LECTURE 4
EXCITATION & ACQUISITION
Lecture Notes by Assaf Tal

Now that we have discussed the physical
principles by which spins and magnetic fields
interact, we come to the main question: how
do we measure a signal from a sample
containing spins? More precisely, we want to
create an image of our body, which — to a first
approximation — means mapping the density of
water molecules as a function of position.
Because the bulk magnetization per unit
volume is proportional to the density of water
at each point, we can rephrase our question and
ask: How can we map the bulk magnetization
per unit volume, M(r)? The answer is that we
need to first excite the spins, encode their
positions somehow, and then acquire a signal
from them and reconstruct it. The physics of
excitation and acquisition will be covered in
this lecture. Encoding will be covered in the
next lecture, and reconstruction in the
following lecture.

TO MEASURE A SIGNAL, SPINS
MUST BE EXCITED

The Static Nuclear Magnetic Field is Too
Weak to be Reliably Detected

We've previously calculated the bulk magnetic
moment of 1 cm® of water in a 3 T magnetic
field and found it to be about [M|-10® J/T.
Imagine this voxel is inside the human body
and must be detected in a coil wrapped around
the body — say, 20 cm away from it. The
magnetic field of the voxel is dipolar
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If we consider a sphere of radius r around M,

the field will be maximal at the poles:

Maximal field

where its value will be (putting r=0.2 m, M=10
ST/T, no=4m-107 N/A?):

Br|=5%-10""T=0.1pT.
This is an incredibly small magnetic field. The
extremely weak magnetic fields produced by
neuronal currents are 1-2 orders of magnitude
larger, and even those require extremely
specialized hardware based on super-cooled
magnetic field detectors known as SQUID:s.
SQUIDs are used in magnetoencephalography
(MEG) machines, but they are not sensitive
enough to detect the sort of signals we're
interested in. It is possible to construct sensitive
enough detectors, but even if we put aside the
engineering complexity and cost of these in
addition to the MRI magnet itself, we are still
faced with further problems:

e How can we separate the tiny field created
by the nuclear spins from the much larger
sources of magnetic fields created by other
phenomena in the body, e.g. neuronal
currents, or the membrane potentials in
the heart?

e How can we deduce the distribution of
spins within the body by detecting the
magnetic field outside the body? Thar is,
can we image M(r) inside the body by
measuring B(r) outside the body? These
sort of problems are known as inverse
problems and are often very difficult to
solve properly (the same issue plagues
MEG).

Is there a better way to detect the MRI signal?

The answer is yes, and it is linked to the



phenomenon of resonance and the precession
of spins around the main By field. To see why
precession makes it easy for us to measure the
magnetic fields of nuclear magnetic moments,
we need to first discuss signal acquisition.

Time Varying Magnetic Fields Can Be
Picked Up with A Coil: Faraday’s Law
The magnetic flux through a coil equals the

integral of the normal component of the
magnetic field through the surface of a coil:

Mathematically, this amounts to a surface
integral over the surface enclosed by the loop:

p=[ B-a5.

Intuitively, this is the “amount of magnetic
field lines crossing the coil.” For example, if we
had a constant magnetic field B normal to the
coil, and the coil had area A, the magnetic flux
through it would be A-B. If B were to make an
angle oo with the normal to the coil’s surface,
the flux would be reduced to A-B-cos(a.):

Flux: A-B Flux:

Another example: consider placing a coil
around a magnetic moment. In one orientation
there would be no flux through the coil, while
if we were to rotate the coil by 90° the flux
would be maximal:

No flux Maximal

The importance of flux comes from Faraday’s
law:

A time varying flux ¢(t) through a coil will
generate a voltage given by:

_49
dt
(Faraday’s Law)

This is a very different method of detection
compared to optics, where we pick up
photons emitted by radiating molecules.
Radiation is a far-field phenomenon, while
induction (Faraday’s Law) is a near-field
phenomenon.

Note that the generated voltage is not
proportional to the amount of flux (¢), but
rather to its time derivative. Even if ¢ is large it
will not generate any current if it is static.

This law underlies much of modern
electricity and electronics, since it provides a
mechanism for turning one type of energy into
another. An example is the microphone: some
microphones, known as dynamic
microphones, are comprised of a diaphragm
connected to a bar magnet, around which a coil
is tightly wound. As sound waves oscillate the
diaphragm they also physically move the
magnet which changes the magnetic field’s flux
through the coil as a function of time. These
oscillations are therefore reproduced in the
electrical signal induced in the coil and
recorded on tape (or, in modern hardware, on
the computer):
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In our case, a precessing magnetic moment
will create a precessing dipolar field around it —
that is, a time-varying magnetic field. The
dipolar field will rotate at the same angular
velocity as the spin. A current will then be
generated in a suitably-positioned coil, known
as a receiver coil. Any receiver coil can also
create a magnetic RF field by putting an
oscillating current through it, making it a
transmitter coil. Thus, any coil can be used for
both reception and transmission (but not
simultaneously).

Deriving a Simpler Expression for the
Induced Voltage in a Coil: The Law of
Reciprocity

Imagine trying to calculate the magnetic flux of
a time varying magnetic moment m(t) through

a coil:
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You would have to write down the time-
dependent dipole field and integrate it over the
surface of the coil. The coordinate system
might be tilted and in general the calculation
of the induced voltage using Faraday’s law
directly will be difficult. To overcome this, we
will make use of a very neat trick known as the
principle of reciprocity, which will enable us to

derive a simple expression for the flux in the
receiver coil due to the time varying magnetic
moment. This principle can be stated very
simply (although its proof, which is difficult,
will be omitted): If we take any two coils, then
the flux through coil #2 created by putting a
current I through coil #1 will be equal to the
flux through coil #1 created by putting the
same current I through coil #2. Graphically, if
we image two configurations,
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then the principle of reciprocity tells us that

b12 = P21

This is quite surprising at first glance, but it’s a
very useful identity. Proving the principle of
reciprocity is beyond the scope of this class, but
these sorts of principles appear throughout
classical ~ electrodynamics. ~ Simply  put,
reciprocity tells us that a good receiver is a
good transmitter: if coil #1 is meant to pick up
a field put out by coil #2, its response (the flux
through it) will be given by the flux that it will
create in coil #2 when you put the same current
through it.

