chronic stress.
A full list of genes regulated by acute and chronic stress can be found in Tables 1 and 2 and Tables 3 and 4, respectively
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transcriptional signatures might combine chronic and acute

responses. All these aspects need to be considered when trying to

critically review the current literature and trying to understand dis-

cordant results. Finally, as with acute stress studies, different tech-

nologies can have a different degree of accuracy in quantifying

gene expression. Here, we present studies that included sex as bio-

logical variable that either used a targeted or a high-throughput

approach.

4.1 | Targeted studies

Targeted studies with chronic stress paradigms have been especially

useful in elucidating how the interaction of sex and chronic stress

affects the classic stress-related genes. The expression of genes such

as MR and GR are, in fact, affected in a sex- and region-specific fash-

ion not only by acute but also by chronic stress exposure. For

instance, there is evidence in the literature that the response to

chronic stress involves tuning the GR:MR system differently according

to the region and sex.99 For example, repeated restraint stress

reduced the levels of GR in the hypothalamus in females, but not in

males. In contrast, upon the same repeated restraint stress, MR is

downregulated in the hippocampus of males, but upregulated in

females. Importantly, exposing rats to a new stressor, such as the

forced swim test, leads to different sex- and region-specific expres-

sion changes100 (see Tables 3 and 4 for detailed description of the

changes). It is therefore important to consider the selection of the

type of stressor and the paradigm design when assessing sex differ-

ences as fundamental.

Exposure to chronic stress also modulates expression levels of

other stress-related genes, such as the Crf system and the oxytocin-

vasopressin pathway. Guo et al103 showed that the combined expo-

sure to chronic mild stress and an acute forced swim session led to a

wide range of gene expression changes of stress-related genes in the

hypothalamus in a different way between sexes. More specifically, the

authors showed that Crf, Avp, Oxt, and Esr1 are all upregulated in

females, but are not changed in males. Crf, Avp, and Oxt were found

increased specifically in females also when the mice were not further

exposed to the forced swim test.101 However, not surprisingly, not

every work published agrees.136,137 Other regions involved in the

stress circuitry such as the CeA and basolateral amygdala (BLA), as

well as the bed nucleus of the stria terminalis (BNST) show the differ-

ent extent of sex-specific regulation of such genes and others, includ-

ing the Bdnf cascade137-140 (Tables 3 and 4).

Apart from the classical stress-related genes presented so far,

psychopathologies are known to be characterized by an imbalance in

several neurotransmitter pathways.59 Some of these imbalances are

reproduced in chronically stressed rodents and show patterns of sex

dimorphism. For instance, the GABAergic pathway in corticolimbic

structures seems to be affected in a sex-specific way in response to

chronic stress. Parvalbumin mRNA levels in the PFC are upregulated

in females, but are unchanged in males.141,142 Other genes related to

the GABAergic pathway such as Gad67, Gad65, and somatostatin (Sst)

in the BLA are also strongly influenced by the interaction of stress

exposure and sex.139,143 For instance, using four core genotypes

(FCG) mice, Puralewski et al139 were able to dissect the role of chro-

mosomal sex, gonadal sex, and circulating testosterone in shaping the

stress response at the level of GABAergic circuitry. Despite not being

able to directly compare controls and stressed animals, they identified

some GABA-related genes, such as Sst, that do not show expression

differences between sexes (either gonadal or chromosomal) at base-

line but do after chronic mild stress. This argues for a potential sex ×

stress interaction on the GABAergic system, worthy of further studies.

Similarly, stress-specific changes in genes belonging to the glutamate

pathway were found to be sex-specific in different regions such as

the hippocampus and the hypothalamus144 (Table 4). In contrast, the

dopaminergic/noradrenergic system in the locus coeruleus—the main

source of noradrenaline in the brain—and the acetylcholine pathway

are equally affected in both sexes in preclinical studies.136,145 Impor-

tantly, these pathways do not work in isolation, rather they are

strongly integrated among each other and across regions. Thus,

observing more than one pathway at the same time might provide a

more complete overview of the combined effect of stress and sex.

