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SUMMARY
Stress-related psychiatric disorders and the stress system show prominent differences between males and
females, as well as strongly divergent transcriptional changes. Despite several proposed mechanisms, we
still lack the understanding of the molecular processes at play. Here, we explore the contribution of cell types
to transcriptional sex dimorphism using single-cell RNA sequencing. We identify cell-type-specific signa-
tures of acute restraint stress in the paraventricular nucleus of the hypothalamus, a central hub of the stress
response, in male and female mice. Further, we show that a history of chronic mild stress alters these signa-
tures in a sex-specific way, and we identify oligodendrocytes as a major target for these sex-specific effects.
This dataset, which we provide as an online interactive app, offers the transcriptomes of thousands of indi-
vidual cells as a molecular resource for an in-depth dissection of the interplay between cell types and sex on
the mechanisms of the stress response.
INTRODUCTION

Stress-related psychiatric disorders, such as major depressive

disorder (MDD) and anxiety disorders, are a major societal chal-

lenge due to their high prevalence and associated premature

mortality.1,2 Although they affect both men and women, they

do not impact the sexes in the same way. Besides dissimilar

prevalence, male and female patients display major differences

in symptoms, comorbidities, disease progression, and treatment

response.3 These clinical differences are likely shaped by how

sexmodulates several biological processes underlying the disor-

ders.4 Although some of these processes are well studied, e.g.,

genetics and epigenetics, the memory processing system, the

reward system, and the stress system activity,5 the contribution

of sex remains unclear. Understanding these differences is a

prerequisite to develop effective treatments and provide efficient

care to every patient.6

The hypothalamic-pituitary-adrenal (HPA) axis orchestrates

the stress response and is involved in the pathophysiology of

psychiatric disorders.7 Chronic stress affects the ability of the
This is an open access article under the CC BY-N
HPA axis to respond to subsequent stress, and in turn, its dys-

functionality modulates the risk for stress-related psychiatric dis-

orders.7–9 The activity and sensitivity of the stress system and

general stress perception10 have observable sex differences.4,11

These differences likely result from subtle variations in the mo-

lecular architecture of the male and female brain.12,13

Transcriptomic studies in several brain regions associated

with the HPA axis have found a sex-specific response to stress

exposure linked to depression, as well as sex-specific molec-

ular mechanisms related to stress.14,15 However, these studies

used brain tissue homogenates, potentially diluting or minimal-

izing important cell-specific effects.16 High-throughput tech-

nologies in single-cell transcriptomics now allow thousands

of individual cells to be explored. Although there has been

recent interest in employing this technology to explore sex dif-

ferences in cell composition,17,18 only a few studies have

explored the idea that sex differences in stress and psychiatry

might arise from the involvement of different cell types.17,19,20

In this study, using single-cell RNA sequencing (scRNA-seq),

we identified cell-type-specific signatures of acute stress in
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the paraventricular nucleus of the hypothalamus (PVN) of male

and female mice. We have generated a large resource dataset

consisting of �35,000 cells from sexually mature male and fe-

male mice following acute restraint stress (ARS) under baseline

(naive) conditions or with a history of unpredictable chronic

mild stress (CMS). First, we used a combination of bioinfor-

matics and cellular approaches to characterize sex-specific

transcriptional signatures of acute stress in different PVN cell

types. Second, we showed that a history of chronic stress

modulates the transcriptional signatures induced by acute

stress and selectively affects individual cell populations in a

sex-specific way. Finally, we identified a sex dimorphism in

the stress sensitivity of oligodendrocytes, glial cells important

for neuronal support and known to be altered in stress-related

psychiatric disorders.

Overall, we provide a scRNA-seq dataset specifically de-

signed for exploring sex differences after stress exposure in

the PVN of adult mice. Our dataset provides a detailed charac-

terization of sex differences in the stress response, which could

support the development of sex-specific treatments and provide

insights in the pathophysiology of stress-related psychiatric dis-

orders. It constitutes a rich resource to identify cell- and sex-spe-

cific differences in response to stress (it is easily accessible

through an interactive app available at https://male-female-

stress.weizmann.ac.il/shinyApp/).

RESULTS

scRNA-seq captures the complexity of the PVN
To explore how different cell types of the PVN respond to

acute stress exposure, we exposed sexually mature C57BL/

6N male and female mice to a 15-min ARS. Before ARS expo-

sure, the mice were kept either under baseline conditions

(Baseline ARS) or were exposed to chronic stress (CMS

ARS). This enabled us to investigate how sex and previous

exposure to chronic stress modulate the ARS response. In

addition, two non-stressed control groups (Baseline Control,

CMS Control) were timely matched with each stress condition

and used to generate a scRNA-seq dataset (Figure 1A). As ex-

pected, ARS generated a steep rise in blood corticosterone

levels in both sexes (Figure S1A). To avoid any potential con-

founding effects from hormonal dysfunctions, only female

mice without abnormalities in their estrus cycle (either pro-

longed or the absence of some stages; Figures S1B–S1D)

were included. Overall, the majority (90.5%) cycled normally,

with cycle-phase lengths similar to those observed by

others21 (Figure S1D).

Five hours after ARS, we generated single-cell suspensions

from the extended PVN and used the droplet-based system

from 103Genomics to obtain scRNA-seq datasets of male or fe-

male cells. The eight individual datasets provided a total of

35,672 cells that passed quality controls (Figures 1B and S1E–

S1G). Using linear dimensionality reduction followed by graph-

based unsupervised clustering and Uniform Manifold Approxi-

mation and Projection (UMAP) for visualization, we identified a

total of 33 distinct cell clusters, on which we mapped known

gene markers for the PVN22 (Figure S1H). In doing so, we classi-

fied cells into 17 identities: neurons (GABAergic, glutamatergic,
2 Cell Reports 42, 112874, August 29, 2023
GABAergic vasopressin [AVP], mixed), glia (astrocytes, macro-

phages [and microglia], oligodendrocytes [mature, committed

oligodendrocytes precursors [COP], oligodendrocytes progeni-

tor cells [OPCs]), and stroma (ependyma [ependymal cells, tany-

cytes], endothelium [endothelial cells, mixed endothelial], and

perivascular [pericytes, vascular cells, and meningeal cells])

(Figures 1B and 1C; Table S1). By mapping markers associated

to areas neighboring the dissected region (Figure S2A), we also

evaluated the extent of non-PVN neurons included in our prepa-

ration (Figure S2B). Using the AllenMouse Brain Atlas, we recog-

nized some neuronal cells expressing markers of the neigh-

boring regions: anterior hypothalamic area (Pmch+),

dorsomedial hypothalamic nucleus (Cck+), medial preoptic

area (Nts+), medial preoptic nucleus (Tac2+), suprachiasmatic

nucleus (Lhx1+), and ventromedial hypothalamus (Nr5a1+). The

presence of cells from areas lateral, caudal, and anterior to the

PVN confirm that our dissection of an extended PVN captured

the whole region, without biases between its more rostral and

caudal parts.

To obtain a higher resolution of the neuronal complexity of

the PVN, we further isolated GABAergic, glutamatergic, and

mixed neurons and re-clustered them independently (Fig-

ure 1D). As a result, GABAergic neurons were split in 10 sub-

populations, identified mainly by one or two marker genes (Fig-

ure 1E). For instance, we identified three different subgroups of

Avp neurons (clusters 2, 3, and 5), two of which closely cluster

in the hierarchical tree analysis (Figure 1D, right), reminiscent of

two original Avp populations (Figure 1B). In addition, neuropep-

tides (Tac1, Tac2, Vip) or neuropeptide-associated genes (Vgf,

Scg2) strongly contributed to the clustering of subpopulations

of inhibitory neurons (Figures 1D and 1E). This subdivision

was consistent with previously described hypothalamic clus-

tering.17,23 In our dataset, this was less true for glutamatergic

neurons. Although in excitatory neurons we found the expres-

sion of Trh and Crh, neuropeptides characteristic of the PVN,

in cluster 4 the rest of the clusters were mostly described by

signaling molecules (Calbn2, Pcp4, Ntng1, Tcf7l2). Finally, the

mixed neuronal subcluster 2 was defined by the expression of

the pre-peptide Cartpt, a gene previously associated to hypo-

thalamic neuronal subpopulations.17,24

Because many of these neuropeptides are expressed at very

high levels, they often show background expression in droplet-

based preparations and might confuse the detection of these

populations.22,25 To verify the extent of this contamination, we

used discarded empty droplets to calculate the average expres-

sion of all genes in the ambient RNA (Table S2). As expected, we

did find small contamination levels, especially of the two most

abundant peptides of the PVN: Avp and Oxt (Figure S1C). How-

ever, specialized subtypes of neurons enriched in the PVN, such

as the Avp, Oxt, Sst, Trh, and Crh-expressing neurons, could be

easily identified by their clear expression above ambient levels

(Figures S1D–S1H). Indeed, these neuropeptideswere important

leaf determinants in the hierarchical clustering (Figure 1D)

and marked a specific subpopulation of reclustered neurons

(Figure S2I).