Now let’s apply this principle to our
problem and “turn it on its head” in a sense.
First, we can model the microscopic nuclear
magnetic moment using an infinitesimal loop
of current, since we remarked such a loop will

create a magnetic moment m=(area)x(current):
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There is no requirement for the moment’s loop
to be co-planar with the receiver coil, nor do
we assume the receiver coil is planar (it’s just
easier for me to draw a planar one).

We're interested in calculating the flux
through the receiver coil due to the current I,
in the “imaginary” magnetic moment loop.
The principle of reciprocity tells us that this is
equal to the flux through the imaginary
magnetic loop coil due to a current I, through
the receiver coil!

Let’s denote by By (T, t) the field created
by putting a current I, through the receiver
coil. First, note that the field created by a coil
should scale by the current you put through it:
doubling the current will double the magnetic
field vector in each point in space, so we can
write

B,oc(1,t) = Im(t)ﬁrec(r)

where B j

vo.(T) is the field generated by a unit
current in the receiver coil. Because the
magnetic moment’s loop is so small, we can
assume By is effectively constant across it, so

we can approximate the flux through it:

O moment = Brec(1,t) - (Aym)

where A,,M is a vector perpendicular to the
plane and having a magnitude equal to the area
of the loop. Rearranging a bit,

Dmoment = Erec(r) (ApL,m)
= Brec(r) -m(t)

The principle of reciprocity tells us that this
flux equals the flux created by the moment
through the receiver coil!

Prec = Pmoment

Now, all that remains to do is differentiate it
with respect to time to obtain the induced
voltage in the coil:

_ D) dm
Vyoe = _B'rc(: L dt
The above expression can be extended to a
spatial distribution of moments by integrating
over space:

[ / ET?(‘ r - M dv
‘ - - dt
oay

Precessing Spins Induce a Measurable
Currents in the Receiver Coils

We are now in a position to calculate the
voltage induced in a simple receiver coil due to
a precessing spin and show that it is significant
enough to be detectable.

As we've remarked previously, any spin will
precess about a constant magnetic field. In
particular, if we place the spins in a static,
strong magnetic field — say, the 3 Tesla field of
a typical MRI scanner — it will precess. For a
hydrogen nucleus, this precession frequency
would be

vy =B, =425752. 3 T ~ 127 MHz.
Or w, = 7B, = 27v,. Using a coil and the
law of reciprocity we can measure the time-
dependent flux induced by the spin. This
dynamic  measurement will create a
significantly larger signal than a static one. We
are, however, faced with a paradox: at thermal
equilibrium, the bulk magnetic moment is
parallel to Bo, and hence the precession is
“degenerate” — M remains static (even though
the microscopic moments, m, will precess). For



us to observe true precession, M must make
some non-zero angle with Bo:

Bo < =
At thermal equilibrium, M and Bo
are colinear, and no precession is
observed.
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Only by creating some nonzero
angle 0 between M and Bo — that is,
only by exciting M - can we observe
precession.

Creating such an angle is called excitation.
Putting that aside for a moment, let’s calculate
the voltage induced in a coil put around the
precessing spin via Faraday’s law and the law of
reciprocity. Here we take a wo circular coils of
radius R in the xz and yz planes, with a point
magnetic moment placed at the origin and
performing some rotation as a function of time:

S

The components of the precessing spin have a
sinusoidal time dependence:

M - cos wyt
M1t =|—-M:sin wyt

0
(LH rotation about z)

Remember that the law of reciprocity tells us
that the voltage induced in the coil can be
calculated via

dm

v, = _B'rc(: r o dt

rec

where ETGC r is the field created by a unit
current the loop at the position of the magnetic
moment (at the origin). The expression for the
magnetic field created by a loop of current at

its center is well known from basic magnetism:

pol
B =—
Q) 2R Y

where R is the ring’s radius, I the current, and
¥ a unit vector normal to the plane of the ring.
The reason we placed the loop in the xz-plane
is to maximize the magnetic flux through it
(had we placed it in the xy plane there would
have been no flux through it!). We take unit
current (I=1), so the field created by the
receiver at the position of the magnetic
moment at its center is:

= Ho
B, (1) = ﬁy

and so:
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Number Time. For po=471x107 V-s/(A-m),
®=21-127 MHz for protons at 3 Tesla, R =
15 cm (head coil), and M, = 10® J/T
(previously calculated magnetization of 1
mL of water), we get 30 nV, around the
right order of magnitude for the voltages
detected in magnetic resonance.




This is a small but detectable voltage level with
today’s electronics, and this is the basis of signal
reception in modern MRI. The smaller the
radius of the coils, R, the better: always build
coils that are as small as possible! Furthermore,
the signal is proportional to @o=yBo, and
increases with By (although an exact analysis of
the SNR will await a later chapter).

Some Additional Concepts in Signal
Detection: “Heterodyne” Detection

While we've covered the basic physical
principles behind signal detection, there are
some things we will only mention here
qualitatively. The following diagram describes
a typical cascade of actions that are applied to
the receiver coil’s voltage:
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1. The acquired signal needs to be converted
to a digital signal via an analog to digital
converter (ADC).

2. Because such ADCs don’t always handle
high frequencies efficiently, such as the
Larmor precession at ~100 MHz, the
signal must first be down-converted,
meaning it must be taken from a -100
MHz signal to the kHz range.

3. Another thing that is done along the way
is splitting the signal, and adding a 90°
phase to the second signal. The two signals
are combined inside the computer (after
the ADC) into one complex signal. This
effectively turns a sine or cosine real signal
into a complex exponential one:

cos(wgt) — e~ ot

The Appendix discusses these steps in greater
detail and how they relate to signal detection.
We will have some things to add to that
towards the end, after we discuss excitation.

THE SPINS CAN BE EXCITED
WITH A RESONANT RF FIELD

A Small RF Field Can Have a Large Effect

if it is Resonant

The discussion of the previous section has

shown that, in order to induce non-zero

voltage, we must tilt the magnetization vector
away from equilibrium and have it precess.

Indeed, the basic MR experiment can be

described as follows:

» Thermal Equilibrium: At  thermal
equilibrium, the spins are aligned along Bo
and do not precess.

» Excitation: The spins are somehow
excited, that is, tilted to some angle 0 with
respect to Bo. This usually happens quickly
and relaxation can be neglected. The
reason this is called an excitation is because
energy needs to be put into the system: the
energy of a moment M making an angle 8
with By is E = —MB, cos(0), and is
lowest when 6 = 0° and increases as 0
increases (up until & = 180°).

