MRI Primer: Assignment #5 Solution

Selective Excitation & Bo-Field Inhomogeneity

1. The slice will be centered at 0, perpendicular to the z-axis, and have a 1 cm width:
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2. The pulse will excite frequencies between £BW/2=yB,/2. This corresponds to positions

between w(z4) = yGzy +yniz4 = * @, where w(zy) = + 2nBW. Solving, we get zy =
+ 2% — 4+ L This means that the width of the slice is now Zy—Z_ = B The
y(G+71) 2(G+1m1) G+my

Zy+z_

center of the slice is at = 0. It is perpendicular to the z-axis.
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3. The effect of eta becomes negligible when it is small compared to the other term in the
denominator, which is G. This translates to: 17y < G.
4. The constant term will shift the slice. To see this, repeat our reasoning from section 2: The

pulse will excite frequencies between £BW/2=¢B/2. This corresponds to positions between
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w(zy) =yGzy +ynz4 +yne = * Solving, we get zy = iy(G+n1) TG
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+—2— — 1% The slice width is now Z, — Z_ = —— (same as in part 2), but the center
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5. Conceptually, there is no difference between a linear inhomogeneity and a gradient! With
the homogeneity along the x-axis, the offset as a function of position is w(z,x) = yGz +
Yn1x , which is what you would get with no inhomogeneity and a gradient G = (11,0, G),

such that w(z,x) =yG-r.1Ifn, =G =1 %T then this gradient points at a 45° angle to the
x-axis. If we look along the axis that is parallel to G, then the angle between G and r is 0° and
we can write @(r) = Y|G|r, where r is the distance from the origin along the axis defined by

G, and |G| = /G? + n?. The solution now becomes analogous to finding the thickness of a

slice in 1D. The solution is Az = %Z

6. Pulses “talk” to different frequencies, not positions. The connection between frequency and
position is made by the gradient and possible inhomogeneity. In our case, the total
inhomogeneity+gradient mean that w(x,z) = yGz + yn,x2. Lines of constant @ define the
boundaries of the slice; these are parabolas. An exact calculation of slice profile and “thickness”
is possible, although this thickness might even change as a function of position if the

inhomogeneity is very nonlinear!

74
S




There Is More Than One Way of Exciting a Given Slice Thickness
B. is calculated out of yB7T =a, and SAR= BT for a constant amplitude pulse, where T is

the pulse's duration.

Slice Flip angle B, (uT)  Bandwidth G (mT/m) Duration SAR

thickness (Deg.) (Hz) (ms) (UT?-ms)
(mm)
10 90 5.6 250 0.58 1 34.48
10 90 1.17 50 0.12 5 6.9
10 90 0.56 25 0.06 10 3.45

Possible reasons for using shorter pulses:

1. Minimize relaxation effects and signal decay during excitation.

2. Maximize G and (based on the previous problem) minimize the effects of By
inhomogeneity.

Possible reasons for using longer pulses:
1. Hardware might not be good enough to supply the high RF (B1) and gradient
amplitudes.

2. Less SAR.

1D Phase Encoding

1. At thermal equilibrium, our magnetization in the rotating frame starts from some

initial equilibrium values along the z-axis:

M, z=0

M, z=Az
M,(z)=4M, z=2Az

M, z=3Az

0 otherwise
Mxy(z)=0

Following a 90., pulse, the magnetization gets transferred to the xy-plane:



=0
M, z=0
M, z=Az
=sM. z2=2Az
M, z=3Az
0 otherwise

Once we turn on a gradient during the phase encoding part we create a spatially

dependent frequency @(z)=yGz in the rotating frame, and so the magnetization at

point z will precess in the xy-plane and accumulate a phase ¢(Z) = a)(Z)t =yGtz. In

the four experiments, the four points will accumulate the following phases by the end

of the phase encoding period (just before acquisition):

Exp yGt #(2=0) | ¢(z=Az) | ¢(z=2Az7) | ¢(z=3Az)

1 0 0° 0° 0° 0°

2 E2 0° 90° 180° 270°
2Az

3 2 0° 180° 360° 540°
2Az7

4 3_72' 0° 270° 540° 810°
2A7

Ergo, the transverse magnetization at each of these points at the end of the phase

encoding period, M, (Z,t = 0) e will be (just substitute the phases and use e"’? =j
,e"m=—1, 2 =_j erc... ):
Exp | yGt | M, (z2=0) | M, (z=Az) | M (z2=2Az) | M, (2=3Az)
1 0 Ma Mp Mc Mp
2 T My iMp -Mc¢ -iMp
247
3 27 Ma -Ms Mc -Mp
2A1
4 3r Ma -iM3 -Mc iMp
2A7