Barko et al146 attempted to tackle this issue by using a subset of

genes of the GABA, glutamate and dopamine pathways in the PFC,

BLA, and NAc. It is interesting to note that the three regions pres-

ented a different extent of overlap in gene expression changes after

unpredictable chronic mild stress, similarly to the changes observed in

MDD patients.84 The authors further explored the sex dimorphism

building a gene network across the three neurotransmitter pathways

in the PFC. Surprisingly, already at baseline, the female network was

more strongly coordinated than the male network and less stable

against chronic stress. These results suggest that females might have

a higher intrinsic transcriptional sensitivity to stress and that these

three systems, the GABAergic, glutamatergic and dopaminergic/

reward systems are potential sources of sex dimorphism in the stress

response. However, it is difficult to conclude if these are overall fea-

tures of the observed regions, in light of the small number of genes

sampled (7-10 per neurotransmitter system). In contrast, high-

throughput technologies such as next-generation RNA sequencing

can test the whole transcriptome at once, allowing indeed to create a

more complete view of stress-specific changes.

4.2 | High-throughput studies

High-throughput studies addressing the interaction between sex and

chronic stress are slowly becoming more popular, even if still under-

represented. Thanks to these studies, an overview of differences in

rodents is slowly building up allowing comparisons with evidence

from psychiatric patients to be made. These high-throughput studies

include both microarray123,147 and RNA-sequencing84,85,148-152

approaches. Both types of technologies allow for a genome-wide pro-

filing of stress responses in the two sexes and the study of these

responses in the context of pathways. For example, Karisetty et al147

used mRNA microarrays to study the transcriptomic signatures of
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TABLE 3 Stress-related genes regulated by chronic stress in males and females