» Precession & Detection: Once tilted, they
precess and give off a time dependent
magnetic field. The magnetic field induces
a voltage in a nearby RF coil via Faraday’s
law. We can also further manipulate the
spins with magnetic fields during this
period to bring out particular contrast
types. We usually have a time ~ T, before
decoherence "eats up" the observable
precessing magnetization.

» Thermalization: Relaxation processes kick
in. The transverse magnetization decays
with a time constant T, while the
longitudinal magnetization builds up back
up due to T, relaxation. If we wait for a



time= 5-T), the magnetization will be

back at its thermal equilibrium value.
Each such block (excite-acquire-wait) is called
a scan. It is in fact not mandatory to wait for a
time 5-T for the spins to return to thermal
equilibrium; we'll see later on that waiting a
shorter amount of time has both benefits
(shorter scan times) and disadvantages (less
signal per scan). For now, however, we'll
assume that is the case, so M is equal to M and
points along the z-axis before the beginning of
each scan.

We've already remarked that Brr<<Bo.
Typical RF field strengths are ~10 pT, while
Bo>1 T. How can we hope to non-negligibly
excite the spins with such a weak, seemingly
insignificant RF field? The answer is that we
can use a resonant field that oscillates at the
Larmor frequency (indeed, the R in MRI

stands for resonance).

Wr = Wq, and decrease substantially as wg >
Wy (or wp K wy).

How does resonance work? Briefly, the
system returns to the same state with a period
of wy, and if the maximal applied force is
repeatedly applied at the same state it can
produce a “coherent” buildup effect, adding up
constructively between visits of the system to
the same state.

In our case, to tilt the nuclear magnetic
moment effectively away from By, we will apply
a resonant external radiofrequency field,
oscillating at its natural (Larmor) frequency.
Namely, we are going to solve the Bloch
equations setting G=0, and

BRF(t) = Bl COS((,()RFt)/x\ - B1 Sin((l)RFt)?

with

Schematic for a simple single experiment ("scan")
(not drawn to temporal scale)

Excite the spins. This
usually takes a few
milliseconds << T, T>

Let spins precess while acquiring a
signal until it decays due to T

Wait for magnetization to build
back up due to Ti before exciting
again

Time

Resonance refers to the fact that many
physical systems have a “natural frequency” (or
set of frequencies) associated with them, and
that applying an external “force” which
oscillates at the natural frequency of the system
produces an extraordinarily large response
compared to a force which oscillates at a “far
away  frequency”. For example, a mass on a
spring, if displaced from equilibrium and left
to its own devices, will oscillate with a
frequency

wWg = —_—
m

If we now hold the end of the spring and shake
it with a frequency wp, the resulting amplitude
of the oscillating mass will be maximal when

wpp =W, ("on-resonance irradiation")

This means we will need to solve the Bloch
equations with a time dependent magnetic
field. Although a numerical solution is
possible, we will employ a frame
transformation trick which will enable us to
solve this problem analytically.

Simplifying the Problem: Transforming
to a Frame Which Rotates at the Same
Frequency as the RF Field Makes it
Appear Static (The Rotating Frame)

To make the problem easier, we will consider
the magnetic field in a frame of reference which
rotates in such a manner so as to make it appear
static. In other words, if the RF field rotates in
the xy-plane with an angular velocity wgp,



then, by transforming to a new set of axes,
(xX'y’z’), which rotates around the z axis with the
same angular velocity wgp, we render Bgre
constant in that frame:

Lab Frame (xyz) Rotating Frame (x’y’z’)

> '

Z,Z zZ

Brr (static)

This seems like a great way for simplifying the
problem, but it creates a problem of its own:
applying the Bloch equations naively in this
rotating frame will yield incorrect/unphysical
results. For example, in the rotating frame as
presented above, the total magnetic field B =
By+ Bgr is a static vector that
overwhelmingly along the z-axis (because
Bo-Tesla, Bre-pT). If the magnetization will
start along the z-axis, it will barely precess
about the total magnetic field and not be
excited at all:

Rotating Frame (x’y’z’)

'

Z

B=Bo+Brr

We know this from experiments to be untrue.
Before I show you how to fix this, let me give
you an analogy from mechanics that will help
you understand the issue. Imagine the earth
going around the sun in a circle:

Gravity

This can be understood by an observer in space
the following way: the Earth wants to “go
forward” but gravity pulls it “inward”, curving
its path into a circle. In effect, the Earth is
continuously “falling” into the sun, but
escaping doom thanks to its tangential velocity.
All this is all a consequence of Newton’s second
law, F=ma.

Next, imagine how things would look to an
observer standing on the sun and rotating with
it. Neglecting for the time being the weather on
the surface, the Earth would appear stationary
to such an observer:

Gravity

If that observer would try to use Newton’s law
F=ma to understand his world he would fail:
according to F=Fguiy=ma, earth should be
falling towards the sun, but it isn’t! The truth
is that when you transform to a rotating frame
you need to add a fictitious force. That is, you
need to pre-suppose a force which doesn’t arise
out of any physical source, called the
centrifugal force, to explain how it is possible
for the earth to remain stationary:



Centrifugal

Gravity

So, in mechanics when you try to understand
things in a rotating frame you need to do two
things:

1. Understand how things in the “real” frame
would look in the rotating frame (e.g., the
Earth would remain still).

2. Add fictitious forces (e.g., the centripetal
force).

A similar thing happens when you go to a

rotating frame in magnetic resonance, rotating

with the same angular velocity as the RF field:

1. First, the RF field needs to be transformed
to the rotating frame (we've done this).

2. Next, we will need to add a fictitious
"force” - field, to be precise - given by
Byt = —Wpi /7, to make the Bloch
equations work in the noninertial rotating
frame. Here, @, is a vector point along
the axis of rotation with a magnitude equal
to the angular velocity of the rotation
(we've taken |yt = WgF).

Rewriting the Bloch Equations in the
Rotating Frame: The Effective Field

Before tackling the full problem of frame
transformations, let’s talk about vectors and
how to represent them in different frames.
Imagine a vector M and two frames of
references — a static (laboratory) frame with
time independent, fixed unit vectors X,Y,2
(black), and a rotating frame with unit vectors

x',y',2' (gray):

—>YV

My,ro[

o
You can express the vector M in terms of the
unit vectors in each of the coordinate systems:

M(t) = M,x + My? + M,Z
= x,rotx’ + My,roty, + Mz,rotzl

The difference between these components is
illustrated below for the y-component of M(r)
in the original (xyz) and rotating (x’y’z’) frame:

. VA
VA
M
/ y'
— >y
M,
My,ro[
X
.