Overall, our dataset captured the entirety of the PVN, with

small inclusions of the neighboring regions, and the neuronal

and non-neuronal complexity of several cellular subtypes.

https://male-female-stress.weizmann.ac.il/shinyApp/
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Figure 1. Overview of the experimental design and scRNA-seq dataset

(A) Experimental design of scRNA-seq. Mice underwent 3 weeks of unpredictable chronic mild stress (CMS) or home-cage housing (baseline) before 15-min

acute restraint stress (ARS). The paraventricular nucleus of the hypothalamus (PVN) was processed for scRNA-seq 5 h post-ARS.

(B) Uniform manifold approximation and projection (UMAP) plot of 35,672 single cells. Numbers label subclusters.

(C) Heatmap showing the top two representative genes per cluster.

(D, left) UMAP plots of reclustered GABAergic (top), glutamatergic (middle), and mixed (bottom) neurons. (Right) Hierarchical trees for each subgroup. Some

genes differentially expressed between tree nodes are shown. Neuropeptides are shown in red.

(E) Heatmap of the top two markers per cluster for each of the reclustered neuronal groups.

See also Figure S1 and Tables S1 and S2.
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The transcriptional response to ARS is sex and cell type
specific
To explore whether sex may modulate the transcriptional

response to an acute stressor in the PVN, we characterized a

normal acute stress response for each sex for each of the major

cell types identified before (Figure 1A, Baseline ARS). Differen-
tially expressed genes (DEGs) were identified using the Model-

based Analysis of Single-cell Transcriptomics (MAST) algorithm.

Overall, we found several DEGs in both sexes. Interestingly, fe-

males showed 1.5 times more DEGs than males (479 vs. 325)

and a limited overlap of 137 genes (17% of all DEGs; Figure 2A).

These overlapping genes were enriched for interactors of
Cell Reports 42, 112874, August 29, 2023 3



Figure 2. Transcriptional response to ARS at baseline

(A, upper) At baseline, females havemore total DEGs after ARS thanmales (female = 616, male = 462DEGs) with limited overlap (n = 137). (Lower) Distribution and

directionality of DEGs is specific to the cell type and sex.

(B) Representative RNAscope images for GABAergic genes (scale bar, 10 mm). Arrows show an example GAD1+ cell; white lines show the nucleus and cell regions

of interest (ROIs) identification.

(C) Quantification of Gapdh and Ndn expression change caused by ARS in female GAD1+ cell. Boxplots show RNAscope quantification by number of puncta;

violin plot shows scRNA-seq results (t test, Gapdh: t(1) = 17.74, p = 0.013; Ndn: t (1) = 87.75, p = 0.0007). Boxplots: interquartile range (IQR) andmedian; whiskers:

minimum and maximum value ± 1.5 IQR.

(D and E) UpSet plots of DEGs for (D) female and (E) male ARS response at baseline showing limited overlap between cell types. Barplot represents the number of

genes shared across clusters identified (black dot and lines). Colored dots highlight group of DEGs unique to each cluster. Left panels show total number of DEGs

for each individual cell type.

(F) Similarity of the ARS response between male and female clusters. (Left) Clusters ranked by similarity index (Szymkiewicz-Simpson coefficient). (Right) Ab-

solute numbers of DEGs for male, female, or shared.

See also Figure S2 and Table S3.
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transcription factors such as Esr1, Atf2, Ilf3, Htt, Ctnnb1, Nfkb1,

and Nr3c1, all known to be major players in the response to

stress26 (Figure S3A).

Importantly, we found that the transcriptional response to

acute stress is encoded in different cell types of the brain with

a combination of upregulated and downregulated genes

(Figures 2A, 2D, and 2E; Table S3). Fifteen clusters in females

and eight in males had at least one DEG. Most of these re-

sponses were largely unique to the cell type (Figures 2D and

2E, colored dots), and only a few were shared between them

(Figures 2D and 2E, black dots and lines). For example, female

GABAergic neurons showed a total of 329 DEGs, of which only
4 Cell Reports 42, 112874, August 29, 2023
48 were shared with other cell types, notably astrocytes (15)

and oligodendrocytes (7) (Figure 2D). Similarly, male endothelial

cells had a total of 261 DEGs, of which only 17 DEGs were in

common with astrocytes and 5 with oligodendrocytes (Fig-

ure 2E).We confirmed the sex and stress specificity of our results

by validating the change in expression of the top two DEGs in

GABAergic neurons, the most responsive population across

sexes. By RNAscope, we checked for the expression levels of

Gapdh and Ndn selectively in GAD1+ cells of the PVN and

confirmed a reduction in their levels selectively in females

(Figures 1B, 1C, and S3D). Interestingly, both genes have been

implicated in the cellular response to stress.27,28
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Because some cell types (such as astrocytes, oligodendro-

cytes, endothelial cells, ependymal cells, vasopressin neurons,

and pericytes) were stress responsive in both sexes, we also

explored their response overlap between sexes. A similarity in-

dex based on the DEGs overlap (Figure 2F, left column) showed

that only the top three most responsive cell types, namely, astro-

cytes, oligodendrocytes, and endothelial cells, had any degree

of similarity (Figure 2F, right). Collectively, our results demon-

strate that exposure to an acute stressor elicits a transcriptional

response in the PVN in several neuronal and non-neuronal cells,

which is mostly unique to the cell type and differs substantially

between sexes.

Chronic stress changes the cell-type-specific response
to acute stress in a sex-dependent manner
Dysregulation of the HPA axis in connection with exposure to

chronic stress often characterizes stress-related psychiatric dis-

orders.7 Having shown that ARS elicits transcriptional signatures

that are cell type and sex specific, we next explored how these

molecular signatures changed in mice that were exposed to

chronic stress before ARS.

We exposed a second cohort of mice to unpredictable CMS

before receiving the 15-min ARS (Figure 1A, CMS ARS). The

CMS paradigm included a random combination of two psycho-

physical, social, or home-cage stressors per day for 21 days

(see STAR Methods for the detailed list) and effectively caused

anhedonia and depressive-like phenotype in the splash test, as

measured in a separate cohort (Figures S1I–S1M). Compared

with controls, CMS mice displayed the hallmark features of

chronically stressed mice, including reduced body weight gain,

coat deterioration, and enlarged adrenal glands (Figures S1N–

S1Q). The differential gene expression analysis on CMS control

and CMSARS cells identified cell-type-specific molecular signa-

tures associated with ARS after chronic stress exposure in both

sexes. These molecular signatures differed from Baseline ARS

both in the extent and involvement of cell types (Figure 3A). We

then explored how each individual cell type was impacted by

previous exposures to stress (CMS or baseline). We defined

the stress response of each cell type by the ‘‘extent,’’ i.e., the

number of DEGs, and the ‘‘magnitude,’’ i.e., the absolute median

log fold change (logFC) of the response, and calculated the dis-

tance for each cluster between CMS and baseline (Figure S3E).

We then calculated the sum of distances between males and fe-

males (Figure 3B) to establish which cell types were most

affected by the stress history across sexes. Using this approach,

we identified a range of susceptibility scores in which astrocytes,

ependymal cells, and pericytes ranked the lowest, whereas

endothelial cells, GABAergic neurons, and oligodendrocytes

were mildly to prominently affected by the CMS history across

sexes (Figure 3B). Interestingly, only female glutamatergic neu-

rons showed a strong susceptibility (Figures S3F and S3G). In

contrast, some of the top responders to ARS at baseline (Fig-

ure 2A), such as astrocytes, showed minimal influence by expo-

sure to chronic stress (score �1.66; Figures S3F and S3H). We

then focused on the top-ranking cells because their high suscep-

tibility scores might indicate a differential involvement in the

stress response across sexes. Oligodendrocytes were the top-

ranking cell type with a calculated susceptibility score of 4.92,
which was more than twice the score of the second ranked,

the GABAergic neurons (score, 2.40). Overall, these results sug-

gest that previous exposure to chronic stress influences the abil-

ity of different cell types, especially oligodendrocytes, to

respond to an acute stressor.