Gene Region Paradigm

Tissue collection

(time after last
stressor) Animal model

M

stress
vs ctrl

F

stress
vs ctrl Method References

Nr3c1 (GR) PIT 14 days 60 minutes

restraint

24 hours Wistar rats — — NB 99

14 days 60 minutes

restraint + ARS

/ Wistar rats " — NB 99

HPT 3 weeks CMS + FST 5 minutes Sprague Dawley rats — — qPCR 103

3 weeks CMS 24 hours Sprague Dawley rats — # qPCR 101

14 days 60 minutes

restraint ± ARS

24 hours, 0

minute

Wistar rats — # NB 99, 100

14 days 20 minutes FST 24 hours Wistar rats — — NB 100

14 days 60 minutes

restraint + FST

60 minutes Wistar rats " # NB 100

14 days 60 minutes

restraint + 13 days 20

minutes FST

24 hours Wistar rats — — NB 100

HPC 14 days 60 minutes

restraint ± ARS or ± FST

/, 24 hours Wistar rats # — NB 99, 100

14 days 20 minutes FST 24 hours Wistar rats # — NB 100

Nr3c2 (MR) HPT 3 weeks CMS + FST 5 minutes Sprague Dawley rats — — qPCR 103

3 weeks CMS 24 hours Sprague Dawley rats — # qPCR 101

14 days 60 minutes

restraint ± ARS

24 hours, / Wistar rats — — NB 99, 100

14 days 20 minutes FST 24 hours Wistar rats — — NB 100

14 days 60 minutes

restraint + 20 minutes

FST

60 minutes Wistar rats " — NB 100

14 days 60 minutes

restraint + 13 days 20

minutes FST

24 hours Wistar rats — — NB 100

HPC 14 days 60 minutes

restraint

24 hours Wistar rats # " NB 99, 100

14 days 60 minutes

restraint + ARS or + 20

minutes FST

/, 60 minutes Wistar rats — " NB 99, 100

14 days 20 minutes FST 24 hours Wistar rats — — NB 100

14 days 60 minutes

restraint + 13 days 20

minutes FST

24 hours Wistar rats # " NB 100

Crf HPT 3 weeks CMS + FST 5 minutes Sprague Dawley rats — — qPCR 103

3 weeks CMS 24 hours Sprague Dawley rats — " qPCR 101

PVN 3 weeks CMS 3 days Sprague Dawley rats " — ISH 136

10 days CMS + EPM 30 minutes Sprague Dawley rats — — ISH 138

2 weeks CMS 1 hour Wistar rats " — ISH 137

CeA 2 weeks CMS 1 hour Wistar rats #t — ISH 137

10 days CMS + EPM 30 minutes Sprague Dawley rats — — ISH 138

BNSTov 2 weeks CMS 1 hour Wistar rats #t — ISH 137

BNSTfu 2 weeks CMS 1 hour Wistar rats #t "t ISH 137

Avp HPT 3 weeks CMS + FST 5 minutes Sprague Dawley rats — " qPCR 103

3 weeks CMS 24 hours Sprague Dawley rats " — (" in

diestrus)

qPCR 101

(Continues)
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chronic mild stress in the male and female hypothalamus. Several

genome-wide stress-specific DEGs were identified in the male tissue

and even a higher number in the female. Importantly, using in silico

pathway analysis, the authors found these DEGs were enriched for

“mood disorders” pathways and several other neuronal functions such

as neuroendocrine peptides processing, synaptic transmission and

transduction networks for both sexes. However, these pathways

seemed to be altered at the level of different genes between males

and females. For instance, within the “posttranslational processing of

neuroendocrine peptides” pathway, males showed deregulation of

Avp and cholecystokinin (Cck), whereas females had altered Oxt

levels.147 Studying gene alterations in the context of pathways can,

therefore, help identifying which basic mechanisms are shared

between the sexes and conversely how different gene expression

changes can lead to similar outcomes.

On the other hand, RNA sequencing studies can achieve a fur-

ther level of complexity: the discovery of a novel gene(s) of interest

or the study of gene variants. Genes that have never been impli-

cated in the stress response before, in fact, cannot be identified

with targeted studies and only difficultly with microarrays. It is pos-

sible to find examples of the potentiality of this approach already in

the current literature; for instance, in the work of Labontè et al.84

Their study on male and female adult mice with chronic variable

stress focused on two regions, the PFC and the NAc. Through a

combination of network and pathway analyses, and the combination

of human and rodent data, the authors were able to identify two

different pathways, one in each sex, that were altered by the expo-

sure to chronic stress. The stress-dependent deregulation of each of

these pathways was shown to impact on neuronal activity selec-

tively in one or the other sex. Importantly, the two hub genes of

these two pathways, Dusp6 and Emx1, were two genes not previ-

ously implicated in the stress response. This study showed how

RNA-seq approach can help in the identification of novel sex-

specific gene players. These types of studies can bring the field one

step closer toward sex-specific treatments for stress-related

disorders. In addition, when analyzing cell-type specific pathways of

DEGs, the authors identified enrichment for different cell types in a

sex-specific fashion. For instance, female PFC seemed to be mostly

affected at the level of neurons, whereas the males were more

affected in the endothelial pathways. Another study suggests that

proliferation in the hippocampus is selectively affected in male rats,

suggesting proliferative cells, such as glia or neuronal progenitors,

are differentially affected in the two sexes.151 Further studies at the

single-cell level, however, are still necessary to help elucidate the

origin of these differences.