Another thing to keep in mind is that X, ¥, 2
are static and their time derivatives are zero,
while ¥',%',2" are all time-dependent with
non-zero time derivatives.

The time derivative of M can be written
using the expression M(t) = My, X' +
My 1oty + My 10t 2" and the chain rule as:

dM  dMy,or . AMy 0 AMy ot
— =ty +
dt dt * dt y dt “

dx’ dy’ dz’'
+Mx,rot E s g



simply because the unit vectors themselves
change with time. The first three components
describe the time derivative of the components
of M as they appear to change to an observer
in the xX'y’z’ frame. The last three components
have to do with the frame’s rotation. What
we're after is an equation of motion, analogous
to the Bloch equations, that will let us solve for
the components of M as they appear in the
rotating frame:

(d_M) = de,‘r'Of rd + dMy‘rot ?, + sz,rot 5
dt rot

dt dt dt

Let us introduce a vector @y (t), that can
change with time, such that its direction
describes the axis of rotation and its magnitude
the angular velocity of the rotation (in the left
hand sense):

'
X

If the rotating frame is rotating with an angular
velocity @,, about an axis given by the unit
vector N, then each of the axes of the rotating
frame precess about the vector ®=0 N . This
means each obeys a precession equation
identical (formally) to the Bloch equation:

dx’ ,
dt =T X w’rot
dy’
dt = y/ X w'r()t
dz’

=2 Xw

rot

dt

In this analogy,

x'~M
Wrot~YB

Using this,

dM B (dM)
dt  \dt /o

dx’ 3’ dz’

+Mx,rot E + My,rot E + Mz,rot E

B (dM)
dt /ot

tw,o X (Mx,rotm + My 0ty

+ Mz,rot'% )
M
= (E)Mt + Wror X M(E)
The left hand side of this equation equals
yM(t) X B(t) by virtue of the Bloch equation.
Plugging in and rearranging, we obtain

(51 oo

This is precisely the Bloch equation but with
an effective field By =B-lw,. The

additional term By; ., = —W,/7 is called
the fictitious field.

We are free to express ecither side in either
frame of reference, but should remember that

am . . . . .
(E)rot has a simple physical interpretation in
the xX'y’z rotating frame (having components
equal to the time derivatives of M as it appears
in the rotating frame), and should therefore
express all quantities in the rotating frame. For

example, if B(t) is
Bgp(t) = By cos(wgpt) X

— By sin(wgpt) y

it makes more sense to use the second
expression so we can equate the components of



both sides of our vector equation in the
rotating frame.

The above equation is true for any rotating
frame. However, in MRI, when we speak of
“the” rotating frame, we will be referring to a
frame which rotates at a constant angular
velocity @, =@y about the z-axis according

to the left-hand rule:

“The” rotating frame is one which rotates
with a constant angular frequency with the

RF field: ®,, = @y (left hand rule). For

(49 » .
the” rotating frame: ®,,, = o,

rotZ = a)RFZ .

When expressed in the rotating frame, the
components of the effective field B, ;s = B —

1 .
; W,.,+ are:

(in the rotating frame: w,, = Wpp)

If we further select wpp = 7B, = w, we are
on resonance: the RF irradiates the spins at the
same frequency as their natural frequency, .
In this case:

Bl
Byr=1|0
0

On resonance: W = @),

In the rotating frame: @, = g

If we select @, = g, , weare off resonance. We
can then define the offset Aw =@, —w,. . The

effective field is then:

B 1
| o
eft = | Aw

Y

Off resonance: wpp # wy

B

In the rotating frame: w,.,, = wypp

Clarifying Our Constants

At this point it is prudent to stop and
summarize the different frequencies we use,
their meanings and approximate magnitudes:

e wy =YBy is on the order of 100 MHz at
3T. Itis also called the “Larmor frequency”
and represents the precession frequency of
the spins around By, in the absence of
gradients and RF fields.

® w; = yBj is the magnitude of the external
RF field. It is ~uT and is the size of the
vector of the RF field, in both the lab and
rotating frame.

® wpgp is the frequency of the external RF
field — i.e., how fast it rotates in the xy
plane in the lab frame. It is usually close or
equal to wg (so Wrp~wy).

®  Wyo is the rotation frequency of the
rotating frame around the z-axis. It is
always kept equal to wgp to “transform
away  its time dependence and make it
appear static in the rotating frame.

Therefore, Wyor = Wrp~we~100 MHz.

Aw .
e = AB is the z-component of the

effective field. It is zero on-resonance, and
non-zero off-resonance. It rarely exceeds a

few hundred kHz.

The Bulk Magnetization Precesses
Around the Effective Field in the Rotating

Frame

We've seen the magnetization vector obeys the
Bloch equations in the rotating frame, only
swapping the field for an effective field,
By =B-1o,, and expressing that field in the

rotating frame basis (i.e. as it would appear to
an observer rotating with the frame). This
means M precesses about B in the rotating
frame. Starting from thermal equilibrium at
time t=0, M points along By (taken to coincide
with the z-axis) in both the laboratory and the
rotating frames, which are also assumed to
coincide for t=0:



VA VA
M M
y Y
Lab Frame Rot. Frame
X (xyz) X Xy'z)

At time t=0 (thermal equilibrium), M points along
the z-axis (same as the z’ axis) in both frames.

Now we turn on the resonant RF field in the
laboratory frame:

BRF = Bl COS(O)RFt)/.x\ - Bl Sin((l)RFt)y

This field rotates in the xy-plane in the lab
frame in the lefc-handed sense, and appears
stationary in the rotating frame. Furthermore,
if we assume our irradiation is on resonance,
Orr=0o, the effective field in the rotating frame
has no z-component:

Brr

X Lab Frame X Rot. Frame

The magnetic field B in the laboratory frame has a
large z-component and a small, rotating xy-
component (not shown to scale). In the rotating
frame, assuming Brr is on resonance (@rr=o=yBo)
the effective field is static.

The magnetization M precesses about the x axis
in the rotating frame. We can thus create any
angle we'd like between it and the z-axis,
depending on how long we let it precess and
how strong B is. Let's assume we have Brr on
for just enough time for the magnetization to
tilt to the xy plane - that is, create a 90° angle
between B and M. Deducing the motion of M
in the lab frame is now merely a matter of
transforming back to the lab frame, which
simply rotates at an angular velocity -
relative to the rotating frame. That is, M in the

lab frame performs a spiral as it descends and
rotates:

X  Lab Frame X Rot. Frame

Shown here is the trajectory of the magnetization M
in the lab (left) and rotating (right) frames. The two
frames are connected by a simple rotation.

