Touching

Ehud Ahissar

Touching

- Body-world interface
- Mechanisms of sensory processing (across senses)
- Motor-sensory coupling
- Passive vs active touch
- Neuronal coding
- Morphological coding

Body-world interface

Underneath the skin

Figure 8.3 The skin harbors a variety of morphologically distinct mechanoreceptors. This diagram represents the smooth, hairless (also called glabrous) skin of the fingertip. The major characteristics of the various receptor types are summarized in Table 8.1. (After Darian-Smith, 1984.)

Mechanoreception underneath the skin

Mechanoreception underneath the skin

Body-world interface

Underneath the skin

TABLE 8.1 The Major Classes of Somatic Sensory Receptors											
Receptor type	Anatomical characteristics	Associated axons ^a (and diameters)	Axonal conduction velocities	Location	Function	Rate of adaptation	Threshold of activation				
Free nerve endings	Minimally specialized nerve endings	Aδ C	2–20 m/s .5 – 2 m/s	All skin	Pain, temperature, crude touch	Slow	High				
Meissner's corpuscles	Encapsulated; between dermal papillae	Aβ 6–12 μm	30 - 70 m/s	Principally glabrous skin	Touch, pressure (dynamic)	Rapid	Low				
Pacinian corpuscles	Encapsulated; onionlike covering	^{Aβ} 6-12 μm Me	chano-re	Subcutaneous C contors interosseous membranes,	Deep pressure, vibration (dynamic)	Rapid	Low				
		(ex-amere	en ISaja							
Merkel's disks	Encapsulated; associated with peptide- releasing cells	Αβ		All skin, hair follicles	Touch, pressure (static)	Slow	Low				
Ruffini's corpuscles	Encapsulated; oriented along stretch lines	Αβ 6–12 μm		All skin	Stretching of skin	Slow	Low				
Muscle spindles	Highly specialized (see Figure 8.5	Ia and II 8	0 – 120 m/s	Muscles	Muscle length	Both slow and rapid	Low				
	and Chapter 15)	Pro	prio-(re)	ceptors		-	_				
Golgi tendon organs	Highly specialized (see Chapter 15)	в 8	re-affere	ents)	Muscle tension	Slow	Low				
Joint receptors	Minimally	-		Joints	Joint position	Rapid	Low				

In the 1920s and 1930s, there was a virtual cottage industry classifying axons according to their conduction velocity. Three main categories were discerned, called

Body-world interface

Underneath the skin

TABLE 8.1 The Major Classes of Somatic Sensory Receptors											
Receptor type	Anatomical characteristics	Associated axons ^a (and diameters)	Axonal conduction velocities	Location	Function	Rate of adaptation	Threshold of activation				
Free nerve endings	Minimally specialized nerve endings	Að C	2–20 m/s .5 – 2 m/s	All skin	Pain, temperature, crude touch	Slow	High				
Meissner's corpuscles	Encapsulated; between dermal papillae	Aβ 6–12 μm	$30\ -70\ m/s$	Principally glabrous skin	Touch, pressure (dynamic)	Rapid	Low				
Pacinian corpuscles	Encapsulated; onionlike covering	$^{A\beta}_{6-12\mu\mathrm{m}}\mathrm{Mec}$	chano-re	Subcutaneous CENECOTS Interosseous	Deep pressure, vibration (dynamic)	Rapid	Low				
Merkel's disks	Encapsulated; associated with peptide- releasing cells	Аβ		All skin, hair follicles	Touch, pressure (static)	Slow	Low				
Ruffini's corpuscles	Encapsulated; oriented along stretch lines	Aβ 6–12 μm		All skin	Stretching of skin	Slow	Low				
Muscle spindles	Highly specialized (see Figure 8	hy does t	he brain	need re	-afferen	ts? ^w pid	Low				
Golgi tendon organs	and Chapter 15) Highly specialized (see Chapter 15)	ъ Proj	prio-(re) ^{9-120 m/s} re-affere	ceptors Tendons ents)	Muscle tension	Slow	Low				
Joint receptors	Minimally	—		Joints	Joint position	Rapid	Low				

In the 1920s and 1930s, there was a virtual cottage industry classifying axons according to their conduction velocity. Three main categories were discerned, called

Evolutionary specialization

Merkel's discs

corpuscle

JTU

Signal transduction

Transduction

The receptor potential is produced by a **mechanically sensitive channel** that opens when the membrane is deformed

The channel is permeable to positive ions, primarily Na⁺, K⁺ and Ca²⁺

Transduction

Figure 21-2 Mechanoreceptors are depolarized by stretch of the cell membrane and the depolarization is proportional to the stimulus amplitude.