It is also interesting to mention that RNA-sequencing approaches

have been used to study the reported heightened susceptibility to

chronic stress of females.148,149 To study the molecular mechanisms

that regulate the sex-specific susceptibility to stress, some groups

have been using the subchronic variable stress paradigm. After 6 days

of variable stress, in fact, only female mice develop a classic stressed

phenotype of anhedonia and elevated CORT, whereas males cannot

be differentiated from controls. Surprisingly, the authors found that

the number of DEGs in the NAc was disproportionally higher in males

than females. Furthermore, almost none of these genes were shared

between them and the pathways enriched for these DEGs were not in

common between males and females. Hence, in this work, subchronic

stress was able to elicit a strong transcriptional response in males but

failed to do the same in females. Considering that males appeared

asymptomatic at this stage of the chronic paradigm and females did

not, the data suggest the intriguing possibility that male rodents show

an active resilience response that is not elicited in females. In the cur-

rent literature, we can find extensive works about resilience in male

animals, but a comparable line of research in females or comparing the

sexes is still lacking. If replicated in further studies and different brain

regions, these results might represent the first clue to find early-on

differences between the sexes in response to prolonged stress. The

authors might have identified the first manifestation of sex-dependent

differences observed in chronic stress susceptibility and psychiatric

disorders and it is therefore worthy of further investigation.

TABLE 3 (Continued)

Gene Region Paradigm

Tissue collection

(time after last
stressor) Animal model

M

stress
vs ctrl

F

stress
vs ctrl Method References

3 weeks CMS + EPM +

OFT + FST

16—18 hours c57BL6 mice " — qPCR 147

PVN 10 days CMS + EPM 30 minutes Sprague Dawley rats — — ISH 138

Oxt HPT 3 weeks CMS + FST 5 minutes Sprague Dawley rats — " qPCR 103

3 weeks CMS 24 hours Sprague Dawley rats — — qPCR 101

3 weeks CMS + EPM +

OFT + FST

16-18 hours c57BL6 mice — # qPCR 147

Notes: Regions: HPT, hypothalamus; PVN, paraventricular nucleus of the hypothalamus; PFC, prefrontal cortex; HPC, hippocampus; CeA, central amygdala;

BLA, basolateral amygdala; MeA, medial amygdala; BNST, bed nucleus of the stria terminalis; LS, lateral septum; SCN, suprachiasmatic nucleus; AC,

anterior cingulate; VO, ventro-orbital cortex; RAI, rostral agranular insula; MPOA, medial preoptic area. Paradigm: CMS, chronic mild stress; FST, forced

swim test; ARS, acute restraint stress; EPM, elevated plus maze test; OFT, open field test. Tissue collection: /, samples collected right at the end of the

paradigm. Methods: NB, northern blot; ISH, in situ hybridization; FISH, fluorescent in situ hybridization; qPCR, quantitative PCR. # downregulated; "
upregulated; t, trend; ?, unclear|discordant results; —, no differential expression.
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TABLE 4 Nonstress-related genes regulated by chronic stress in males and females

Gene Region Paradigm

Tissue collection

(time after
last stressor) Animal model

M

stress
vs ctrl

F

stress
vs ctrl Method References

Ar HPT 3 weeks CMS 24 hours Sprague Dawley rats — — qPCR 101

Aro HPT 3 weeks CMS +

FST

5 minutes Sprague Dawley rats # — qPCR 103

3 weeks CMS 24 hours Sprague Dawley rats — — qPCR 101

Esr1 HPT 3 weeks CMS +

FST

5 minutes Sprague Dawley rats — " qPCR 103

3 weeks CMS 24 hours Sprague Dawley rats — — qPCR 101

Esr2 HPT 3 weeks CMS +

FST

5 minutes Sprague Dawley rats — — qPCR 103

3 weeks CMS 24 hours Sprague Dawley rats — — (" in

diestrus)