Setting The Radiofrequency (RF) Pulse’s
(Area)=(Duration)x(Amplitude) Sets The
Flip Angle on Resonance

We see the spins will perform a rotation about
the x-axis in the rotating frame at a frequency
®1=YB. Note this is not the same as oy, (one
is the amplitude of Bgr, the second is its
oscillating frequency). After a time T, M will
have created an angle a =z =yB7:

|Bre(t)|

Bi :>

Rot. Frame

Note that
a = y(amplitude of RF)x(duration of RF).

This relation is true only on resonance, when

Orr=00, where Ber has no z-component.

To “tip” the magnetization onto the y axis, we
walit a time ty such that:

a=yBty =7,

or



—_1
t90 T 4yB

In the original laboratory (unrotating) frame
the spins execute additional motions, but the
important thing to realize is that a spin which
is in the xy plane in the rotating frame, must
also be in the xy-plane in the laboratory frame
(although where in the plane is a different

story).

Number Time. We've remarked that Bi max
~ 10 pT for an MRI scanner. For protons,

one would need t,, ~ 0.5 msto excite

=4
2yB;
the spins onto the xy-plane. For "C,

by =55 ~2ms.

Relaxation can be Neglected During
Fxcitation Since Most Pulses are Shorter

Than Ty, T,

Our calculations in the previous section have
shown that excitation mostly happens on the
timescale of milliseconds in MRI, which is
much shorter than T, T, Hence, to an
excellent approximation, relaxation effects can
be neglected for most pulses and most tissue
types in the body. We will make some remarks
about the effects of relaxation later on but, in
general, will neglect it unless specifically stated
otherwise.

The Phase of the Pulse Determines the
Phase of the Excited Magnetization

We have so far modeled Brr in the lab frame as:

B, cos(—a)[t)
B =| B sin(~a,r)
0

' To prove this, use B = R (a)[t)B(l"b) , where
R, (a)rt) is a RH rotation matrix about the z-axis by an

angle & =@,z (the rotating frame rotates with a left

Since we have full control over the x and y
component we have no problem modulating
both Bi(t) and adding a time-dependent phase
d(t) to the RF field:

B, (t)cos(—a){t+¢(t))
B =| B (¢)sin(-a.z +¢(r))
0

In the rotating frame, this will look like this':

B, (t)cos(¢(t))
B —| B (t)sin(¢(z))
0

Let's keep Bi(t) and ¢(t) fixed. Then the
constant phase ¢(t)=(y is called the phase of the
pulse, and is equal to the angle the RF field
makes with the x-axis. determines where the
RF pulse will point in the transverse plane.

The phase of the magnetization is defined
as the angle made by the transverse component
of the magnetization vector (i.e. its projection
on the xy plane) with the x-axis.

Because the magnetization gets tipped at
right angles to the RF field following the left
hand rule, the relation between the pulse's and

magnetization's phase ¢, is given by:
s
bm = brr + 3.

The standard notation for a constant RF pulse
then assumes the form a,, where a is its flip

angle and ¢ its (constant) phase. The following
conventions are also used:

"x": prp = 0°
"y": prr = 90°
"—x":pgr = 180°

handed rotation and angular frequency ®g; in it, it appears
the RF field rotates at the same angular frequency but in
the opposite direction). There is a bit of algebra and
trigonometry involved but the proof is straightforward.



"=y ¢rr = 270°

Some  examples are  shown  below
(magnetization is assumed to start out from z,
and is the blue vector; the RF is the red vector):

(90°)x pulse (45°)x pulse

4 4

90°

x x
Magnetization in  yz Magnetization in yz

plane (phase: 90°) plane (phase: 90°)

(90°).y pulse (45°)y pulse

z z

459
909

X X

Magnetization in xz Magnetization in xz

plane (phase: 0°) plane (phase: 180°)
Flip Angles < 90° Minimize Duration &
Decrease Power Deposition at the Cost of
SNR

An excitation pulse need not tip the spins by
90°, and can create any angle o between M and
the main By field. The disadvantage of this is
its reduced signal: in our simple model we've
seen that the voltage,

__ﬂdMy
2R dt

is proportional to the time derivative of M,
(reorienting the coil would introduce the time
derivative of M, and would not change our
conclusions). The magnitude of M, will be

% We will see later on this decrease is actually mitigated in
most sequences where pulses are applied rapidly (on the

proportional to the flip angle. Hence, the signal
itself will also be proportional to sin(a) and
decrease with the flip angle”:

signal oc M, M, oc sin(ar).

On the other hand, the pulse's duration,

is proportional to the flip angle and decreases
linearly (assuming we keep B, fixed).

Another advantage of short pulses is that
they have reduced specific absorption rate
(SAR). Some of the RF energy is absorbed in
the patient’s tissue and causes undesired
heating. The amount of SAR is proportional to
the square of B, and the pulse’s duration:

constant
pulse,
duration t,

* (24

, B
SAR e ['|B,(e)[ e = B, =7‘.

We observe SAR reduces linearly with the flip
angle. The amount of SAR is limited by most
modern scanners' hardware based on our
understanding of the effect of SAR on
biological tissues. Modern RF coils deposit
power on par with modern cell-phones and are
generally considered safe as long as guidelines
are observed.

OFF-RESONANT EXCITATION:
THE CONCEPTS OF BANDWIDTH
& SELECTIVE EXCITATION

The z-Field can vary as a Function of
Position, Which Leads to Non-zero
Offsets in the Rotating Frame

So far our approach has been to make By
disappear by moving to a rotating frame at a

order of, or faster than T:) and don’t afford the
magnetization enough time to return to thermal
equilibrium before the next excitation.



frequency ®, =w,=yB,, in which the

rot

fictitious field negates By completely:

lab € Dyt
B =B, B =B~ 2= =0.
However, when By varies as a function of
position, B) =B, (r), it is impossible to make
the z-component of the field disappear at every
point:

B‘EW)) :BO (r)_)Bi{’f) :Bo (r)_w'Tw?ﬁO .

Some sources of variation could include:

1. Imperfections in the main magnet field.

2. Susceptibility artifacts in the sample, in
which  the external field induces
microscopic magnetic moments which
themselves distort the main field (in all
directions, but predominantly in the
direction on By).