Oligodendrocytes display stress responsivitymodulated
by sex and history of stress exposure
Our analysis suggests that the stress-induced transcriptional

response of oligodendrocytes is sensitive to a history of chronic

stress, a risk factor often associated to psychiatric disorders.8

Because oligodendrocytes are dynamic glial cells now identified

as active players in stress-related disorders,29 we further

explored any sex differences in their stress response.

In contrast with other cell types with low susceptibility scores

(such as astrocytes; Figure S3H), the ARS response of oligoden-

drocytes showed limited overlap in DEGs between baseline and

CMS backgrounds (Figure 3C). In addition, after CMS, ARS

induced one-third of the DEGs found at baseline in females but

14 times more in males (Figure 3C). In females, 94 genes were

differently expressed in oligodendrocytes after ARS at baseline,

whereas only 27 were differentially expressed after ARS under

CMS background. In addition, of these 27 DEGs, 70% of them

(19 of 27) were dysregulated also in Baseline ARS, indicating

that CMS largely blunted the ARS response in female mice (Fig-

ure 3C). However, in male mice, the opposite was true: 46 genes

were differentially expressed after ARS at baseline, but 625 were

changed after ARS with CMS exposure, indicating that CMS

enhanced the ARS response in male cells. The male response

to ARS with previous CMS mainly had DEGs (95%, 625 of 658)

that were not dysregulated at baseline. Furthermore, these dis-

tinctions were even more prominent when taking into consider-

ation directionality of the dysregulation. In females, the shared

DEGs could often be found regulated in opposite directions

with or without previous exposure to CMS, whereas in males,

they often were dysregulated in the same direction (Figure 3D).

This observation held true also at the larger scale of the tran-

scriptome, suggesting a generalized trend. A rank-rank hyper-

geometric overlap (RRHO) analysis compares the change in

expression of all genes at once between two conditions. As

such, it allows to identify shared patterns of dysregulation,

such as commonly upregulated genes (Figure 3D, top right and

bottom left quadrants) or oppositely regulated genes (Figure 3D,

top left and bottom right quadrants). We used an RRHO analysis

to assess how similar the differential expression pattern induced

by ARS was with or without a history of CMS. Overall, females

showed a group of genes upregulated at baseline but downregu-

lated in CMS (Figure 3E, top left quadrant). In contrast, genes up-

regulated at baseline in males were often upregulated in CMS

background as well (Figure 3E, top right and bottom left quad-

rants). To better find key players in the differences observed in

oligodendrocytes, we performed a hierarchical cluster analysis

aimed at identifying groups of genes similarly regulated across

conditions. Our analysis yielded 16 different gene clusters

(Figures S3I–S3J; Table S4). Among these clusters, we found

several interesting expression patterns. For example, clusters

4 and 16 summarized ARS response under baseline condition

regardless of sex, but no cluster was found that represented
Cell Reports 42, 112874, August 29, 2023 5



Figure 3. Oligodendrocytes’ stress response is particularly susceptible to a history of chronic stress in a sex-specific way

(A) Dot plot of DEGs in the ARS response for baseline and CMS history in males and females.

(B) Heatmap plot of Z-scored Euclidean distances between baseline and CMS ARS response summed between sexes. Oligodendrocytes are the top susceptible

cell type.

(C) Number of DEGs to ARS for oligodendrocytes showing an opposite trend between sexes.

(D) DEGs shared between backgrounds by their log fold change (logFC). Background colors show density distribution.

(E) Rank-rank hypergeometric overlap (RRHO) analysis for oligodendrocytes showing sex-specific patterns. Top right and bottom left quadrants represent genes

concordantly dysregulated (down and up, respectively); top left and bottom right quadrants show genes dysregulated in opposite directions.

(F) Cluster 5 from hierarchical clustering of oligodendrocytes DEGs is representative of CMSARSmale response. Bars show themedian logFC of each gene in the

cluster.

(G) Gas7 is the top DEG representing cluster 5. Expression levels (number of RNA puncta, boxplot) measured by RNAscope in oligodendrocytes (Mog+ cells)

compared with scRNA-seq results (violin plots). Despite a trend, statistical significance was not reached because of high spread in control animals (t test, Gas7:

t(1) = 2.30, p = 0.19). Boxplots: interquartile range (IQR) and median; whiskers: minimum and maximum value ± 1.5 IQR.

(H) Representative RNAscope images for control and CMS ARSmale samples (scale bars, 10 mm). Nucleus and cell ROIs for the example cell are shown in white.

(I) Cluster 3 from hierarchical clustering of oligodendrocytes DEGs is representative of CMS ARS female response. Bars show the median logFC of each gene in

the cluster.

(J) Tspan2 is the top DEG representing cluster 3. Increased expression levels (number of RNA puncta, boxplot) measured by RNAscope in oligodendrocytes

(Mog+ cells) compared with scRNA-seq results (violin plots) (t test, Tspan2: t(1) = 17.27, p = 0.006).

(K) Representative RNAscope images for control and CMS ARS female samples (scale bars, 10 mm). Nucleus and cell ROIs for the example cell are shown in white.

Boxplots: interquartile range (IQR) and median; whiskers: minimum and maximum value ± 1.5 IQR.

See also Figure S3 and Table S4.
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CMS ARS across sexes. Instead, cluster 5 and cluster 3

collected the male and female CMS ARS-specific response,

respectively (Figures 3F and 3I). Cluster 5 was characterized
6 Cell Reports 42, 112874, August 29, 2023
by the downregulation of many genes associated to growth

and proliferation processes, such as Gas7, Pmp22, Cntn22,

Vapa, Tspan15, Tspan3, Hspa5, Gjc2, Kif1b, and Kif1bp,



Figure 4. Interaction networks between oli-

godendrocytes and neurons

(A and B) Stress alters the balance between out-

going (oligodendrocyte ligand – neuronal receptor)

and ingoing (neuronal ligand – oligodendrocyte re-

ceptor) interactions between oligodendrocytes and

neurons. (A) Density plot of edge weights for re-

ceptor-ligand pairs per condition (Control includes

both backgrounds collapsed). After CMS ARS,

outflow pairs with high strength are selectively lost.

Three-way ANOVA: condition, F2, 4,961 = 15.39,

p = 2.17 3 10�7; direction, F1, 4,961 = 56.79,

p < 5.74 3 10�14; sex 3 condition, F2, 4,961 = 3.82,

p = 0.022; direction 3 condition F2, 4,961 = 3.84,

p = 0.022, pairwise comparisons, Tukey’s post hoc

corrected: ****p < 0.0001, ***p < 0.001, **p < 0.01. (B)

Scheme of the difference in oligodendrocyte-

neuron interaction in the three conditions (Control,

Baseline ARS, and CMS ARS).

n.s., not significant. See also Figure S4 and

Table S5.
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suggesting that the male-specific CMS ARS response might be

arising by a changed maturation process. Gas7, the gene with

the biggest logFC, for example, has been recently shown to be

necessary for achieving oligodendrocyte maturation.30 Cluster

3, in contrast, was mostly characterized by the upregulation of

translation processes (Rpl37, Slc38a2) but also developmental

processes (Tspan2, Arpp19). In particular, the top DEG for fe-

males, Tspan2, is known to regulate oligodendrogenesis,31

possibly suggesting that similar but opposite processes are tak-

ing place in the two sexes. Thus, we used RNAscope to validate

these top two genes in mature oligodendrocytes (marked by

Mog expression) (Figures 3G, 3H, 3J, and 3K). Although we suc-

cessfully validated the increase in Tspan2 in female cells

(Figures 3J and 3K), we observed reduction in Gas7 levels to

the expected extent that did not reach statistical significance,

probably because of high variability in controls and reduced

sample size (Figures 3G and 3H).

Overall, our data suggest that the transcriptional response to

an acute stress of oligodendrocytes is influenced by CMS previ-

ous exposure, which differentially affects the sexes and possibly

involves changes in oligodendrogenesis.