qPCR 101

Bdnf BLA 8 weeks CMS / FCG mice a a qPCR 139

Trkb BLA 8 weeks CMS / FCG mice a a qPCR 139

Cbp PVN, CeA 2 weeks CMS 1 hour Wistar rats — — qPCR 137

BNST 2 weeks CMS 1 hour Wistar rats — " qPCR 137

Hdac3 PVN, BNST, CeA 2 weeks CMS 1 hour Wistar rats — — qPCR 137

Hdac4 PVN, BNST, CeA 2 weeks CMS 1 hour Wistar rats — — qPCR 137

Hdac5 PVN, BNST 2 weeks CMS 1 hour Wistar rats — — qPCR 137

CeA 2 weeks CMS 1 hour Wistar rats # — qPCR 137

Pcaf PVN, BNST, CeA 2 weeks CMS 1 hour Wistar rats — — qPCR 137

Cck HPT 3 weeks CMS +

EPM +

OFT + FST

16-18 hours c57BL6 mice " — qPCR 147

Dusp6 PFC CVS na c57BL6 mice — # RNA-

seq

84

Emx1 PFC CVS na c57BL6 mice " — RNA-

seq

84

GABAergic system

Sst BLA 8 weeks CMS / FCG mice a a qPCR 139

Gad65 BLA 8 weeks CMS / FCG mice a a qPCR 139

Gad67 PFC 2 weeks CMS +

FST

48 hours c57bl6 "t — qPCR 141

4 weeks CMS +

FST

48 hours c57bl6 — — qPCR 141

BLA 8 weeks CMS / FCG mice a a qPCR 139

Gabra2 PFC 2|4 weeks CMS +

FST

48 hours c57bl6 — — qPCR 141

8 weeks CMS na FCG mice " " qPCR 146

BLA 8 weeks CMS na FCG mice — — qPCR 146

NAc 8 weeks CMS na FCG mice " " qPCR 146

Gabra5 PFC 8 weeks CMS na FCG mice # # qPCR 146

BLA 8 weeks CMS na FCG mice — — qPCR 146

NAc 8 weeks CMS na FCG mice # # qPCR 146

Gabrr2 PFC 8 weeks CMS na FCG mice XY — XX " qPCR 146

BLA 8 weeks CMS na FCG mice — — qPCR 146

NAc 8 weeks CMS na FCG mice " " qPCR 146

Gphn PFC, BLA 8 weeks CMS na FCG mice — — qPCR 146

NAc 8 weeks CMS na FCG mice " " qPCR 146

(Continues)
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TABLE 4 (Continued)

