MRI Primer: Assignment #5

Due December 14, 2021

Setting Simple Imaging Parameters

A 2D gradient echo sequence is used to acquire a cartesian dataset in k-space, as shown schematically below:

The imaged object is a human brain slice (say, $20 \text{ cm} \times 20 \text{ cm}$), and the desired imaging matrix is 256×256 . Phase encoding is applied along y and frequency encoding is applied along x.

- 1. How would you select your field of view (FOV) along each of the axes? The FOV is defined as the periodicity of your point spread function.
- 2. What will happen if you set your FOV along the y-axis to 10 cm? Explain or draw how your final image will look like.
- 3. How many scans will you need to image the brain? A scan by definition is the "basic unit" that consists of excitation, acquisition and some delay (usually to let the magnetization recover before the next excitation).
- 4. If T_1 =1 sec, and you choose to wait at the end of each scan for the magnetization to return to thermal equilibrium, how long will the entire experiment take (approx.)?
- 5. Calculate $k_{max,x}$, $k_{max,y}$ (total extent of data acquired in k-space along k_x & k_y axes), and Δk_x , Δk_y , the spacing between acquired points in k-space along the k_x and k_y axes.

Deducing the Gradient Waveforms from the K-Space Trajectory

Plot (schematically, in arbitrary units) the x and y gradients (that is, $G_x(t)$ and $G_y(t)$) which would give rise to the following path through **k**-space (in 2D), assuming that your initial point is A and final point is B (assume the path is traced continuously and evenly):

Deducing the k-Space Trajectory Given the Gradients

In the previous question you were given $\mathbf{k}(t)$ and were asked to schematically plot $\mathbf{G}(t)$. Now we're going to reverse the question: you're told that the x and y gradients are going to be varied as

$$\mathbf{G}(t) = \left(G_0 \sin(\omega t), G_0\right)$$

we'll be working in just 2 dimensions, x & y, for simplicity).

- 1. Plot $G_x(t)$ and $G_y(t)$ schematically as a function of time.
- 2. Compute $\mathbf{k}(t)$.
- 3. Plot $k_x(t)$ and $k_y(t)$ schematically.
- 4. Plot the trajectory $\mathbf{k}(t)$ in the k_x - k_y plane (as, for example, I've plotted in the previous question).