Stress alters the strength and balance of interaction
networks between oligodendrocytes and neurons
Aside from generating the myelin sheath wrapped around neu-

rons, oligodendrocytes contribute to maintaining regional ho-

meostasis, sensing the change in the environment, and bidirec-

tionally exchanging information with neurons for axonal

maintenance and synaptic function.32,33 Given the close interac-

tion between oligodendrocytes and neurons, we investigated

whether ARS exposure (with or without CMS) impacts the rela-

tionship between these two cell types. To address this question,
C

we built cell-cell interaction networks to

quantify ligand-receptor interactions as

edge weights between oligodendrocytes

and neurons. We further assessed which

of the receptor-ligand pairs significantly
(permutation analysis, p < 0.05) changed strength in response

to ARS and found that several receptor-ligand pairs were altered

by ARS exposure (Table S5). Because nomajor differences were

observed between subpopulations of neurons, all pairs were

aggregated into a single analysis (Figure S4A). Importantly, the

identified dysregulated receptor-ligand pairs were of both

possible direction types: pairs with a ligand in oligodendrocytes

and a receptor in neurons (outflow) and pairs with a ligand in neu-

rons and a receptor in oligodendrocytes (inflow) (Figure S4B). To

understand whether stress exposure impacted preferentially

either direction of communication, we looked at the distribution

of strength of all altered receptor-ligand pairs in each state (Con-

trol, Baseline ARS, andCMSARS) and compared the distribution

of strength of each receptor-ligand pair based on their direction

of communication (Figure 4A). We combined the two control

conditions (Baseline Control and CMS Control) because they

showed similar distributions (Figure S4C). In control conditions,

the outflow of information from oligodendrocytes was stronger

than the inflow. After ARS, this relationship still existed at base-

line but was lost with the CMS history because of an overall

decrease in ligand strength of the output direction (outflow).

Our results suggest that the exposure to ARS after CMS prefer-

entially weakens the output direction from oligodendrocytes to

neurons in both sexes (Figure 4B).

Male oligodendrocytes in the PVN show an immature
morphology after stress exposure
Because interactions between neurons and oligodendrocytes

change along their developmental trajectory,34 oligodendro-

cytes actively proliferate and mature throughout adulthood,35

and we found DEGs possibly implicated in developmental pro-

cesses, we hypothesized that stress exposure might affect the
ell Reports 42, 112874, August 29, 2023 7
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development or morphology of oligodendrocytes in a sex-spe-

cific way. To explore this further, we performed a pseudotime

trajectory analysis on all clusters belonging to the oligodendro-

cyte lineage (OPCs, COPs, and mature oligodendrocytes;

Figures S5A and S5B). A pseudotime analysis uses gene expres-

sion data to infer the maturation state of each cell within a group,

by determining the most and least mature cells and ordering the

others along developmental branches. As such, for each cell we

computed a pseudotime value ranging from 0 (immature) to 30

(mature), which successfully ordered cells from OPCs to COPs

and to mature oligodendrocytes (Figures 5A and S5C). We

then compared how cells distributed along this continuous value

and whether stress caused any shift in pseudotime values

occupancy. Comparing the pseudotime distribution of control

and CMS ARS samples, we found that stressed male cells

showed a significant shift toward more immature stages: 50%

of all male cells were contained in a pseudotime interval 90%

the size of the control one (approximately 1.6 points smaller in-

terval; dotted lines, Figure 5B). In contrast, females did not

show any significant differences, nor did any sexes after Base-

line ARS (Figure S5D). During their development, oligodendro-

cytes activate several transcriptional programs,36 among them

Mog is upregulated in the final stages of maturations, whereas

Olig2 gets downregulated. The mapping of these two genes

along the pseudotime indeed confirmed this expected trend

(Figure S5E, top). To explore whether the developmental trajec-

tory of male oligodendrocytes could be impacted by stress, we

stained for Mog and Olig2 expression levels by RNAscope and

verified whether their reciprocal expression levels were main-

tained even in stress conditions. Their quantification by RNA-

scope showed very similar trends to the one obtained by pseu-

dotime analysis (Figure S5E, bottom) and confirmed the

existence of Mog�/Olig2++, Mog++/Olig2++, and Mog+/Olig2+

cells and all combinations of intermediate expression. We did

not observe differences in Olig2 expression levels in Mog+ cells

in either sex (Figure S5F). In contrast, in males after CMS ARS,

more Olig2+ cells (younger cells) showed low to no Mog, sup-

porting the idea that males have more immature cells than con-

trols (Figure 5C). This was not true for female Olig2+ cells (Fig-

ure S5G), consistent with the pseudotime results.

In their development, gray matter oligodendrocytes generate

several branches and ramifications to contact surrounding

cells;35,37 thus, we then checkedwhethermale oligodendrocytes

with CMS history would show sex-specific less mature

morphology. To characterize their morphology in the PVN, we

used immunostaining of Tmem10, a specific marker for the cell

body and the projections of mature oligodendrocytes38

(Figures 5D and 5E) and confirmed their identity with Olig2, given

its persistent expression across the developmental trajectory.39

We then traced the cell morphology in controls and stressed

mice with CMS history and explored the ramification structure

of these cells using a Sholl analysis (Figures 5F and 5G). We

did not observe any differences in soma size between sexes or

condition (Figure S5H) but identified a significant interaction be-

tween sex and condition in branching. Cells frommale mice with

a CMS history appeared less complex with significantly less

ramifications and shorter branches. The Sholl analysis also iden-

tified the existence of sex differences in the size of oligodendro-
8 Cell Reports 42, 112874, August 29, 2023
cytes, with female oligodendrocyte having a maximal branching

extension on average 5.6 mm wider (Figure S5I) (maximum

radius: female control, 42.11 mm [±4.86]; stress, 38.20 mm

[±3.94]; male control, 35.15 mm [±5.85]; stress, 33.91 mm

[±5.69]). We also found a trend for smaller radius for cells under

stress (control, 38.63 mm [±6.29]; stress, 36.06 mm [±5.17]) (Fig-

ure S5I). Our results suggest that a combination of chronic and

acute stress affect the morphological state of the oligodendro-

cytes residing in the PVN in a sex-specific way.

DISCUSSION

Recent studies exploring stress-induced transcriptomic

changes have suggested that differences between the sexes

could result from different cell-type contributions in males and

females.16,19,20 However, these studies lacked single-cell reso-

lution to directly address this question. Here, we used single-

cell transcriptomics to explore adult sex differences to stress

exposure and show that the PVN transcriptional response to

acute stress substantially differs between cell types and sexes.

Our findings suggest that previous stress exposure modulates

this response in a sex- and cell-type-dependent way. Further-

more, we show that these differences impact on cell develop-

ment and morphology in vivo. Finally, our study provides a rich

resource for researchers and clinicians interested in exploring

the important interplay between sex and stress.

Our unbiased sampling of a large number of individual cells

(�35,000) across the entire PVN, with limited contamination

from neighboring regions (Figure S2), identified all the major

cell types previously reported in the PVN.22,25,40,41 However,

we extend this knowledge further by providing higher-resolution

characterization of subpopulations and rare cell types, such as

subtypes of microglia, ependymal cells, and tanycytes. Although

it is difficult to directly compare our cell annotations with previ-

ously published datasets because of methodological differ-

ences, total number of cells, and their high heterogene-

ity,18,23,42–44 we identified several of the major hypothalamic

neuropeptides, such as Avp, Oxt, Trh, Calbn2, Th, Gal, and

Tac1, which others have found as well.42,45 Cells expressing

the hallmark peptide of PVN, Crh, clustered together within a

specialized glutamatergic subcluster that also expresses Trh.

The co-localization of these markers indicates that the absence

of pure Crh clusters was mostly due to limited resolution,

because Crh and Trh are predominantly expressed in glutama-

tergic neurons, particularly within the same parvocellular

cells.46,47

Most importantly, our dataset identified extensive sex differ-

ences in both neuronal and non-neuronal stress-responsive

cells. We show that more cell types are responsive to an acute

stressor in females and that a history of chronic stress changes

this response in a sex-specific way. Like other datasets, glial

cells were the biggest source of DEGs for males.22,48 For

example, endothelial cells had the highest number of DEGs after

acute restraint in the dataset presented here, but also after

chronic social defeat.22 In contrast, DEGs after ARS in females

were mostly derived from neuronal populations. Because

DEGs in male GABAergic neurons were elicited only by chronic

social defeat22 or with the combination of CMS ARS in this



Figure 5. Stress impacts on oligodendrocytes state

(A and B) Pseudotime analysis reveals a shift toward immature stages in male oligodendrocytes with CMS history. (A) UMAP plot of pseudotime analysis.

Pseudotime root is circled. (B) Density plot of cells across pseudotime. Inset plots show cumulative distributions (two-sided Kolmogorov-Smirnov test; female,

D = 0.059, p = 0.182; male, D = 0.168, p = 2.197 3 10�6).

(C) RNAscope showed moreOlig2+ cells with low or absentMog expression in males after CMS ARS (Ncontrol = 41, NCMS ARS = 66, Wilcoxon rank-sum test, F(1) =

40,141.5, p = 0.04).

(D) Representative images of oligodendrocytes traced in the PVN (scale bars, 100 mm).

(E) Example of Tmem10 signal used for tracing (scale bar, 50 mm).

(F) Representative skeletons of female (left) and male (right) oligodendrocytes.