Gene Region Paradigm

Tissue collection

(time after
last stressor) Animal model

M

stress
vs ctrl

F

stress
vs ctrl Method References

Gat1 PFC, BLA 8 weeks CMS na FCG mice — — qPCR 146

NAc 8 weeks CMS na FCG mice " " qPCR 146

Gabarap PFC, NAc 8 weeks CMS na FCG mice " " qPCR 146

BLA 8 weeks CMS na FCG mice — — qPCR 146

Gabarapl1 PFC, NAc 8 weeks CMS na FCG mice " " qPCR 146

BLA 8 weeks CMS na FCG mice — — qPCR 146

Grin2b DLPFC 4 weeks CMS +

FST

48 hours Balb|c mice — — qPCR 142

Glutamatergic system

Gria1 PFC, NAc 8 weeks CMS na FCG mice " " qPCR 146

BLA 8 weeks CMS na FCG mice — — qPCR 146

Gria3 PFC 8 weeks CMS na FCG mice XY — XX " qPCR 146

BLA 8 weeks CMS na FCG mice — — qPCR 146

NAc 8 weeks CMS na FCG mice " " qPCR 146

Grin1 PFC 4 weeks CMS +

FST

48 hours Balb|c mice — — qPCR 142

Grin2a PFC 4 weeks CMS +

FST

48 hours Balb|c mice — — qPCR 142

Grin2b PFC 4 weeks CMS +

FST

48 hours Balb|c mice #t — qPCR 142

Grm1 PFC, BLA 8 weeks CMS na FCG mice — — qPCR 146

NAc 8 weeks CMS na FCG mice " " qPCR 146

Grik3 PFC, BLA 8 weeks CMS na FCG mice — — qPCR 146

NAc 8 weeks CMS na FCG mice " " qPCR 146

Grin3a PFC 8 weeks CMS na FCG mice XY — XX " qPCR 146

BLA 8 weeks CMS na FCG mice — — qPCR 146

NAc 8 weeks CMS na FCG mice " " qPCR 146

Slc25a22 PFC 8 weeks CMS na FCG mice # # qPCR 146

BLA 8 weeks CMS na FCG mice — — qPCR 146

NAc 8 weeks CMS na FCG mice " " qPCR 146

Grip1 PFC 8 weeks CMS na FCG mice " " qPCR 146

BLA, NAc 8 weeks CMS na FCG mice — — qPCR 146

Slc2a1 HPT, PFC, AMY 6 days social

defeat + 6 days

ARS

3 days Wistar rats — — qPCR 144

HPC 6 days social

defeat + 6 days

ARS

3 days Wistar rats " — qPCR 144

Slc2a3 HPT 6 days social

defeat + 6 days

ARS

3 days Wistar rats — # qPCR 144

PFC, HPC 6 days social

defeat + 6 days

ARS

3 days Wistar rats — — qPCR 144

AMY 6 days social

defeat + 6 days

ARS

3 days Wistar rats " — qPCR 144

Slc2a4 HPT 6 days social

defeat + 6 days

ARS

3 days Wistar rats # — qPCR 144

(Continues)
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TABLE 4 (Continued)

Gene Region Paradigm

Tissue collection

(time after
last stressor) Animal model

M

stress
vs ctrl

F

stress
vs ctrl Method References

PFC 6 days social

defeat + 6 days

ARS

3 days Wistar rats — — qPCR 144

Slc2a5 PFC, AMY 6 days social

defeat + 6 days

ARS

3 days Wistar rats — — qPCR 144

HPC 6 days social

defeat + 6 days

ARS

3 days Wistar rats — " qPCR 144

Dopaminergic system

Th LC 3 weeks CMS 3 days Sprague Dawley rats — — ISH 136

Drd1 PFC 8 weeks CMS na FCG mice XY — XX " qPCR 146

BLA 8 weeks CMS na FCG mice — — qPCR 146

NAc 8 weeks CMS na FCG mice " " qPCR 146

Drd2 PFC, BLA 8 weeks CMS na FCG mice — — qPCR 146

NAc 8 weeks CMS na FCG mice " " qPCR 146

Drd5 PFC 8 weeks CMS na FCG mice " " qPCR 146

BLA 8 weeks CMS na FCG mice — — qPCR 146

NAc 8 weeks CMS na FCG mice " " qPCR 146

Comt PFC, NAc 8 weeks CMS na FCG mice " " qPCR 146

BLA 8 weeks CMS na FCG mice — — qPCR 146

Maoa PFC, NAc 8 weeks CMS na FCG mice " " qPCR 146

BLA 8 weeks CMS na FCG mice — — qPCR 146

Maob PFC 8 weeks CMS na FCG mice XY # XX " qPCR 146

BLA 8 weeks CMS na FCG mice — — qPCR 146

NAc 8 weeks CMS na FCG mice " " qPCR 146

Creb1 PFC, NAc 8 weeks CMS na FCG mice " " qPCR 146

BLA 8 weeks CMS na FCG mice — — qPCR 146

Creb3 PFC 8 weeks CMS na FCG mice XY — XX " qPCR 146

BLA 8 weeks CMS na FCG mice — — qPCR 146

NAc 8 weeks CMS na FCG mice " " qPCR 146

Crebbp PFC 8 weeks CMS na FCG mice XY — XX " qPCR 146

BLA 8 weeks CMS na FCG mice — — qPCR 146

NAc 8 weeks CMS na FCG mice " " qPCR 146

Ddc PFC, NAc 8 weeks CMS na FCG mice " " qPCR 146

BLA 8 weeks CMS na FCG mice — — qPCR 146

HCNP-pp HPC 4 weeks CMS na C57bl6 mice "t "t qPCR 145

Notes: Regions: HPT, hypothalamus; PVN, paraventricular nucleus of the hypothalamus; PFC, prefrontal cortex; HPC, hippocampus; AMY, amygdala; CeA,

central amygdala; BLA, basolateral amygdala; BNST, bed nucleus of the stria terminalis. Paradigm: CMS, chronic mild stress; CVS, chronic variable stress;

