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Vectors And Matrices 

A Vector In 3D Is Specified By Three 
Components 
A vector is a geometrical entity that can be thought 
of as an “arrow” originating from the origins. It 
can be specified in terms of its projections on the 
x, y and z axes: 
 

 
 
Vectors can also be two dimensional in, say, the xy 
plane: 
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Vectors can be added and multplied by a scalar (a 
number) in the trivial way: 
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A Vector’s Components Change In 
Different Coordinate Systems 
It’s important to realize that a vector is a 
geometrical quantity which remains unchanged as 
we transform to a different coordinate system. 
What will change are its components (i.e. its 
projections on the axes of the new system): 

 

 
Usually it is obvious from the context which frame 
of reference we are discussing (if there is even more 
than one), so usually the frame of reference is not 
mentioned over and over again.  

Vector Magnitudes & Unit Vectors 
The size (or magnitude) of a vector in terms of its 
components is given by 
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A unit vector is a vector with unit size: 1v . 

Unit vectors are denoted with a hat: v̂ . One 
usually defines three unit vectors along each of the 
coordinate axes of the frame of reference: 
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Rotations 

Rotation Matrices 
A simple 2D rotation matrix in the 2D plane is: 
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ŷ

ẑ
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If we apply R() to a vector v we will rotate it by 
an angle  clockwise. For example, if v=(1,0) starts 
out along the x-axis, then R(/2)v=(0,-1) is rotated 
by 90 clockwise and points along the –y axis. 
 

 
 
One can equally construct a counter-clockwise 
rotation by simply taking -: 
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It is important to state clearly whether a 2D 
rotation is clockwise or anti-clockwise.   
 A 3D rotation is specified via three quantities: 
1. The axis of rotation, given by a unit vector 

 ˆ , ,x y zn n nn . 

2. The angle of rotation, . 
3. Whether the rotation is right-handed or left 

handed. 
A rotation is right handed if, when you place the 
thumb of your right hand along the axis of 
rotation and curl your fingers, the fingers curl in 
the direction of rotation. Likewise, a rotation is left 
handed if, when you place the thumb of your left 
hand along the axis of rotation and curl your 
fingers, the fingers curl in the direction of rotation. 
 

 
 
 
The general right-handed 3D rotation matrix is: 
 
 

     
     
     

2

2

2

ˆ ,

1 1 1

1 1 1

1 1 1

x x y z x z y

y x z y y z x

x z y z y x z

R

c n c n n c n s n n c n s

n n c n s c n c n n c n s

n n c n s n n c n s c n c



     

     

     



      
 

      
       

n

 
where ccos, ssin. For example, a right 
handed rotation about the z-axis by an angle  is 
obtained by setting  ˆ ˆ0,0,1 n z : 
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For example, if v=(1,0,0) points along the x-axis, 
then    2ˆ, 0,1,0R  z v  points along the y-axis: 

 

 
 

Rotation At A Constant Angular Velocity 
A vector rotating at a constant angular velocity 
increments its angle (around the rotation axis) at a 
linear rate, so 
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The constant of proportionality, , is called its 
angular velocity and has units of radians per unit 
time. For example, 
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means the vector completes two circles in one 
millisecond.  
 Let's take a concrete example. If we start out 
along the x-axis at time t=0, then: 
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It this vector rotates at a constant angular velocity 
 around the z-axis (a RH rotation), we can write  
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Complex Numbers 

A Complex Number Has A Real And 
Imaginary Part 
A complex number is a number of the form 
z x iy  , where x and y are real numbers and 

1i   . For example, z=4, z=5i and z=-3+2i are 
all complex numbers. 

 Complex numbers are added "component-
wise", so 
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They can also be multiplied: 
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Since 1i   , then 2 1i    and 
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The complex conjugate of a complex number z 
=(x+iy) is denoted either with a bar z  or an 
asterisk *z , and obtained by replacing i with -i: 
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The magnitude of a complex number is defined in 
a similar manner to that of a vector: 
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Note that  
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Two complex numbers are equal to each other if 
and only if their real and imaginary components 
are equal. So, if 1z  1 1 1z x iy   and 

 2 2 2z x iy  , and 1 2z z , then x1=x2 and y1=y2. 
 Complex numbers have some pitfalls you 
should watch out for. For example, 2 2z z , 

which can be seen by taking z=i, for which 2 1z   
but z2=-1.  

Complex Numbers As Vectors 
We can think of complex numbers as vectors in 
the 2D xy-plane: 
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This geometric interpretation lets us assign 
meaning to some of the quantities we spoke of 
before. For example, conjugation can be thought 
of as mirroring the number about the x-axis, since 
we flip its imaginary component: 
 

 
 

The magnitude of the vector is simply the 
magnitude of z: 
 

 

Euler’s Identity 
Euler’s identity says that 
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It’s very very useful in many fields of applied 
mathematics. First, a nice trick: 
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This involves all of the most important notions in 
mathematics in one line (e, , 1, 0, +, i, = and i). 
You can also use Euler's identity to prove all sorts 
of trigonometric identities. For example, note that: 
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Use Euler's identity on both sides and obtain: 
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Equating real and imaginary components gives two 
famous trigonometric identities:  
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Just as we can go from ei to sines and cosines, we 
can also go the opposite way: 
 

cos sin

cos sin

ix

ix

e x i x

e x i x

 

 
 

 
We can solve for cos(x) and sin(x) by adding and 
subtracting, obtaining: 
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Magnitude And Phase 
If we denote by  the angle made by the complex 
number z and the x-axis, we can use basic 
trigonometry to write it as: 
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We can rewrite the last line using Euler's identity: 
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