(G) Sholl analysis on branching of female (left) and male (right) oligodendrocytes shows a sex 3 condition effect on cell morphology (linear nested mixed-effect

model, radius, F = 2746.833, p < 2.23 10�16; radius3 condition, F = 3.741, p = 0.053, radius3 sex, F = 10.153, p = 0.0015, condition3 sex, F = 6.305, p = 0.0177,

radius 3 condition 3 sex, F = 9.391, p = 0.0022). Sholl plots showing the number of intersections per distance from the radius. Inset plots show cumulative

distribution of intersections. ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05, #p < 0.1. Number animals per condition and sex = 6, number of traced cells: F CMS=

97, F ctrl = 82, M CMS = 81, M ctrl = 64. Data shown as mean ± SD.

n.s., not significant. See also Figure S5.
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dataset, female GABAergic neurons may exhibit heightened

responsiveness and greater sensitivity to stress compared with

males. These female GABAergic neurons display a high number

of DEGs, including steroid hormone chaperones (e.g.,

Hsp90aa1, Hsp90ab1, and Dnaja1), genes associated to synap-

tic release (e.g., Snap47, Nrnx1, Nrnx3, Rab3a, and Syt1), and

GABA cycle genes (Slc32a1, Slc6a1, Gabrb1, and Gabrb2).

These DEGs suggest that GABAergic neurons may respond to

stress-dependent increased circulating steroid hormones and

regulate cell activity in a distinct manner from males. A similar

sex-specific transcriptional response to stress of GABAergic

neurons has been observed also in other brain regions, such

as the prefrontal cortex.49 The nearly exclusive presence of

neuronal DEGs following ARS in females implies the existence

of distinct cellular sensitivities to stress. Previous studies have

linked the functionality of GABAergic neurons to the regulation

of PVN activity,50 although the hyperresponsiveness of the fe-

male HPA axis to acute challenges is extensively docu-

mented.4,11 Our results provide a possible molecular link be-

tween these two processes. Notably, in both MDD patients

and mouse stress models, diverse molecular mechanisms can

lead to similar pathological outcomes.15,20 Similarly, this sex-

specific neuronal responsemight suggest that stress processing

at the cellular level is dimorphic, despite ultimately manifesting

with similar characteristics.

Curiously, the combination of chronic and acute stress

exposed an interesting pattern of activation and sensitivity to

the background within the female GABAergic-glutamatergic cir-

cuitry. Under baseline conditions, GABAergic cells respond the

strongest in females. However, with a history of CMS, these cells

lose a significant portion of response. In contrast, glutamatergic

cells increase their response under CMS conditions. Alterations

in the balance between glutamate and GABA are of particular

importance due to their association to many psychiatric condi-

tions.51,52 Our results further suggest that sex might enhance

or attenuate the system balance in response to stress, which is

in accordance with previous work conducted in the cortex.53

The GABA-glutamate system is an important target for antide-

pressants,53 and both classic and rapid antidepressants, such

as ketamine, have been shown to act in a sex-specific way.54

Future studies could provide insights into how sex influences

the GABA-glutamate system, which may lead to new and more

effective drugs designed to target men or women specifically.

Finally, we showed the relevance of this dataset by identifying

the oligodendrocytes as the cell type most affected by a history

of CMS and by providing their in-depth characterization.

Although recent studies have described how oligodendrocytes

are sexually dimorphic cells in terms of morphology, prolifera-

tion, and survival,55–58 to the best of our knowledge, sex differ-

ences in stress reactivity have not been identified before. Our

data show that male, but not female, oligodendrocytes are

strongly affected by exposure to CMS. This exposure modulates

their transcriptomic response to stress, changes their interaction

with surrounding neurons, and determines a morphological

alteration possibly caused by altered maturation state. Accord-

ingly, recent findings identified a change in interaction between

neurons and oligodendrocyte progenitors in postmortem brains

of male MDD patients,59 and an aberrant proliferation and differ-
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entiation of OPC followed by demyelination was observed in

chronically defeated male mice.60,61 The shift in pseudotime

we observed could be explained by a similar mechanism

involving changes in OPC proliferation and maturation during

challenges to brain homeostasis. The change in Mog levels in

Olig2+ (younger) cells we describe supports this hypothesis. In

addition, our results suggest that these alterations described in

male-only studies might be sex specific, complementing recent

transcriptomic findings that propose an opposite effect of MDD

in male and female oligodendrocytes.20 Although we still do not

fully understand why male and female cells show a different

sensitivity to stress, elevated corticosterone levels, a hallmark

of stress exposure, modulate proliferation and maturation of ol-

igodendrocytes.62 We propose exploring the effect of sex on

corticosterone sensitivity in oligodendrocytes and further

explore proliferation or resilience to cell death under stress in

future investigations. Oligodendrocytes and neuronal interac-

tions have also not been explored in the context of sex differ-

ences. Although our bioinformatics analysis might suggest that

stress preferentially alters the outflow of information from oligo-

dendrocytes to neurons, it does not exclude the possibility that

oligodendrocytes might be acting as sentinels for an underlining

sexually different neuronal circuitry and its changes to stress.

Our dataset can serve as a valuable resource for researchers

interested in further exploring the transcriptional alterations in

the subtypes of neurons and in oligodendrocytes. Future studies

in these directions have the potential to identify new candidate

genes that regulate oligodendrocyte survival and oligodendro-

cyte-neuronal communication. In addition, such studies could

also identify valuable new drug targets for the treatment of

stress-related psychiatric disorders29 and other disorders with

pronounced sex bias in the involvement of oligodendrocytes,

such as multiple sclerosis.63

Limitations of the study
Although this study provides important insights, there are some

limitations that should be addressed. First, in order to be able to

perform timed stress paradigms, we were not able to behavior-

ally validate CMS in the animals that were used for scRNA-seq

but relied on physical parameters for its efficacy. However, we

showed that the CMS paradigm is effective in causing a depres-

sive-like phenotype in the splash test, as well as in physical as-

pects (Figures S1I–S1M). In addition, in our dataset we observe

only a small (�15%) but significant increase in adrenal size,

which seems minimal when compared with other paradigms.

However, CMS is specifically designed to apply a mild stress

load on the individual, resembling a more naturalistic setup,64

and it is not uncommon to not observe differences in adrenal

weight following CMS.65–67 Second, given our goal to compare

both sexes in a selective but small brain region (PVN) and in order

to obtain the right number of cells to generate a healthy single-

cell suspension and generate high-quality single-cell data, we

had to pool multiple animals (n = 5) per one technical sample.

Although this means we do not have both technical and full bio-

logical replicates in our dataset, having pooled multiple animals

we expect to maintain at least partial biological variability within

samples, something that has been shown for other sequencing

approaches.68 In addition, we chose to use scRNA-seq rather
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than single nuclei, which does not allow for the unbiased inter-

pretation of immediate-early genes (IEGs), which can be acti-

vated by the dissociation process. To minimize this effect and

maximize the viability and reliability of our data, we took several

precautions. We generated and maintained cell suspensions in

cold and oxygenated cerebrospinal fluid (CSF), minimized pro-

cessing time, and avoided the use of transcription inhibitors

that could be toxic. Furthermore, samples were collected at a

time point (5 h) to avoid any potential IEG response to stress.

Previous studies have demonstrated the robustness of protocols

like ours and the relevance of this second wave of transcription

when analyzing the stress response.18,22,24,44,69–72

Finally, our data represent important insights on the role of the

PVN in the stress response and in particular of oligodendrocytes

in this region. Because oligodendrocytes are widespread in the

brain, it could be reasonable to think that a similar response

might be found also in other gray matter regions. Although we

could not validate our results in every other relevant region, it

is interesting to point out that stress elicited by the forced

swim test led to changes in oligodendrocytes from the hippo-

campus, which are consistent with our findings in the PVN48

residing in other brain areas.

Conclusions
Previous scRNA-seq datasets with male and female hypotha-

lamic samples have mostly focused on anatomical characteriza-

tion of broad hypothalamic regions17,23 or selectively neuronal

populations.18,23 Only a few have studied the effects of stress

in males and females, typically limited to single stress manipula-

tions44 and broader hypothalamic regions.23 In contrast, our un-

biased dataset covers neuronal, glial, and stromal cell types of

selectively the PVN, a highly relevant region for stress, allowing

the exploration of multiple stress combinations in neuronal and

non-neuronal populations of adult male and female mice. Alto-

gether, our results indicate the need for more single-cell resolu-

tion studies in females and males and highlight directions to

dissect the molecular processes driving sex differences in

normal physiology and in response to stress. When combined

with other recent studies,17,18 our results provide further molec-

ular and cellular characterization of the hypothalamus and iden-

tify several cell types as priorities in which to explore sex differ-

ences in the context of stress. Investigation into how many of

these differences exist in the human brain could provide new un-

derstanding of the origin of the sex differences in brain structure

and function.73

Researchers interested in dissecting stress-related disorders

will be able to use the online platform we provide (available at

https://male-female-stress.weizmann.ac.il/shinyApp/) to study

the role of sex on the HPA axis at single-cell resolution, which

might generate cell targets for sex-specific treatment of stress-

related psychiatric disorders.
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A.J., Sjöström, P.J., and Van Meyel, D.J. (2014). Neuronal morphometry

directly from bitmap images. Nat. Methods 11, 982–984. https://doi.org/

10.1038/nmeth.3125.
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Materials availability
This study did not generate new unique reagents.

