LECTURE 5

BASIC IMAGING
Lecture Notes by Assaf Tal

The current lecture concerns itself with spatially
encoding information: how is it that we’re able to
image the spatial positions of our spins? We are
going to go over the two fundamental approaches
for doing so, called frequency encoding and phase
encoding. Once we provide an intuitive
understanding of those, we will introduce a
mathematical formalism called k-space that unifies
them. The next lecture will then delve into the
mathematical process of reconstructing data
acquired in k-space.

FREQUENCY ENCODING

We Cannot Resolve Our Signal Spatially
Without a Gradient

Since MRI happens in the near field we have no
spatial control over our fields. As we’ve previously
seen, the acquired signal has no dependence on
position:
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We could get some selectivity by shaping the field
of our receiver. For example, in the early days of MR
people would acquire a signal by placing a coil close
to the object of interest:

By placing a coil close to the rat’s kidney, one can pick up
signal mostly from the kidney where By is strongest.

This is highly inefficient; The reception pattern is
spatially  inhomogeneous  (since B s
inhomogeneous) and it requires one to

mechanically move the coil (or subject) to change
their sampling point.

In MRI one takes a different approach: first, the
receiver’s field is made as homogeneous as possible
over the object, and gradient fields are used to
spatially resolve our signal through one of two
methods: frequency encoding or phase encoding.
We describe them in order.

Intuitive  Description of Frequency
Encoding

Imagine exciting the spins in the object onto the xy-
plane. In the absence of a gradient, all the spins see
the same field and precess at the same frequency.
Imagine being able to “listen” to their frequencies:
you would hear one well defined tone.
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Once you turn on a gradient, say, along the z-axis,
we generate a different frequency along each point
on the z-axis. You can imagine each position being
assigned a different “key” on a “piano”:
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The intensity we “hear” at frequency - at each piano
key - is proportional to the number of spins at that
position. Therefore, by “listening” to the signal we
can deduce the distribution of spins along the z-
axis. This is the basic idea behind frequency
encoding. The image obtained would give us a
projection of the density of spins on the z-axis:
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By changing the direction of the gradient we alter
the axis of projection, which is parallel to G:
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The gradient, G, can point in any direction in space,
meaning we can create a projection of the 3D spatial
distribution of our spins along any spatial axis. For
example, G=(G,, Gy, 0) points along an axis in the
xy plane which is titled by 45° relative to the x-axis.

The Fourier Transform

We will delve into the math next lecture, but I will
just remark that, while our ear can naturally separate
a signal into its frequency components, this is not a
trivial macthematical operation. For example, here is
a signal that is comprised of three frequencies — 10
Hz, 17 Hz and 37 Hz — at relative amplitudes 1:2:3.
Few people would be able to deduce this
information just by looking at the signal:
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There is, however, a “magical box”, called a Fourier
transform, which can take a signal such as the one
above and spit out a functon that describes its
frequency content:
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Each peak signifies a separate frequency
component. They are located at the respective
frequencies (10, 17, 37 Hz) and their intensities are
at a 1:2:3 ratio.

After acquiring a signal in the time domain in
the presence of a gradient, a Fourier transform
(FT) is applied to separate it into its frequency
components. The resulting signal in the
frequency is a 1D projection of the 3D object,
along an axis parallel to the gradient G.

The Frequency Encoding Pulse Sequence

The frequency encoding experiment can be
described with a pulse sequence, which is a diagram
indicating the timing and amplitudes of the RF and
gradient channels, as well as delays and acquisition

blocks:
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Left: pulse sequence depicting a volume excitation of the
entire sample (i.e. not a slice selective excitation),
followed by frequency encoding along z. This will create
a 1D projection of your object along the z-axis. Right:
same sequence, only with frequency encoding along y.
This will create a 1D projection of the 3D object along
the y-axis.

Multiple Frequency Encoding Scans Can
Be Used to Reconstruct an Image Via
Projection-Reconstruction

Although it might be unclear how to do this, the
reader might feel that, given 1D projections along
enough axes, one could infer the 3D spatial
distribution of spins in the sample. This is correct,
and is known as projection reconstruction. This is
how Computerized Tomography (CT) scanners
work. Some MRI experiments do use this approach,
the most famous being the nobel prize winning
paper' by Paul Lauterbur which first introduced this
concept and kickstarted the MRI field, where the
first figure shows projections of two test tubes filled
with water:

! PC Lauterbur, Nature 242:190-191 (1973)

The reader is encouraged to dig up the paper and
enjoy this piece of scientific history in the making.

PHASE ENCODING

A Precessing Spin Has a Phase

The phase of a precessing spin is defined as the
phase its projection on the xy-plane makes with the
X-axis:

Left: the phase of a spin in the xy-plane is the angle it makes
with the x-axis. Right: for a spin not in the xy-plane, one
examines the phase its projection on the xy-plane makes with
the x-axis.

One can think of this mathematically as follows:
suppose you are given a magnetization vector

Its projection on the xy plane is the two dimensional
vector

One can form the complex quantity
- Y i .
M, =M +iM,= M, |e”. The phase ¢ of this
quantity is precisely the phase of the spin.
A spin precessing with a constant angular

frequency o for a time ¢ will accumulate a phase:
p(t)=cr.