3. Some patients might have metal implants
which distort the magnetic field — again, in
many directions, but their effect is most
pronounced along Bo.

4. Often we intentionally create these
inhomogeneities, as is the case with
gradient coils, in which we create a linear
dependence of the z-field on position:

B, > B +G(t)r.
For example, when a gradient is turned on,

B(Azb) - B

z 0

+G(t)r > B =G(t) r,
and, when the RF is turned on:

B

1
5=
G(t)-r

If we have some form of spatial inhomogeneity
due to hardware imperfections/susceptibility
artifacts, we could write it as

B") = B, + AB(r),

z

and in the rotating frame its z-component will

be

z z

B = Bl 2= = AB(r).
v

These effects are all cumulative: If we have both
imperfections in By and a gradient turned on,

the effective field will be:

B, = 0] .
G(t)~r+AB(r)

Number Time. A gradient will create a
range of frequencies given by #GAz over a
spatial region of width Az. Across a 1 mm
pixel, this will be 4GAz ~ 420 Hz for G=10
mT/m. Susceptibility artifacts at 3 Tesla
will create spatial variations across the head
on the order of hundreds of Hz, mostly in
regions where air-tissue interfaces exist such
as the prefrontal cortex, close to the oral
cavity or ears, and so forth.

In the case the z-component is not completely
zeroed out, we must analyze and understand
the case for which

The quantity AB will be referred to as the offset
of the spins. Since we will be looking at a
specific point in space we can assume AB is just
a constant.



All Pulses Are Selective With a Finite
Bandwidth (BW) Given by ~ 1/yB,
It is fairly simple to divide our analysis into two

extreme cases: in one, AB<<B;, and we can
neglect it, obtaining:

We thus recover the previous case in which we
excite the spins “as usual”, as if they were on
resonance. On the other extreme, AB >> B,

and the RF excitation will have no effect,
resulting in no excitation. We can guess and
extrapolate between these two extremes, saying
that there is a cutoff to the effect of B; when
Bi~- AB . In other words, a range of offsets AB
~B, will be excited. This is known as the
bandwidth of the pulse: the range of offsets (or
frequencies) it will excite.

The bandwidth (BW) of a pulse is given by
the range of frequencies it affects. For the
excitation pulse we’ve just discussed,

BW = xB,.

This can also be understood graphically, by
plotting the precession cone of the spins about
the effective field, starting out from thermal
equilibrium (i.e. M along the z-axis):

AB=0

Befr points in the xy-plane — say,
along the x-axis in this example
- and the spin precesses in a
circle in the yz plane.

AB<<B;

Berr starts tilting up in the xz
plane, causing the rotation
cone to start “folding”.

AB=B.

In this “dividing case”, the x-
and z- components of Besr are
equal. The “precession cone”
just touches the xy plane.

AB>>B,

Ber now becomes close to the z-
axis. The precession cone
becomes very narrow: even if
we wait for a long amount of

PN

time the spins will not stray far
from the z-axis.

A Hard Pulse is One With High Peak
Power And An “Infinite” Bandwidth

When we are interested in flipping all of the
spins onto the xy-plane regardless of their offset
we must create a bandwidth larger than the
range of offsets in our sample. Since
BW = #B,, this means we need to have a very
high B,>>range of offsets in our sample. The

duration of an (on-resonance) 90°-pulse,
—_1
to =55 -

We see that hard pulses are short and have a
high peak power. Such pulses are called hard
pulses in MR jargon. The “ideal” hard pulse is
one for which B—0, duration—=0, such that
yB; - (duration)= the desired flip angle.



A Constant Pulse's Excitation Profile

Let us explore what happens when our pulse is
not “hard” and has a finite duration. We’ll look
at a 90° pulse, although our conclusions will
apply to any pulse flip angle.

For a 90° flip angle, the duration must be

1
tgg = E
However, as previously discussed, this only
ensures a 90° flip angle for spins when the
offset is zero: AB=0. As we increase AB, the
magnitude and direction of Ber and its
direction vary, and the corresponding final
position of the magnetization - assumed to start
out from thermal equilibrium along the z-axis
- varies. In fact, even if B, is applied along x,
spins not at the center do not even remain in
the yz plane anymore. The following diagram
shows the effective field and the precise
trajectory traced by the magnetization vector
during the pulse's duration, ty, for the four
cases outlined previously:

AB>>B;

Instead of these pictorial diagrams, one can
plot the components of M as a function of the
offset, AB. This is known as the pulse's
frequency response or pulse profile. Such a
response is plotted below for 4B =1 kHz
(Bi=23.5 pT), t90=0.25 ms (B, applied along
the x-axis as in the above diagrams, i.e. has 0°

phase):

#-AB (kHz)

In the above, |Mxy =./Mf+Mf. The

magnetization was assumed to have an

arbitrary magnitude of unity, and the vertical
axis stretches from £1. The dashed red lines
signify the points at which yAB =B =1kHz
, which define the bandwidth of the pulse. It is
quite clear that the concept of bandwidth has
some artbitrariness to it since the profile of M,
and M, are not sharp.

The profile of M,y actually looks somewhat
wider than M, which is a result of the
magnetization vector’s constant magnitude,

L A A A M R A

and the relation between M, and

|MAy =4,1—|Mz|2. For example, if |M,|=0.9,

then |M,|" =0.81 and |MX] =0.436. So, even

if [M| is almost unperturbed, M| might still
appear to be quite sizable, leading to its wider
profile.

Also note the extensive “wiggles” in M,y
outside the slice, indicating that some
excitation occurs even for AB>>B;. We will
deal with this in a moment by introducing

shaped pulses.



Shaping the Pulse Affects the Pulse's
Profile

Modern RF transmitters have the capability of
shaping the RF pulse, B,.(¢)=B,(¢)+iB,(z);
that is, controlling its x- and y- components.
Such pulses are called shaped pulses. For the
constant pulse we had B.=Bi, By=0. Let us see
what happens if we vary Bi(t) in a sinc-like

manner:

o Bx(kHz) ..
o Bx(kHz) .

0 time (ms) 21 0 time (ms) 21

The new pulse maintains the same peak B, and
same area (and hence flip angle) as the
rectangular pulse, but is necessarily longer
(since the negative lobes of the sinc detract
from the area). The frequency response of this
pulse can be calculated by solving the Bloch
equations numerically, yielding:

M,
W
L
Mx m
My m
|MXV

#-AB (kHz)

The response is shown using the same scaling
and plot range as the rectangular pulse for a
"fair" comparison. The dashed red lines
represent  the same bandwidth (=#B)
calculated for the rectangular pulse. The
ensuing response is significantly better-
behaved, with less wiggles and sharper
transition lines. We won't go into the theory of
shaped pulses in this course, but we will remark
without proof that for tip angles up until about
90° the profile of My, resembles the Fourier
transform of Bre(t).