Data and code availability
d Raw sequencing data, aligned feature-barcode matrices from Cell Ranger and metadata matrix are accessible in the Gene

Expression Omnibus (GEO) repository under the accession number GEO: GSE201032. An interactive web interface containing

the clustered single cell dataset and metadata is available at: https://male-female-stress.shinyapps.io/shinyapp/.

d Adaptation and parameters of the standard available R packages such as Seurat and Monocle3 are available in the STAR

Methods section. Statistical analysis of cell-cell interaction analyses has been adapted from Nagy et al.44 as stated in the

STAR Methods section.

d Original R scripts for ambient RNA calculations, clustering stability measurement, neuronal reclustering, distance calculation

between stress backgrounds, oligodendrocyte DEGs clustering, pseudotime analysis and CCInx analysis, and original Python

scripts for RNAscope image processing and analysis are collected at https://github.com/EBrivio/sex_stress/ and are publicly

available as of the date of publication.

d Any additional information and code details are available from the lead contacts upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice husbandry
Sexually-mature C57BL/6N mice, aged 7–10 weeks, were housed in same-sex pairs in individually ventilated cages with water and

food ad libitum on a 12:12 h light-dark schedule in the animal facilities of the Max Planck Institute of Psychiatry in Munich, Ger-

many. All experiments were approved by and conducted in accordance with the regulations of the local Animal Care and Use

Committee (Government of Upper Bavaria, Munich, Germany). For the single cell RNA sequencing experiment, two cohorts of

mice were used: cohort one received ARS under Baseline conditions (Baseline history); cohort two received ARS after CMS

(CMS history).

For the estrus cycle monitoring, the vaginal opening of female mice was flushed with 1x PBS every morning for a minimum of

10 days. Samples were then dried at 37�C and stained with modified Wright-Giemsa stain (Sigma Aldrich, WG16-500ML). Estrus

stage was assigned based on the relative amount of exfoliated vaginal cells (nucleated epithelial cells, cornified epithelial cells

and leukocytes).74 Males were handled on the same days to minimize confounding effects. Animals that did not show a regular cycle

during these 10 days were excluded (Figures S1B and S1D). A non-regular cycle was defined as prolonged estrus (more than 5 days),

prolonged diestrus (more than 5 days) or no estrus over the whole monitoring period.

METHOD DETAILS

Stressors
Unpredictable chronic mild stress (CMS)

For the study of the impact of a history of stress on the acute stress response, cages in the second cohort of mice were assigned to

either the control or CMS group.

EachCMS cage received a random combination of two of the below stressors per day (one in the a.m. and one in the p.m. hours) for

a total of 21 days.

1. Removal of nesting material (24 h);

2. Cage-tilt 30� along the vertical axis (6 h);

3. No bedding or nesting material (8 h);

4. Damp bedding (6 h, 200 ml of 23�C water mixed in the normal bedding);

5. Water avoidance (15 min): an empty rat cage (395 x 346 cm) was filled with room temperature water, mice were placed on a

platform (10 x 12 cm), 2 cm above the water level;

6. Cage-change (4 h): mice received a fresh cage every 30 min for a total of 4 h;

7. Cage-switch: mice were assigned the cage of another group of the same sex;

8. Overcrowding (1 h): mice were placed with 8-10 same-sex stranger mice in a fresh cage;

9. Tail suspension (15 min): mice were hung by their tail, 50 cm above the surface for 15 min;

10. Homecage space reduction (6h): mice were left in ¼ of cage space for 6 h.

To assess the efficacy of the CMS paradigm, both stress and control animals were monitored twice per week for bodyweight and

coat state. Their coat state was scored on a scale 0 to 3 according to the following criteria.

0) Shiny/well-groomed/healthy coat (no injuries or alopecia patches);

1) Less shiny/less groomed coat or small alopecia patches, but healthy (no wounds);
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2) Dull coat and/or small wounds or alopecia patches;

2) Extensive piloerection or alopecia with crusted eyes or extensive wounds.

Cumulative coat state was calculated as the sum of the seven daily scores. Bodyweight gain was calculated as the difference of

bodyweight at day 21 from day 1.

At sacrifice, adrenal glands were collected, isolated from connective and surrounding fat tissue, and weighed. Amean adrenal size

per animal was calculated using both glands and normalized on bodyweight at sacrifice.

For each individual, bodyweight change, cumulative coat state, and mean normalized adrenal size were calculated and

Z-scored (population of reference used was the whole dataset combined). Parameters were then directionally-normalized, so

that positive values represented a stress state and negative value represented a non-stress state and summed to obtain the stress

score.

Acute stress

Acute stress consisted of 15 min restraint in a ventilated tube in the dark around �8:00 am. For the Baseline background, half of the

mice were assigned to the stress group, for the CMS history, all stress mice also received ARS on Day 22.

Animals were sacrificed 5 hours after receiving the ARS, their brains collected, and were either flash frozen, perfused or processed

for the scRNA-seq experiment. We selected a timepoint of 5 hours after stress in order to capture the second wave of transcription

which peaks approximately around this time.75 Bodyweight at sacrifice, trunk blood, and adrenals were also collected after the CMS

paradigm.

Splash test (ST)
To validate the impact of CMS, a separate cohort of male and female mice underwent the chronic stress paradigm and 10 h after the

end of the stress were tested76 For this purpose, mice were tested in the splash test during the dark phase of the light cycle under dim

illumination (�10-15lux).

Each animal was sprayed twice on the back (�500ml per spray) with a 10% sucrose solution and then placed in their original cage.

Mice behaviour was recorder for 577 All tests and analysis were conducted by an experimenter blind to the sex and genotype of

the mice.

Corticosterone assessment
A separate cohort of mice was used for corticosterone measurement. Mice were assigned either the Baseline background or the

CMS background. On the day of the ARS, a few ml of tail blood were collected in EDTA-coated tubes right before the ARS and at

the end of the 15 minutes of restraint. Blood was centrifuged at 1,000g for 15 min at 4�C. Plasma was retrieved and corticosterone

levels were measured using [125I] radioimmunoassay kit (MP Biomedicals), according to the manufacturer’s instructions.

Single cell RNA-sequencing
Single cell suspensions

Single cell suspensions were prepared as previously described.22 Briefly, five animals per conditions were sacrificed with a lethal

dose of isoflurane and transcardially perfused in cold 1x PBS. One PVN-containing slice per animal (approximately -0.58mmBregma

to -1.22mmBregma) was obtained using a 0.5mmbrainmatrix and the extended PVNwasmanually dissected under themicroscope

(Figure S2A). For each condition, tissuewas pooled and digested in Papain supplementedwith DNase I at 37�C for 50minutes. Tissue

was then dissociated with a fire-polished glass pipette, filtered with a 30 mm strainer, and layered over a discontinuous density

gradient of ovomucoid protease inhibitor with bovine serum albumin. All steps were executed in cold carbonated (95% O2, 5%

CO2) artificial cerebrospinal fluid (aCSF: 87 mM NaCl, 2.5 mM KCl, 1.25 mM NaH2PO4, 26 mM NaHCO3, 10 mM glucose, 75 mM

sucrose, 2mMMg2+, 1mMCa2+). Cells were resuspended to a final concentration of�700,000-900,000 cells/ml before being loaded

on the 10x Genomics Chromium Controller, v2 chips, aiming at 10,000 cells per channel.

Library preparation and sequencing

Library was prepared using the 10x Genomics Single Cell 3’ Reagent Kits v2 according to the manufacturer’s protocol. Molar con-

centration and fragment length of libraries were quantified using Bioanalyzer (Agilent High Sensitivity DNA kit – N. 5067-4626) and

samples within each background were pooled in equal molarity for sequencing. The pooled libraries were sequenced on a

NovaSeq 6000 sequencer with paired-end asynchronous sequencing, 100 cycles with a depth of �150 million reads per sample.