FST, forced swim test; ARS, acute restraint stress; EPM, elevated plus maze test; OFT, open field test. For FCG mice, four core genotypes mice, XY or XX

have been specified when gene expression changes were observed for chromosomal sex. Tissue collection: /, samples collected right at the end of the

paradigm; na, information not available. Methods: ISH, in situ hybridization; qPCR, quantitative PCR. # downregulated; " upregulated; t, trend; ?, unclear|

discordant results; —, no differential expression.
aNo direct comparison stress vs controls.
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TABLE 5 Nonstress-related genes regulated by psychopathologies in men and women

Gene Region Condition

M

stress vs ctrl

F

stress vs ctrl Method References

DUSP6 PFC MDD — # RNA-seq 84

EMX1 PFC MDD " — RNA-seq 84

ARPP21 AMY MDD — " qPCR 85

P2RY12 ACC MDD — #t Microarray 85

AMY MDD — # qPCR 85

MTHFR ACC MDD #t — Microarray 85

AMY MDD — — qPCR 85

SLCO1A2 ACC MDD — # Microarray 85

ARHGEF3 ACC MDD — " Microarray 85

GABRD ACC MDD #t — Microarray 85

CAMK2B ACC MDD # — Microarray 85

CACNA1I ACC MDD # — Microarray 85

NOL3 ACC MDD # # Microarray 85

NUB1 ACC MDD " " Microarray 85

PSMA3 ACC MDD # # Microarray 85

GRIA1 DLPFC MDD — — qPCR 159

GRIA2 DLPFC MDD — " qPCR 159

GRIA3 DLPFC MDD — " qPCR 159

GRIA4 DLPFC MDD — " qPCR 159

GRIN1 DLPFC MDD — " qPCR 159

GRIN2A DLPFC MDD — " qPCR 159

GRIN2B DLPFC MDD — " qPCR 159

GRIN2C DLPFC MDD — " qPCR 159

GRIN2D DLPFC MDD — " qPCR 159

GRIN3A DLPFC MDD — — qPCR 159

Suicide — " qPCR 159

GRM1 DLPFC MDD — " qPCR 159

GRM2 DLPFC MDD — — qPCR 159

Suicide — " qPCR 159

GRM3 DLPFC MDD — — qPCR 159

GRM4 DLPFC MDD — " qPCR 159

GRM5 DLPFC MDD # " qPCR 159

GRM7 DLPFC MDD — " qPCR 159

GRIK1 DLPFC MDD — " qPCR 159

GRIK2 DLPFC MDD — " qPCR 159

GRIK3 DLPFC MDD — — qPCR 159

Suicide " — qPCR 159

HCNP-pp AMY MDD — " qPCR 145

CRF-BP BLA, lateral AMY MDD — — ISH 78

BLA, lateral AMY BPD # — ISH 78

IL-4 OFC Suicide — " qPCR 160

IL-13 OFC Suicide " — qPCR 160

TNFa OFC Suicide — "t qPCR 160

Notes: Regions: PIT, pituitary; HPT, hypothalamus; PVN, paraventricular nucleus of the hypothalamus; PFC, prefrontal cortex; OFC, orbitofrontal cortex;

HPC, hippocampus; CeA, central amygdala; BLA, basolateral amygdala; MeA, medial amygdala; BNST, bed nucleus of the stria terminalis; AMY, amygdala;

