MRI Primer: Assignment #3 Solution

Thermal Equilibrium Signal

1. A first approximation would assume the voxel is made completely out of water, which has

a molecular weight of about 18 gr/mole. A 1 mm? voxel of water would weigh about 10
-3
grams and therefore contains N, =

Moles ~5.5x10" water molecules, and twice the

number of protons (remember, it’s all about the number of protons, not molecules!), so
N=10". More careful estimates might take into account that most soft tissues in our body
have a density close to 1 gr/mL, or 107 gr/mm?. About 65% of that is water, implying we
need to simply scale N by 65%, N~0.65x10"

2. This is a simple application of the equation for the bulk magnetization:

N (yh) B,

M(ghulk) — 4kT

Here
By is 3 Tesla
k Boltzmann’s constant, 1.38x10% Joule/Kelvin
T Room temperature, 293 Kelvin (25° C)
7 Planck’s constant, 1.05x10 Joule-sec
7 Proton gyromagnetic ratio, 27x42.576x10° Hz/Tesla
N Number of protons in the voxel
Using these numbers:

Signal Induction

1. We will use the expressions derived in class:

M, (¢)=M,(+=0)e"" +(1=¢"" ) M,
M, (r)=M (O)ef"yBU’e_'/TZ

= v

The real and imaginary parts of My(t) are My and M,. We know that at time t=0
M(0) =(M,,,0,0) , which also means that M., (0)=M_(0)+iM,(0)=M,, so:

M ()= Re[Mxy (t)} =M e cos(yByt)
M, (¢)=Tm| M, (¢) | =—M,e""" sin(yBy)



2. The principle of reciprocity states that the signal in the coil will be given by

v:—B.ﬁ
dt

where B is the field created at the position of the magnetic moment by putting a unit
current through the loop. For this loop,
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B=—"y.
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Thus:
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since %+ =0 (the unit vectors % and y are orthogonal) and x-x=1. The derivative

of I\/Iy is
dM ,(¢) d[e—zlfz sin(yBO;)]
— =M,
dr dr
(e d(sin(yB,t
=-M, [% sin(yBUt)+ e h w}
Sin(yBOt) 1T,
= _M _ >\t B .
i [ at, TV ""‘)}
and

in(yB,
v(t) = HoMo? By |:— Sm(j/ Ot) + coS(J/Bol‘)j|€_l/T“‘ .
2r yB,T,

Now, in reality, yB, is about 2m-123 MHz at 3 Tesla, while T5 is on the order of
sin(yB,t)

10-100 ms, meaning BT, ~10” or larger, making the first term T
VDyly

completely

negligible compared to the first, so

—tIT,

v(t) = Mcos(}/Bot)e

2r

For the next step, however, we'll be keeping it because I chose ® and T’ that are not
that far apart.



Taking r=0.2 meters, 1, =47-107 N-A7, T>=1 sec, 0=yBo=10-2n Hz-rad, Myo=1

J/'T, weobtain for t between 0 and 4 seconds:
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The voltage v(t) (blue line) decays with a time constant T and oscillates with a time
constantw = yB, . The purple line is simply the exponential envelope:

M.y B, T
2r

Note that the values of v(t) (on the y-axis) are not very meaningful since some of the
parameters we chose were arbitrary/non-realistic (small ®, My=1).

If we neglect T relaxation (which is “slow”, making this a good approximation), the
signal will be 0. This can be seen immediately from the principle of reciprocity: the
magnetization vector (and its derivative) lies in the xy plane, while the normal to the
loop’s surface points along z, and therefore their dot product is zero. In terms of
magnetic flux, if we draw the magnetic field lines of M in the xy-plane we see that
they are all pointing in the xy-plane itself and have no component perpendicular to
the coil loop. Therefore no magnetic flux passes through the coil. Now, it is true that
the derivative of the magnetic flux is what induces a voltage, but to have a non-zero
derivative we must have non-zero flux to begin with!

