
 

 

 

 

 

 

 

                                                         MRI Primer: Assignment #7 Solution 

Imaging Edema & Cancer 

1. The signal equation for a spoiled GRE is  
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Note the appearance of T2* since this is a gradient echo. Since T2* and M0 are constants, the term 


 is a scaling constant independent of T1 and therefore unimportant. For    , 
   and looks like this as a function of T1 for TR=1 sec: 
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The curve clearly shows signal intensity decreases as T1 increases, leading to lower (darker) signal 

intensities for edema which has higher T1 than surrounding tissue.  

2. Taking 
   for simplicity, and noise with unit standard deviation, and using the 

definitions 
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we have: 

 

TR (sec)  (deg) SNRhealthy SNRedema CNR Scan Time 

0.05 10 0.134 0.039 0.095 12.8 sec 

0.05 90 0.049 0.025 0.024 12.8 sec 

1 10 0.172 0.079 0.093 4:16 min 

1 90 0.632 0.393 0.239 4:16 min 

 



The scan time is calculated as TR(number of phase encoding steps). Since the image is 256256 it 

has 256 frequency encoding steps and 256 phase encoding steps and the time it requires is 256TR. 

Looking at the table it is clear there is no clear cut winner. Maximum CNR is obtained at TR=1 sec, 

=90, but at the cost of very long scan times: 4:16 minutes for a single slice. In a realistic scenario 

we would have to scan multiple slices. A compromise can be had at TR=0.05 sec, =10, which 

sacrifices some CNR but achieves a drastically shorter scan time of 12.8 sec. 

Note that assuming a different standard deviation for the noise would simply scale the numbers by a 

constant overall factor and would not alter our conclusions. 

3. If a cancer is “invisible” (i.e. appears just like the healthy tissue around it) on a T1-weighted image 

it simply tells us the T1 of cancer is too similar to that of its surroundings – in our case, the edema 

that surrounds it. 

4. As shown by the first graph, shortening T1 increases the signal intensity, which is precisely what 

happens with the enhancing tumor. Physically what’s happening is that for very short T1s the 

magnetization quickly returns to thermal equilibrium prior to the next excitation pulse in the series, 

allowing us to generate more signal with each excitation. 

For a spin echo sequence the signal intensity is proportional to 
 . Longer T2s lead to higher 

signal intensities, implying that the T2 of edema is longer than that of the surrounding tissue. Note that 

longer T1s lead to a decrease in signal intensity, while longer T2s lead to an increase in signal intensity, 

at least for the simple sequences we have discussed so far (this is almost a universal trait of all 

sequences, but some outliers exist). 

                                                             

 

Dynamic Equilibrium of a Spin Echo Sequence 

 

 
 

The essence of dynamic equilibrium is that 
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Let’s use the longitudinal second relation which implies: 
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Following excitation, 
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We then have, after a time TE/2, 
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Following the -pulse two things happen: the z-component of the magnetization gets flipped, while the 

phase of the magnetization also gets inverted. However, the transverse and longitudinal magnetizations 

do not get mixed. Then: 
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At point E the xy magnetization has decayed (or has been spoiled), while Mz continues to relax for a 

duration  : 
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Using  , solving for  and simplifying, we obtain 

 

 

  



 



 

 

whence 
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For TE<<T1, 

 