A. The spindle organ in skeletal muscle mediates limb proprioception. These receptors signal muscle length and the speed at which the

Receptive Fields (RFs): Spatial and temporal

Receptive Fields (RFs): Spatial and temporal

RF size?

Receptive Fields (RFs): Spatial and temporal

Response dynamics?

Receptive Fields (RFs): Spatial and temporal

Cutaneous Mechanoreceptor Channels

Receptor density

Figure 22-4 The distribution of receptor types in the human hand varies. The number of sensory nerve fibers innervating an area is indicated by the stippling density, with the highest density of receptors shown by the heaviest stippling. (**RA** = 5 rapidly adapting, **SA** = 5 slowly adapting.) Meissner's corpuscles (**RA**) and Merkel disk receptors (SA I) are the most numerous receptors; they are distributed preferentially on the distal half of the fingertip. Pacinian corpuscles (PC) and Ruffini endings (SA II) are much less common; they are distributed more uniformly on the hand, showing little differentiation of the distal and proximal regions. The fingertips are the most densely innervated region of skin in the human body, receiving approximately 300 mechanoreceptive nerve fibers per square centimeter. The number of mechanoreceptive fibers is reduced to 120/cm² in the proximal phalanges, and to 50/cm² in the palm. (Adapted from <u>Vallbo and Johansson 1978</u>.)

Neurometric – psychometric matching

Spatial resolution (by JND)

• Break ?

Signal conduction

In the 1920s and 1930s, there was a virtual cottage industry classifying axons according to their conduction velocity. Three main categories were discerned, called

Figure 8.7 Diagram of the somatic sensory portions of the thalamus and their cortical targets in the postcentral gyrus. The ventral posterior nuclear complex comprises the VPM, which relays somatic sensory information carried by the trigeminal system from the face, and the VPL, which relays somatic sensory information from the rest of the body. Inset above shows organization of the primary somatosensory cortex in the postcentral gyrus, shown here in a section cutting across the gyrus from anterior to posterior. (After Brodal, 1992, and Jones et al., 1982.)

B Motor homunculus A Sensory homunculus B Itale Evelid hp Upper LIDS Lower lip Teeth, gums, and jaw Jai Tongue Swallowing Tongue Pharynx Intra-abdominal-Lateral Medial Lateral Medial

Relative size reflects innervation density

phylogenetically

Accurate spatial organization

Figure 23-9 The representation of whiskers in the somatosensory cortex of the rat. (Adapted from Bennett-Clarke et al. 1997).

Relative size reflects innervation density

ontogenetically

Motor signal conduction

The cortico-spinal tract

30% - M1 30% - premotor 30% - somatosensory, parietal

The cortico-bulbar tract

Face, head, neck

Motor signal conduction

Sensory signal conduction The vibrissal system

Sensory signal conduction The vibrissal system

whisker

Common mechanisms of sensory processing

Rich muscular system

Receptor types

whisker

Receptors mix in clusters

finger

Merkel cells

Idiosyncratic clustering

Human cone mosaic

Subject JW, temporal

one degree eccentricity

Do they see the same world?

Receptor convergence / divergence

Human eye: 5M cones (+ 120M rods) --> 1M fibers Human skin: 2,500 receptors/cm² --> 300 fibers / cm² **Rat whisker**: 2,000 receptors --> 300 fibers $\sim 10 \rightarrow 1$ convergence **Human ear**: 3,000 hair cells --> 30,000 fibers $\sim 1 \rightarrow 10$ divergence

why? Speculate at home...