If we take T relaxation into account, then (using M,(t = 0) = 0, i.e. initially there
is no magnetization along the z-axis):

M,(t) = (1 — e_TLl) M,

The magnetic field created by the loop points along the z-axis, and is given by (for
unit current):



~ _ Mo
B=BZZ=§Z

Using the principle of reciprocity, the induced voltage is:

dM, oMy -t
= — e T,
dt T,2r

v=-B,-

Feel free to check this induced voltage is MUCH smaller than the voltage induced in
part (3) of this question. The reason is that M, changes very slowly (on the order of
1/T) compared to My and M, (which oscillate with a frequency wg = yBg > 1/Ty).

Frame Transformations

1. There are several ways to approach this. The easiest one is to realize that X', 9" perform a
circular motion in the xy plane, starting (respectively) from the x and y axes at time t=0.
This means that, at time t=0, and denoting components in the xyz frame

1 0
X(t=0)= (0) , y'(t=0)= <1>
0 xyz 0 xyz

Their LH rotation can be described using a LH rotation matrix about the z-axis:

cos(f) sin(6) O
R,(0) = (-sin(@) cos(6) 0)
0 0 1

such that, for example,
cos(wt) sin(wt) 0 1
X'(t) = R (wt)X'(t = 0) = (—sin(wt) cos(wt) O) <O>
xyz

0 0 1/, \O
cos(wt)
= <— sin(wt))

0 xyz

and similarly

sin(wt)
y'(t) =R, (wt)y'(t =0) = <Cos(wt)>

0 xXyz



This notation is equivalent to saying that the components of X' in the (xyz) system are
cos(wt), — sin(wt) and 0, which is equivalent to writing

x'(t) = cos(wt) X — sin(wt) y + 9 4

(351 aiz ais

Similarly,
y'(t) = sin(wt) X + cos(wt)y+0- 2

The easiest identity is Z = 2', because both are collinear and do not vary as a function of
time. This means a3; = as, = 0, az3 = 1.

The inverse transformation can be derived in an exactly analogous way, by noting that
the X,y vectors appear to execute a right handed rotation around the z-axis when viewed
from the (x’y’z’) frame. A right handed rotation matrix around z’ is given by

cos(wt) —sin(wt) 0
R, (wt) = <sin(a)t) cos(wt) O>
0 0 1 xryrzi

Analogously,

1 0
x(0) = <0> , ¥(@) = <1>
0 x'y'z' 0 x'y'z!

This is another way for writing, e.g., X(t = 0) = X". Carrying out the matrix-vector

multiplication we obtain

X(t) = cos(wt) X'(t) + sin(wt) §'(t) + 0 - Z'(t)
y(t) = —sin(wt) X'(t) + cos(wt) §'(t) + 0 - 2'(¢t)
Z)=0-R'()+0-9'(t) +2'(¢)

Intuitively, it should be clear that Bre (which itself rotations with a frequency wgp
according to a left hand rule) will appear to rotate (with the LH rule) with a frequency
Wrr — W in a frame which rotates with a frequency w. When w = wgp, i.e. when the
frame rotates with the same frequency as Brg, it will appear stationary. This can be derived
analytically by plugging in our expressions for X, ¥ into our expression for Brg(t)

Bgrr(t) = By cos(wgpt) [cos(wt) X' (t) + sin(wt) §'(t)]
— By sin(wgpt) [— sin(wt) R'(t) + cos(wt) §'(¢)]
= By (cos(wgpt) cos(wt) + sin(wgp) sin(wt))x’'(t)
+ B;(cos(wgrt) sin(wt) — sin(wgpt) cos(wt))y' (t)



= B, cos((wgp — w)t) ®'(t) — By sin((wgr — @)t) ¥'(£)

The last step uses two trigonometric identities for the difference of angles within a sine or
cosine (Wikipedia is your friend on this one).

3. This is the easiest step: Just substitute @ = wgp above and obtain Bg(t) = B;X'.

4. This is also straightforward: B = BZ = BZ', because Z = Z'. This is because the unit

vectors along the z and 7’ axes are the same (because the xX’y’z’ rotates about the z-axis).