Pre-processing and quality control

Data was pre-processed with the 10x Genomics CellRanger software and further annotated on the mm10 reference set. Quality con-

trol, clustering and downstream analysis was performed within R version 3.6.3 (2020-02-29)78 using the package Seurat v. 3.1.3,79

following the guidelines provided by the developers and best practice workflow in single cell data analysis.80 Briefly, putative dead

cells, empty droplets, and multiplets were eliminated based on gene, UMI and mitochondrial gene counts (genes > 350 and < 3500,

UMI < 15,000, andmitochondria < 30%), and the support of the functions doubletCluster and doubletCells from the package scran v.

1.14.6.81 Blood cells were also considered as contaminants and removed from the dataset. This resulted in a dataset of 35,672 single

cells with amedian number of UMIs (uniquemolecular identifier) of 2,118, amedian number of genes of 1,149, andmedianmitochon-

drial content of 0.045 per cell (Figures S1E and S1G).
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Clustering

For clustering, data was log-normalized and scaled (factor 10,000) with the function NormalizeData in Seurat. The top 4,000

variable genes were selected using the function FindVariableFeatures in Seurat and used to scale the data with the function

ScaleData. Twenty-two principal components and a resolution of 1.2 were used to cluster cells with the function FindClusters.

Cells were than plotted in the ‘‘Uniform Manifold Approximation and Projection’’ (UMAP) bidimensional space and the identity of

the cell clusters was identified overlapping known marker genes (Figure S1H) from literature over our clusters.22 This identified

33 clusters belonging to 17 main cell types: neurons (GABAergic, glutamatergic, vasopressin, and mixed), astrocytes, microglia,

macrophages, oligodendrocytes, committed oligodendrocytes progenitors (COPs), oligodendrocytes progenitor cells (OPCs),

ependymal cells, tanycytes, endothelial cells, mixed endothelial cells, pericytes, vascular cells, meningeal cells. To better char-

acterize the neuronal populations, the neuronal clusters (GABAergic, glut and mixed) were further c17 First, we computed the

number of PCs to use for reclustering by permutation analysis. For each group of cells, we created 50 different expression

matrices by randomly permuted each row (gene) independently across cells (columns). For each matrix we then calculated

the maximum eigenvalue from a PCA. As such, for downstream reclustering we selected all PCAs that had an eigenvalue higher

than the mean of distribution of maximum eigenvalues obtained from the permutations. This analysis led us to recluster the

GABAergic neurons with 32 PCs, glutamatergic neurons with 20 PCs, and mixed neurons with 18 PCs. Second, we clustered

these three groups using the method explained above with the resolution that maximized the presence of stable clusters. To

determine such resolution, we performed a subsampling analysis with 20 replicates. For each resolution tested (from 0.2 to

2.0), we selected a random 50% of cells and repeated the data scaling, identification of variable features, PCAs, the shared

nearest neighbour graph from FindClusters and the cluster identification. We then checked which of the cells that clustered

together in the full group consistently clustered together in the subsampled dataset. As such, for each original cluster we calcu-

lated the maximum fraction of cells that could be found in any subsampled clusters. The average of this value across the 20

replicates was used as a metrics of cluster stability. All our clusters resulted stable (average > 0.5), as such, we selected

the resolution parameter that maximized this stability value (GABA: 0.4, glut: 0.2, mixed: 0.2).

Marker genes for each cluster were identified using the function FindAllMarkers and FindMarkers with default settings (Table S1).

Ambient RNA calculations

Rawmatrices obtained from Seurat were used to calculate the average Ambient RNA contaminations. For each sample we identified

the pool of empty droplets containing contaminant RNA (approximately 100 genes and less than 150molecules per droplet). Selected

droplets were used to calculate the average expression of all genes with the function AverageExpression. The complete list is avail-

able in Table S2.

Differential gene expression analysis

Differential gene expression analysis was performed using MAST82,83 integrated in the function FindMarkers of Seurat to identify

genes that were different between stress (either ARS under Baseline or ARS under CMS conditions) and control within the same

sex for each of the clusters. To avoid ambient RNA noise, we tested only genes expressed in at least 50% of cluster cells in

either condition. BH-adjusted p values less than 0.05 were used to determine significantly deregulated genes. Furthermore,

average gene expression per cluster was calculated using AverageExpression function on log-normalized scaled data. Graph-

ical representation of DEGs was done producing either Upset plots (R package ComplexUpset v.1.2.184,85) or Venn Diagrams (R

package eulerr v.6.1.086,87). To assess the similarity of the ARS response between male and female, the Szymkiewicz–Simpson

coefficient was calculated according to its formula: (N. of intersecting genes)/(N. of DEGs of the smallest responder for

each pair).

To identify the enrichment for transcription factors interacting with the DEGs fromBaseline ARS shared between the sexes, the 137

DEGs were inputted in the online platform Enrichr.com 88,89 using the ‘‘Transcription Factor PPIs’’ function which uses a literature-

based protein-protein interaction network to identify enrichment for transcription factors interactors. Results are reported in term of p

value, network and clustergram.

Euclidean distance

Background influence on acute stress response was assess describing each cell cluster by the number of DEGs and the median ab-

solute log fold change of DEGs. Distance between ARS under CMS and Baseline was calculated as euclidean distance between the

two datapoints for each sex. Distances have been Z-scored within each sex and summed between male and female, to evaluate

which cell type was the most affected across sexes.

RRHO analysis

For the rank-rank hypergeometric overlap (RRHO) analysis on the differentially expressed transcriptome of male and female cell

types (oligodendrocytes, glutamatergic neurons, and astrocytes), we used the R package RRHO2 v.1.090,91 for each sex on all genes

present in both conditions. Each gene was inputted as the product between its p value * the sign of the fold change.

Hierarchical clustering

To identify subgroups of genes with similar patterns of regulation across conditions, a hierarchical clustering analysis was performed

on all genes that showed differential expression in at least one condition in oligodendrocytes. To do so, we first created amatrix con-

taining all these genes and their logFC. Genes that were not tested in a condition were assigned 0.We than calculated their Euclidean

distance on the scaled distance matrix. Based on the highest agglomerative coefficient score, Ward’s methos was selected as the

clustering method and the R function hclust from the stats package was used to perform the clustering. Finally, based on clustering
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results, the dendrogram was cut to generate 16 clusters (k = 16). The heatmap was constructed using the R package pheatmap

v.1.0.12.

Cell-cell interaction analysis

@To evaluate predicted cell–cell interaction networks, we used predicted ligand–receptor interactions between oligodendro-

cytes and neurons using the package CCInx v. 0.5.1 (baderlab.github.io/ccinx/).92 The package uses the Cell-Cell interaction

database (http://baderlab.org/CellCellInteractions) to quantify ligand-receptor interactions as edge weights. We calculated

the networks within each of our eight samples (namely Control and ARS for each condition: Baseline Female, Baseline Male,

CMS Female, CMS Male) for all genes with expression value higher than 1.5. To evaluate how much stress exposure pertur-

bates interaction networks, a delta edge weight was calculated within each condition as (edge weight stress – edge weight con-

trol). Delta edge weights < 0.01 were removed and we performed a permutation analysis based on Nagy et al.59 to test which

changes in edge weight were significantly different. More specifically, we randomly permuted our control and stress cells into

two groups for 100 times and calculated the distribution of edge weight differences between the two groups for each of our

ligand-receptor pair. We then calculated a p-value for each of our stress-control edge weight differences and applied the

BH post-hoc p-value correction across all test runs. Edge weight with q-value <0.05 were considered significant. To evaluate

if stress impacted the ligand-receptor networks in a directionality-specific way, the distribution of edge weights of deregulates

receptor-ligands pairs for either direction (oligodendrocytes to neuron, and neuron to oligodendrocyte) were explored. The anal-

ysis was performed between each pair of oligodendrocytes and neuronal clusters (GABA, glut, AVP, mixed) separately (Fig-

ure S4A) to maintain possible neuron-specific interactions. All neuronal pairs showed similar distributions and were finally

aggregated to increase power.

Pseudotime analysis

To study the developmental trajectory of the oligodendrocytes, we isolated the clusters belonging to the oligodendrocyte lineage

(COP, OPC and Oligodendrocytes) and re-clustered them within Seurat v. 3.1.3 with the same procedure explained above, 15

PCs and a resolution of 0.6. The Seurat object was then transformed into a Monocle3’s object by importing the gene expression ma-

trix, cell metadata, and UMAP coordinates.93–95

To construct ethe single-cell pseudotime trajectory of oligodendrocytes,93–95 we first built a trajectory graph with the function

learn_graph. In order to place each cell on this trajectory, we assigned the root to the far-left node, as this was populated by OPC

cells (Figure 5A, circled one). Cells were then ordered based on their assigned pseudotime value and their distribution compared be-

tween conditions. Cells projection over pseudotime was presented both as density plots and cumulative plots. Statistical analysis

was run on the cumulative curves for each control-stress pair using a two-sample, two-sided Kolmogorov-Smirnov test with BH

p-value adjustments.