Processing stations

Spatial processing (by Lateral inhibition)

Efficient coding

(by coding changes only)

Changes in time:

- Intrinsic in individual neurons
- Starting at the receptor level

Changes in space:

- Circuits of neurons
- Starting after lateral inhibition

Temporal filtering (by intrinsic factors)

Neurometric – psychometric matching

sensitivity

Figure 22-6B The threshold for detecting vibration corresponds to the tuning threshold of the mechanoreceptor. The sensitivity threshold for Meissner's corpuscles is lowest for frequencies of 20-50 Hz. Pacinian corpuscles sense higher frequencies. (Adapted from Mountcastle et al. 1972.)

• Break ?

Passive touch

Perceptual processing follows sensory events

Active touch

- Perceptual processing surrounds sensory events:
- o The brain probes the world
- o Compares sensory data with internal expectations
- o Updates internal expectations

Active touch is done in a loop:

- Change of expectations => Probing the world
- Probing the world => Change of expectations

Passive touch

- Iow thresholds
- poor accuracy

Active touch

- higher thresholds
- high accuracy

Passive touch

- Iow thresholds
- poor accuracy

Detection

Active touch

- higher thresholds
- high accuracy

Exploration Object localization Object identification

Passive touch	Active touch
 low thresholds 	higher thresholds
poor accuracy	high accuracy

Potential underlying mechanism: "Gating"

- Arousal, preparatory, or motor commands "gate out" sensory signals
- Example: Thalamic gating (Sherman & Guillery, JNP. 1996)

Thalamic neurons have 2 modes:

- in drowsiness: hyperpolarized, bursting, low threshold
- in alertness: depolarized, single spikes, high threshold

Passive touch	Active touch
Iow thresholds	higher thresholds
poor accuracy	high accuracy

Underlying mechanisms:

- Additional information
 - expectations
 - accumulation of sensory data over time
 - more coding dimensions
 - increased resolution due to scanning
- close-loop operation

Passive touch	Active touch
Iow thresholds	higher thresholds
poor accuracy	high accuracy

Underlying active mechanisms:

- Additional information
 - expectations
 - accumulation of sensory data over time
 - more coding dimensions
 - increased resolution due to scanning
- close-loop operation

Sensory encoding:

What receptors tell the brain

Sensory organs consist of receptor arrays:

somatosensation

Define

 ${\sim}200~\mu m$

Finger pad

audition

10 µm

cochlea

vision

10 µm

retina

Sensory encoding:

What receptors tell the brain

Sensory organs consist of receptor arrays:

somatosensation

~200 μm

audition

vision

^{0 µm} *Finger pad* 10 µm

cochlea

retina

Spatial organization => Spatial coding ("*which* receptors are activated")

Spatial coding metaphors

one could think of:

the eye as a camera

the skin as a carbon paper

light is

Imprinted on the retina via photo-receptors

How neurons encode external events in space?

The "labeled-line code".

a binary code, reporting yes/no about the occurrence of a given event.

Every neuron has a "label"

Reading out the labeled line code

reading algorithm: a location X is pressed if and only if neuron x fires

On what condition will this algorithm be valid?

(X) • X=> x + - Neuron x fires *if and only if* X is pressed
 Is this assumption valid?
 1. The problem of background activity

2. The "problem" of sensor movements

receptors are sensitive to <u>changes</u>

Thus

If both objects and sensors are passive (stationary), nothing will be sensed

Thus

Sensors must move in order to sense stationary objects

How sensor motion constrains sensory coding?

Reading out the labeled line code

reading algorithm: a location X is pressed if and only if neuron x fires

On what condition will this algorithm be valid?

(X) • X=> x + - Neuron x fires *if and only if* X is pressed
 Is this assumption valid?
 2. The "problem" of sensor motion

sensory encoding:

What receptors tell the brain

Sensory organs consist of receptor arrays:

somatosensation

audition

Finger pad

cochlea

retina

vision

Spatial organization => Spatial coding ("*which* receptors are activated")

Movements => Temporal coding ("when are receptors activated")

Evolutionary specialization

Merkel's discs

corpuscle

JTU

Morphological processing

Bagdasarian et al. Nat Neurosci (2013)

Morphological processing

Motor

Bagdasarian et al. Nat Neurosci (2013)

Global curvature (G κ_p , m⁻¹

Sensory

Organism-environment attractors

Touching

- Body-world interface
- Mechanisms of sensory processing (across senses)
- Motor-sensory coupling
- Passive vs active touch
- Neuronal coding
- Morphological coding
Touching

The End