If @ is time dependent, one must break down the
time into small intervals Az during which @ is



approximately constant, and sum up the phase
contributions from each:

p=o(t,)At+o(t,)At+...0(t, ) Ar .

As Ar —0 this becomes an integral:

()= o(r)dr'.

Precession in the Presence of a Gradient
Creates a “Spin-Helix” Along The
Gradient Axis

Once a gradient is turned on, the frequency
becomes spatially dependent, and so does the phase
of the spins. For a z-gradient, @ =yGz and:

#(t)=yGazt .

One should visualize this as a “helical winding” of
the spins along the gradient axis:
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In the presence of a z-gradient, the spins precess with
a frequency ®w=yGz which induces a linear phase
0(t)=yGzt, imparting a helical shapre to the tips of the
magnetization vectors as time progresses.

The Principle of Phase Encoding (PE)

Imagine having a different density of spins at two
points, A and B, along the z-axis. Our task is to
deduce the density of spins at the two points, Ma
and Msg:
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By exciting and acquiring, the signal we would
measure would originate from both points equally,
and would lack any spatial selectivity:

socM +M,.

We now run a second experiment, in which we
apply a gradient just for long enough for the spins
to go out of phase (let’s assume for simplicity that A
corresponds to z=0, so the spin there is stationary):
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At this point when we acquire a signal, it will be
proportional to

s, c M, —M,

By adding and subtracting the two experiments, one
can extract just the signal from A, or just the signal
from B:

s +s, =M,
s —s, =M,

This idea can be extended to more than just two
positions and more than one dimension: by
petforming multiple experiments, creating a
unique phase distribution in each experiment
(using the gradients) and taking linear
combinations of those experiments, the signal
from multiple points in the sample can be
recovered. That is the principle of phase encoding.



In terms of pulse sequences, the two
experiments would look like this:
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The striped gradient shape indicates that is a phase
encoding gradient, which should be incremented by
some fixed amount between successive phase
encoding steps.

In the above example we needed 2 experiments
to phase encode two spatial points, A and B. In
general, one would need N experiments to retrieve
N spatial points. This is true even if the points are
in 3D.

Number time. The human head can be
enclosed in a box about 20x18x16 cm. If we
wanted a spatial resolution of 1 mm?, we would
need 200x180x160~6-10° voxels, which would
require about half a million scans using phase
encoding! If we also wait for the spins to return
to thermal equilibrium a time ~ T ~ second,
this will take ~107 seconds to complete, which is
~100 days! As the sole method of imaging, phase
encoding is unsuitable for high resolution
spatial imaging.

The Origin of the Point Spread Function

Imagine now we were to repeat the above phase
encoding experiment, but allow for a continuous

distribution of spins, M,,(z), right after excitation.
It’s obvious that adding and subtracting the two
experiments would indeed give us Ma and Ms, but
they would be “contaminated” by signals from spins
from other positions, which would not cancel out
completely. The amount of contamination would
depend of course on the exact form of Myy(z).

Phase Encoding is Often Combined with

Frequency Encoding and Slice Selection
along Orthogonal Axes

To save time, frequency and phase encoding are
often combined: a single frequency encoding
experiment — which produces a 1D projection — is
repeated with phase encoding along an orthogonal
axis, all inside a thinly excited slice. In terms of pulse
sequences, we might have:
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Frequency Encoding is “Fast”, Phase
Encoding is “Slow”

To produce a 2D image with resolution NxN,, we
can use frequency encoding along one axis (say, x)
and phase encoding along the other (say, y). We will
need a total of Ny scans to acquire the full image,
since phase encoding requires one scan for each
point it wants to “separate” from all of the others.
The Ny points along the frequency encoded axis are
for “free” We'll get a better grasp of this using the
mathemartical formalism of k-space.



THE IMAGING TOOLBOX

Summary: How to Spatially Encode an

Image

All methods of spatial encoding fall into one of four

categories:

1.

Frequency encoding, by which positions along
a particular axis in space are encoded with
different frequencies (w = yG - ) which are
read out in one-shot and then separated using
a Fourier transform.

Phase encoding, by which the phases of the
spins are changed in each excitation in a
manner which lets us separate the signal from
different positions.

Selective excitation, by which a frequency
selective pulse is applied in the presence of a
spatial gradient. The pulse, which excites a
range of frequencies, will excite a range of
positions along the gradient’s axis. This
effectively excites a 2D “slice”. By exciting
different slices each time, one can in theory
deduce the 3D distribution of spins in the
body.

Sensitivity encoding, by which we use the fact
that a small-enough coil only picks up a signal
from a localized region in space. By using
multiple coils, or perhaps by moving a single
coil around and exciting and acquiring signal
from different positions, we can uncover the
spatial distribution of spins in the body.

The first two approaches are by far the most

common. They only require the ability to turn on

and off and manipulate gradients, which is readily

available to us. They are often combined with the

last two approaches; for example, using multiple

receiver coils we can accelerate the imaging process,

an approach called Parallel Imaging.