NAc, nucleus accumbens; LC, locus ceruleus. Condition: MDD, major depressive disorder; BPD, bipolar disorder. Methods: NB, northern blot; ISH, in situ

hybridization; FISH, fluorescent in situ hybridization; qPCR, quantitative PCR. #, downregulated; ", upregulated; t, trend; —, no differential expression.
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The evidence reviewed here suggests that there are profound

transcriptomic differences in response to chronic stress across males

and females in several brain regions of the rodent brain (Figure 2, right

panel). Females that look behaviorally more susceptible to chronic

stress display a higher number of deregulated genes and often more

deregulated pathways. Furthermore, it is not uncommon to identify

genes and pathways affected by stress uniquely in one sex. These

genes and pathway could be involved in the sex dimorphism of psy-

chiatric disorders or become novel targets for treatment. Finally, a

preliminary study suggests that females and males differ already at

the level of molecular signatures of resilience after subchronic stress.

Further studies are needed to assess if these gene expression changes

are indeed associated to resilience and to potentially develop early-on

treatments.

5 | CONCLUSIONS

Stress is processed in the brain by a network of regions interacting

with each other, including the PVN, hippocampus, amygdala, PFC

and other nuclei. Their response to stress is mediated by a set of

transcriptional adaptations in several gene networks and recent

studies have highlighted sex as a modulator factor in these pro-

cesses. Well-known stress-related genes such as MR, GR, CRF, AVP,

and OXT (Tables 1 and 3) are differentially regulated after acute or

chronic stress in a sex-specific way. However, sex-mediated differ-

ences in transcriptional signatures of stress can be found also in

other genes not classically associated with stress-related pathways

(Figure 2). These include genes involved in neuronal function and

architecture, proliferation and immune system regulation. Some of

these genes and pathways look already like promising candidates to

further explore sex differences, such as the GR, MR or the

GABAergic system (Tables 1–5). Yet, future studies should carefully

select not only the region to analyze but also the stress paradigm

and the time point of observation. As discussed earlier, the current

literature supports the idea that the kinetics of transcriptional signa-

tures in response to stress might be different between the sexes.

On a more global scale, females show an overall higher transcrip-

tional plasticity to stress compared with males. This holds true for

acute and chronic stress, but might not apply to subchronic stress

exposure. For subchronic variable stress, males show an active resil-

ience transcriptional response, which seems to be lacking in females.

Further genome-wide studies would help in elucidating this and if

these features are broadly shared by all brain regions or rather

region-specific. With the development of modified chronic social

defeat paradigms applicable to females,127-129 it will be interesting

to see if behaviorally resilient individuals can be identified among

females and investigate their transcriptional profile as has already

been done for males.80,91 Other stress paradigms applied in other

life phases (perinatality, adolescence) that in the past have shown to

generate resilient and susceptible phenotypes such as early life

stress will also be a powerful way to further address the matter of

sex difference in stress resilience.153-155 Identifying differences in

stress resilience and when they emerge is a key point to dissect the

origin of sex differences in stress response and susceptibility to psy-

chopathologies, since, for many of these disorders, differences start

to emerge after puberty (for a review see156). Moreover, future

studies should also try to address how transcriptional changes in

response to acute stress contribute to behavioral susceptibility to

chronic stress. In turn, more studies are needed to understand how

the changes elicited by chronic stress contribute to the develop-

ment of psychopathologies in humans. Finally, there is also some

evidence pointing at the involvement of different cell types on the

pathophysiology of stress response between the sexes. Using

emerging technologies, such as single-cell RNA sequencing, future

studies should be better suited to further understand these differ-

ences at a higher resolution.

Studying these sex-specific differences at the transcriptional level

will enable the identification of the underlying mechanisms engaged

in response to a stressful stimulus. Understanding which mechanisms

are more affected in males, and which in females, may lead to the

identification of sex-specific key players, their selective contribution

to stress susceptibility, and the development of stress-related psychi-

atric disorders. Ultimately, it will help to understand why treatments

have different efficiency between the two sexes and eventually lead

to the development of better treatment options.
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