RNAscope
Staining

To validate gene expression changes in GABAergic neurons and oligodendrocytes, we performed RNAscope on selected genes.

Fresh frozen brains, four per conditions, were sliced in a cryostat at a thickness of 10mm. Two sections approximately 200mm apart

containing the PVN were collected per animal. Sections were processed with RNAscope multiplex fluorescent reagent kit (v1:

GABAergic neurons ACD, Cat. N. 322340; v2: oligodendrocytes - ACD, Cat. N. 323110) according to manufacturer’s protocol.

The following combination of probes and fluorophores were used.
Probe Fluorophore

Mm-Gad1 (N. 400951) Alexa-488

Mm-Gapdh-No-X-Hs-C2 (N. 442871-C2) Atto550

Mm-Ndn-C3 (N. 442711-C3) Atto647

Mm-Gas7 (N. 518561) Opal570

Mm-Tspan2 (N. 444741) Opal570

Mm-Mog-C2 (N. 492981-C2) Opal520

Mm-Olig2-C3 (N. 447091-C3) Opal690
Oligodendrocytes genes were processed in the following order: Mog – Olig2 – Gas7 or Tspan2. Slides weremounted with ProLong

Gold Antifade Mountant (Thermo Fisher Scientific, Cat. N. P36930) and imaged as tiled 8-field pictures (2048 x 2048 resolution, 40x

objective, 0.24 mm z-stack) at a Leica DMi8 spinning disk (pinhole size 40 mm) confocal microscope.

Image analysis

To quantify RNA scope staining we used a custom script written in Python v. 3.10.8 and Fiji v. 1.53t. The following Python modules

were used: jupyterlab v. 3.4.6, numpy v. 1.22.496,97 matplotlib v. 3.5.2 (Hunter, 2007), pillow v. 9.2.0, pyimagej v. 1.3.2 (initialization:

sc.fiji:fiji, ImageJ2 version: 2.9.0/1.53t),98 scijava v. 1.8.1, xarray v. 2022.12.0,99 scikit-image v. 0.19.2,100 scipy v. 1.7.3,101 pandas v.

1.5.2,102,103 findmaxima2d v. 0.0.25, roifile v. 2022.7.29. All the hyperparameters of the analysis were determined manually, blind to
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the experimental groups, in order to optimize the different steps of the protocol. The same hyperparameters were applied to the data

when experimental groups were to be compared. First, DAPI signal was rescaled over the 16-bit value range and purposely saturated

by setting all pixels whose values were in the upper 90th percentile to the 16-bit maximum value. We then applied edge-preserving

image smoothing, Otsu threshold and watershed and removed areas smaller than 40 pixels. The obtained binary mask was then im-

ported in Fiji and used to automatically recognize cell areas. In order to collect the whole cellular signal, nuclear shapes were

expanded to generate the analyzed region of interest (ROIs), as follows. Binary masks were first converted to 8-bit depth and the

Voronoi map for each field was obtained with the voronoi function. Each voronoi cell was then labelled and expanded of 35 pixels

in all directions by a circle-shaped structuring element. The PVN was manually labelled based on anatomical references and cell

ROIs outside the PVN were discarded.

For each cell we then computed the nucleus size, the cell size, the number of puncta and the average radius of puncta. Puncta were

identified exploiting a blob detection function based on the Laplacian of Gaussianmethod, built-in in Python’s scikit-imagemodule.We

first rescaled all channels independently over the 16-bit value range, by using the tissue background intensity value and the maximum

value respectively as the lower and upper extremes of the rescaling range. The intensity value of background tissue was estimated as

the mode of the signal intensity histogram, after removing the intensity value of the ventricle (visible in all the analyzed pictures). The

following parameters were then used to detect blobs: min_sigma 1, max_sigma 8, num_sigma 4, overlap 0.9. A single threshold value

was manually determined per each RNA probe, blind to the experimental conditions, and used for all samples.

Cells were defined outliers and removed if their nucleus or area size fell outside themedian ± 1.5 interquartile range (IQR). To deter-

mine if a cell was positive to a cell marker (eitherGad1,Mog orOlig2), we calculate an expression value by multiplying the number of

puncta by their average radius and split its distribution by k-means clustering. For Gad1 signal we assumed the possibility of binary

identity, either positive or negative, as such the clustering was performedwith k = 2. ForMog andOlig2, given the existence of varying

levels of expression and their sparse expression, we assumed four (k = 4) different groups: no expression (negative), background

expression (negative), low expression (positive), high expression (positive). For all downstream analysis, the value of puncta in

each cell was used as measure of signal.

Morphology analysis of oligodendrocytes
For oligodendrocytes morphology analysis, a cohort of male and female mice received ARS after CMS, as previously described. Five

hours after the end of ARS, mice were lethally anesthetized in isoflurane and transcardially perfused in 4% PFA. Brains were

collected, post-fixated in 4% PFA for 24 h at 4�C and then moved to 30% sucrose until sinkage. Two 40 mm-sections containing

the PVN (one frontal and one caudal, 200 mm apart) per animal were processed for immunofluorescence. Briefly, tissue was blocked

in blocking solution (5% normal goat serum, 0.5% Triton X-100 in 1x PBS) for 1 h at room temperature. Primary antibodies

(ɑ-Tmem10, rabbit, 1:500 (provided by Prof. Elior Peles, Weizmann Institute of Science, Israel), ɑ-olig2, mouse, 1:250 (Millipore

MABN50)) were then incubated at 4�C for 20 h in blocking solution. Secondary antibodies (ɑ-Rabbit-Alexa Fluor488 1:500 and

ɑ-Mouse-Alexa Fluor 594 1:500)) were further incubated at room temperature for 1 h. Slides were mounted with DAPI

Fluoromount-G (SouthernBiotech, Cat. N. 0100-20).

In each slide, left and right PVN were acquired as a tiled 4-field picture (1024 x 1024 resolution, 40x objective, 0.5x magnification,

2 mm z-stack) at a LSM800 Zeiss confocal microscope.

For tracing, the PVN region was first defined based on DAPI density. All visible Tmem10+, Olig2+ cells within the defined PVNwere

labelled and the Tmem10 signal was traced using the Fiji plugin Simple Neurite Tracing v.3.1.7104 by an experimenter blind to the sex

and condition. Sholl analysis was performed on the traces obtained using the plug-in Sholl analysis v. 4.0.1 available in Fiji105 with

default parameters and continuous sampling from the centre of soma. Concentric intersections were binned to intervals of 5 mm.

To remove intersections due to soma crossing, soma radius was calculated from its circumference and any intersections with a

radius < soma radius were removed. In addition to the intersection distribution, we calculated the maximal distance from the

soma for each cell. Statistical analysis was performed applying a nested design within a mixed-effects models with the R package

lme4 v. 1.1-26,106 nlme v. 3.1-144107 and lmerTest v.3.1-3108 based on the implementation in R of sholl analysis.109,110 For each con-

dition, 6 animals were used with an average of 14.29 cells per animal. Representative cells in Figure 5E were generated using the

skeletonize function within Simple Neurite Tracer.

QUANTIFICATION AND STATISTICAL ANALYSIS

Datamanipulation and statistical analysis have been performedwithin R studio v. 1.2.5033112 with R version 3.6.3 (2020-02-29)78 and

the support of the package tidyverse v. 1.3.0.113

Plots were generated using the R package ggplot2 v. 3.3.0114 and viridis v. 0.5.1115 if not differently specified before.

ANOVAs, linear models and post-hoc p-value corrections have been computed using the packages lme4 v. 1.1-26,106 nlme v. 3.1-

144,107 lmerTest v. 3.1-3,108 and emmeans v. 1.5.4,116 as stated for each result. When ANOVAwas used, Shapiro-Wilk normality test

was used to verify normality in data distribution. In case normality was violated (as in coat state data distribution) non-parametric test

such as Kruskal-Wallis rank sum test were used.
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ADDITIONAL RESOURCES

Web app
The Shiny-based web interactive app containing the processed and clustered dataset was created using the R package ShinyCell v.

2.1.0.111 The loaded object available in the app includes all detected genes and all metadata (i.e., sample, cohort, condition, n. UMIs,

n. detected genes, % mitochondrial genes, clusters, cell types). The app is available at https://male-female-stress.weizmann.ac.il/

shinyApp/ as of the date of publication.
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