The Slice’s Center Frequency can be
Shifted by Sinusoidally Modulating the
Pulse’s Phase

The pulses discussed so far excite a bandwidth
about a central frequency 4AB = 0:

kHz

However, one is often interested in simply
exciting a different region of frequencies, i.e. to
shift the response’s center:

kHz

There is a very simple way to shift the center of
the excited slice, by modulating the pulse’s
phase with a linear term. Mathematically, this
means we re adding a phase that varies linearly
with time to the pulse:

B, B, cos(w,t)
B.sr = ( 0 ) - | —B; sin(w,t)
Aw/y Aw/y

— p(shift)
= Beff



To understand why this shifts the pulse,

(shift)
off

imagine being given B! in the rotating
frame, where it rotates around the z-axis
according to the left hand rule with angular
frequency ®.. By performing a second rotating
frame transformation, into a frame which
rotates with . relative to the original (“first”)
rotating frame, we fix B, and add an additional

fictitious field:

2" rotation %1
(shift) frame
Beff | Aw  w,
Y Y

In this 2nd rotating frame the z-component has
a fixed offset. All of our previous arguments can
be repeated: the center frequency of the
excitation profile will occur on-resonance,
when the z-component is zero: Aw — w, = 0,
or:

Aw = w,.

Assuming Wyor = Wy, then Aw = yGz. The
position at which the spins will be on resonance
(Aw = w,) above condition will occur will be
determined by yGz, = w,, or

ZC_}/G

For example, if we have a G=1 mT/m gradient
on, and we want to shift the slice by 1 cm
(zc=0.1 m), we need to set . such that

w, =yG6Gz, = 2m - 4.257 kHz

Current MRI hardware enables one to control
the phase and amplitude of the RF pulse as a

3 This “trick” for shifting the pulse's profile also holds for

non-constant pulses.

function of time, making shifting the profile’s
center easy (we can generate any practical
frequency w,). It also places almost no

demands on the hardware’.
SLICE SELECTION

Often, We Are Interested in Exciting a
Single Slice

We now come to the first form of spatial
selectivity in MRI: selective excitation, in
which only a part of the sample is excited. We
will confine ourselves to the simple scenario of
one-dimensional excitation, meaning
selectively exciting a range of positions along a

fixed axis:

Without such selective excitation, an RF pulse
would excite the entire sample. Although this
can be and is sometimes done, a slice-selective
approach also has its own merits.

Applying a Pulse in the Presence of a
Gradient Will Excite a Slice

In the joint presence of a gradient and an RF
irradiation, the effective field in the rotating

B,
Beff(r, t) = ( 0 >
G(t)r

frame is:



We will assume for simplicity our gradient is
constant and turned on along the z-direction,
s0G(t) =Gz, and so:

B,
Beff(r,t) = ( 0 )
Gz

The gradient creates a linearly increasing offset
along z:

Offset  oc Pos
v=2x2Gz Lz

Z-axis

The gradient assigns frequencies to positions
via v = %Gz , and hence any pulse that excites
a range of frequencies BW =B, will, in the
presence of a gradient, excite a range of
positions given by:

Ay = BW By
7% T 6
(for a fixed flip angle)

This is, in fact, the slice thickness.

The excited slice will be perpendicular to
the direction of the gradient vector G. For
example applying the same pulse with a
gradient in a different direction - say, at 45° to
the z-axis - will excite a slice that is itself tilted
by 45°, since now our gradient will create a
linear correspondence between frequency and
the x+z=const planes:

Finally, just as the profile of a pulse can be
shifted in frequency space as a function of the
offset, thus the slice's center can also be shifted
by simply modulating the RF pulse's shape
with a linear phase.

SUMMARY: HOW TO SET A SLICE’S

POSITION

1. A slice’s width can be adjusted by
varying either the pulse’s bandwidth
(via its amplitude, B:) or the gradient’s
amplitude, G=|G]|.

2. The slice’s orientation can be adjusted
by adjusting the gradient’s orientation,
G.

3. The slice’s position along the
gradient’s axis can be adjusted by
adding a linear phase (in time) to the
pulse.

Setting the Gradient too Low Might
Distort the Slice Profile

Note there are two ways of controlling a slice’s

width, via the pulse or the gradient. There is

some freedom in choosing which one to vary;

however, several things limit this freedom in

practice:

1. The maximal magnitude of G is limited by
the hardware. For a typical human MRI
scanner, this is on the order of ~10-100

mT/m.



2. The maximal B, (and therefore maximal
bandwidth) is also limited.

3. For most pulses, one cannot simply change
B, or the pulse’s bandwidth without
changing the pulse. For example, if one
wants to keep the flip angle fixed (
a=yBT for a constant pulse), the pulse
needs to be made shorter or longer. This is
often undesirable since the timing of
events has crucial meaning in many
excitation schemes. Thus, in practice,
whenever possible G is changed before B,
is changed.

On the other hand, making G too small would

make the range of frequencies across the slice

small as well. This might interfere with the slice
profile and distort it. Shown below is the
excited region in a 2D image in the yz-plane for
three levels of inhomogeneity, for a simple
excitation pulse with a bandwidth of 4 kHz.
The offset as a function of position (=
AB(z,y)+Gz) is shown on the left, scaled to

between +15 kHz.

In the homogeneous case (top), all
frequencies between +2 kHz are excited. These
limits are clearly drawn using contour lines. In
the second example, some quadratic
inhomogeneity is added, AB(r) = a(22 +y? ) ,
with a=1 Hz/mm? and z, y given in mm. This
creates a spatially varying inhomogeneity,
which reaches 5 kHz at the edges of the image,
on the order of the pulse’s bandwidth. As a
result, the +2 kHz contour lines of the offset
AB(Z, y)+GZ get distorted, as does the slice’s
profile. In reality, this would be a pretty bad

case of inhomogeneity — one does not
encounter this magnitude of effects over the
entire head, although some local regions (such
as the prefrontal cortex close to the sinuses) can
exhibit some large local inhomogeneities. This
would cause the slice profile to be distorted
close to the sinuses.