Time Derivatives in the Rotating Frame
1.
aMm d(cos(wt)) _  d(sin(wt)) _

dt i dt
= —w - (sin(wt) ® + cos(wt) y)

The components of the derivatives in the (xy) frame are simply the coefficients of

the unit vectors X, y. You could also write this informally as

M = ( cos(wt) )xy’ aMm _ (—w sin(wt))xy

— sin(wt) at  \—w cos(wt)

2. We use the results of the previous problem for transforming between frames:

~

X = cos(wt) X' + sin(wt)y’
y = —sin(wt) X' + cos(wt)y’

Substituting this and simplifying we obtain

o~ (1 am@® o _ (0
Mo =x=(), . “G=-v=(5),
3. By definition, you need to differentiate the components of M as they appear in the

X'y’ frame, which are just 1 and O:

d(1 d(o0
W, 4O,

dt dt dt dt

(d_M) — de,rot f' + dMy,rot y, —
dt rot

1. Differentiate M(t) to obtain dM/dt. Express its components in the (xy) frame.

2. Express the components of both vectors, M and dM/d¢, in the (x'y’z’) frame, where
the (x’y’z’) frame is the same as the one described in the previous problem (with a left-
handed rotation w around the z-axis). This tells you what M and dM/dt would look

like to an observer in the X’y’z’ frame. Hint: use the expressions for the unit vectors in



the xyz frame in terms of the xX’y’z’ frame. In particular, show M and dM/dt are both
constant and non-zero.

3. Now, consider the vector M(t) as it appears to an observer in the X’y’z’ frame. If asked,
what would an observer in the X’y’z’ frame (who is unaware of the xyz frame) think the
time derivative of M should be? In other words, what is (2—1‘:) > (Hint: it’s not the

rot

same as dM/dt in the X’y’z’ frame)

On and Off-Resonance Excitation

1. On resonance - which we assume when analyzing the pulse's duration and RF amplitude
based on its flip angle - we have

a=(flipangle)=yBT

where T is the pulse's duration. Here a=7/2, T=1 ms and y =27-42.576 % for

mT

protons, yielding

a
B =—=59 uT .
| Vs H
2. The bandwith - that is, the range of offset frequencies excited by the pulse - will be

#B =250 Hz .

3. The effective field is simply the RF field, since the offset is zero:

B 5.9 uT
0 0

B

Hence (straight out of the lecture notes!):

The effective field is shown in red, while M is drawn at successive time as a blue vector
(essentially starting out from the z-axis and rotating by 90° until it reaches the y-axis).
4. The precession frequency around the effective field, assuming the spin is on resonance, is

simply v, = 9L|B£ﬁf| =B =0.25kHz, the same as the bandwidth.

5. The effective field in the rotating frame:



B, 5.9 uT

AB 1 uT

The precession frequency around this field is slightly higher than that around just the RF
field without the offset:

Vy=#B, = 7B +AB* ~0.254 kHz .

The off-resonance spin precesses about the effective field for the pulse's duration, which
is T=1 ms. The total angle by which it precesses around the effective field (note this is
not along the x-axis!) is:

a=yB,T ~1.6 rad ~92°.

Drawing:

Now Begt has a small z-component which makes it "stick up" in the x-z plane in the
rotating frame. Consequently, M precesses not about the x-axis but about this slightly
tilted axis in the x-z plane. It also precesses around it by more than 90° (92° to be exact,

as we've calculated in the previous part).

Flip Angles Are Nucleus-Dependent
The answer is No. The flip angle depends on the gyromagnetic ratio:

a=yBT .

The flip angle will change by the ratio of gyromagnetic ratios between hydrogen (
%, =42.576 4 ) and carbons (4. =10.705 £ ); that is, since

ac=ycBT
ay =ruBT

then (dividing)



o =a, ~7—C:90°.(10'705j ~23°.
42576

To achieve o, of 90° we need to either increase B, or T. Both options are in theory valid. In
practice, the RF amplitude B, is limited by our RF amplifiers and what one ends up doing is

making the pulse longer (this creates other issues, e.g. it can make some pulses too long, with
T, and T, starting to have a detrimental effect).