The signal from an experiment is given by the signal equation:

y

s(t)oc @y [ By (rM™ (r.t)dr

Xy



Here, Bgec) =1 everywhere, @, is just a proportionality constant and, once the phase

encoding gradient is turned off and @ =0 atall points in the rotating frame, M X (r,t)

is actually time independent and equal to its value at the beginning of acquisition
(again, we're neglecting relaxation; had we not, we would’ve had to incorporate T
decay). Therefore, the signals from the four experiments are

S=M,+M;+M.+M,
s, =M, +iM; -M, -iM
;=M,-M;+M.-M,
S

In matrix notation,

)

1 M,
S, 1 i -1 - Mg
s, | (1 -1 1 -1| M,
S, 1 -1 -1 1 )(M,

1 1 1 1

1 1 -1 -
A —_

1 -1 1 -1

1 -1 -1 i

and invert it using the command inv(A), which yields

11 1 1
PR R R R
401 -1 1 a1

10 -1 -i

From Wikipedia (google “DFT Matrix”), this matrix is



1 1 1 1
1 1 o & o 2
W:—: , =e 4 =—j
Ja |1 & o o° ©
1 & & &
SO
1 1 1 1
1 1 -1 -1 1
N 7% I R R e
1 i -1 —i

We see that the reconstruction matrix (A™) is, up to a constant factor, precisely the
4™ order DFT matrix, while the encoding matrix is its inverse. It is not surprising
therefore that the Discrete Fourier Transform (DFT) pops up repeatedly in MRI
image reconstruction, as we will see throughout the course.

Incidentally, the 2" order DFT matrix is simply

wo L [1 1 j
V2\1 -

If you recall, this is consistent with the phase encoding example shown in class in
which we only used two spatial points A and B.

To understand how the reconstruction matrix changes we must first ask ourselves:
how does the encoding matrix change when the spins are shifted? Going back to the
first part we commented that the phase accumulated by spins at point z will be
¢(Z) = yGtz . Adding a constant shift 6z would correspond to adding an additional

phase as shown in the following table:

Exp | yGt | ¢(z2=052) | p(2=02+A2) | ¢(2=52+2Az7) | $(z=052+3Az)

1 O Oo Oo Oo Oo

2 | 7 | 0otz 90°+ 822 180° + 422 270° +5z=
2Az7

3 | 2z | 0°42zx | 180°42Lx 360°+2zx 540° + 222
2A7

4 | 3m | 0°+43zz 270° + 322 540° 4 322 810°+32x
2Az7




This would lead to the following transverse magnetizations at the end of the phase

encoding block, just before acquisition:

Exp | yGt | M, (2=0) | M, (z=Az) | M (z2=2Az) | M, (2=3Az)
1 0 Ma Ms Mc Mbp
2 T iz iz oz iz
E eZAz MA eZAz iMB _eZAz MC _eZAz iMD
3 272- i276z i276z i27n6z i2762
E e 2A7 MA -e 2A7 MB e 2A7 MC -e 2A7 MD
4 372- 13762 1376z 3762 1376z
E e 2Az MA -e 2Az iMB -e 2Az MC ie 2Az MD

The corresponding signals in the four experiments will be

(72] m(l) NU) 0

N

inoz inoz inoz
e 2Az ie 2Az —e 2Az

2752 12752 i2762
e 2Az —e 2Az e 2Az

3752 3762 13752
e 2Az _ie 2Az —e 2Az

1
indz M A
—le 2Az
M B
i2762
—e 2Az M c
iswoz |\ Mp
ie 2Az

Now, you can invert this matrix by brute force, even analytically, but there’s a trick
y y y y

here: the encoding matrix can be decomposed into the product of two sub-matrices:
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Inverting this becomes easy because matrix algebra tells us (AB)_1 =BA™, we've

already inverted the encoding matrix (and got the DFT matrix), and inverting a
diagonal matrix is particularly easy (just invert each element along the diagonal):

M, 11 1 17 0o 0 o0)s
M, 111 -1 -1 i 0 7+ 0 01|s,
M.| 4[1 -1 1 -1lo o0 752 0|5
M, 1 i -1 -i)lo o 0o 7

Bottom line: all you need to do is apply a “phase correction” term to the
" _i(ndz)
reconstructed signal at each position (no correction at z=A, 1™ = e 24z atz=B,

17_2 at position C, etc ... )