The bottom case represents a case of severe
inhomogeneity, with a=3 kHz/mm® and a
maximal inhomogeneity of 15 kHz at the

image’s edges. The resulting contour lines are
even more distorted, and the “slice” now
becomes a circle! These effects are extreme and
not encountered in reality.

Excited slice

Offset
AB(z,y)+Gz

(corresponding
to M,<0.5)

[}
<=

I

No inhomogeneity

Some inhomogeneity

Severe inhomogeneity

In practice, one is given a pulse, and then the
only way to control the slice’s width is by
controlling G. One must then be careful not to
set G too small so as to generate spatial
distortions (or at the very least be aware of
them and account for them during
post-processing somehow).

SIGNAL ACQUISITION

The Acquired Signal in MRI s
Proportional to the Transverse

Magnetization

The expression for the signal we've derived
previously depends on the magnetization in the
lab frame:



dM (r t)
Vrec = _f rec( ) -
body

This expression relies on the magnetization in
the lab frame. It is possible to relate this to the
magnetization in the rotating frame, given the
particular way signals are processed and

digitized:

sin(mot)

LPF |- ADC >

channel

Urec

LPF | ADC J» s

channel

cos(mot)

This is done in the appendix and is quite messy.
Interested readers are referred to the appendix.
We here simply state the result:

s(t) « w, f B(rec)(r)M“’t(r )dv
body

where
B)g/ec) (r) = B)Erec) (r) + l'B}ETeC) (r)

is a complex number, with its real part equal to
the x-component of the receiver field and its
imaginary component equal to the y-
component of the receiver field".

The MRI scanner has a large body coil that
is used for reception, shaped like a “birdcage”.
It creates a uniform, static field in the (xy)
plane:

“ This is the field generated by the receiver coil
when you put unit current (1 Amp) through it.

Local coils

In this case, B,g,ec)

is approximately spatially
uniform throughout the body, and one can

approximate:

Mt tav
body

s(t) o« wq

Often, reception is done with a coil that picks
up signal only from a limited region in space
(the local coils in the picture above, designed to
acquire signal from the chest and the knee). In
that case, By, will be localized to the region
being scanned. We will often make the
approximation to 0" order that the field is
constant. For example, for the knee coil:

s(t) % wg f Mt (r, £)dV

knee

We will make use of the spatially varying
profile of the coils when we come to talk about
parallel imaging, but until then, we’ll keep the
“spatially uniform acquisition” assumption
throughout the upcoming lectures.



APPENDIX

Proof of the Signal Acquisition Expression

Armed with our expression for the time course
of the magnetization in lieu of RF pulses,

we turn to deriving a usable expression for the
acquired signal (voltage) in our receiver coil.
We've seen in Lecture 3 that, for any receiver
coil,

dM(r,t)
vmr = _J.bodwa (1') ’ 7

= — |:B(Vﬂ) dMX +B(rz»r) dM;/ +B(,H) sz :|dV
body * J

dv

z

drt drt dt

Here M and B.. are both measured in the
laboratory frame. First, the time derivative of
the z-component of the magnetization, which
changes with a time constant T (on the order
of Hz) is much smaller than the x- and y-
components, which precess with a frequency of
MHz. Therefore, we can neglect the z-
component to an excellent approximation:

o dM o aM
v, m—| | B =—=4+B" —L 4y
body dt dt

(Assuming T} is slow compared to ;")

We defineM,, =M, +iM,, B, =B, +iB, and

note:

By, = (8, -im,) (0, i
=BM,+B M, +i(B.M,~M,B,)

SO
B.M, +B M, =Re(B,M,).

Therefore:

> This assumption needs to be modified when studying
solids with very short Tas (on the order of microseconds).

(lab)

5 4M,
By —2—dV .
dt

Vpe =~ Re
body

Since we have an expression for M,y in the lab
frame, we can differentiate it. Since o varies
much faster than T, and YG(t)-r, we can neglect
both terms and obtain’:

dMSab) (r,t)
dt
(Assuming @, is faster than any offsets)

~ —l'a)l)M'g,ab) (l‘,l’) s

v, =, Re.[ Bgec) (r)Miy]“b) (r,2)dV

i
body

The interesting signal is modulated by a rapid
(-100 MHz) phase term, ¢, which is
"hidden" inside M,,. It is beneficial to get rid
of it for both convenience, as well as to lessen
the burden on the analog-to-digital converter
(which needs to deal with slower varying
signals). This is called demodulation. To do
this, Vi is split into the identical copies, with
one multiplied by cos(ewot) and the other by
sin(®ot), and each is then passed through a low-
pass filter (LPF)

sin(mot)
LPF H ADC |éc[jf:llmel
vI'EC
PF }-{ADC >
cos(ot)
Using

However, such short Tbs are rarely observed in MRI since
they lead to signals well below the noise levels.



iwyt —iwyt

+
cos(—amyt) =% 2"
—imyt iyt
sin(—a)()t) =¢ % ¢

and writing

JYA) (r,t)= |M)E)l'ab) (r,t)| o ()

Xy

By (rar) =[B)7 ()]
we obrtain, right before the LPF:

_o ;
(yﬂ’[ )im -2 Re Il\n)dyl Bxy

X[ei[wo"*%/*?’n] + e"[*wo’ﬂﬁ,w*{ﬁn] :|dV

M, |

Xy

(yrw )?‘L’ = % Re

M|

B,

><|:€7'[—’Uo'+¢,w -] _ ei[wof+¢,\/—¢n]j|dv

body

Since the LPF removes the fast changing
component —@t +@,, — @, , we obtain, after the
LPFs:

(z/m )im = % Re L

body

i|B,||p, |t ay

[} .
B _TO body BXJ’ MX} Sln(w0t+¢M _¢B )dV
(”m )“’ - _%ORG body Bxy Mxy ei[wUH%F%]dV
—_®
R [ e M, cos(a)ot + @y —¢B)dV

We then form the complex signal in the
computer:

S(t) = (vw )m +i(vw )im

__ o (rec) (lab)
- 2 jbody B MX?

. ei(%’*%u /] )él’V
_ |M(ru()
Xy

Since |M g“h) , and since the rotating

and lab frame magnetization vectors are related

via Mg”) (r.2)= qu"‘b) (r,2)e ™, we can

simplify:

s(£)c o, Lody BY) (0)M ) (r,1)dV

We've omitted the constant of proportionality
since the actual measured signal's magnitude
will depend anyway on the electronics,
amplifiers and so on.



