
 

 

Lecture 4 

Excitation & Acquisition 

Lecture Notes by Assaf Tal 
 
 

To Measure A Signal, Spins 

Must Be Excited 

The Static Nuclear Magnetic Field Is 
Too Weak To Be Reliably Detected 
We’ve previously calculated the bulk magnetic 
moment of 1 mm3 of water in a 3 T magnetic field 
and found it to be about |M|~10-8 J/T. Imagine 
this voxel is inside the human body and must be 
detected in a coil wrapped around the body – say, 
20 cm away from it. The magnetic field of the 
voxel is dipolar 
 

   


 
 0

3

ˆ ˆ3
4 r

M r r M
B r  

 
If we consider a sphere of radius r around M, the 
field will be maximal at the poles: 

 
 
where its value will be (putting r=0.2 m, M=10-8 
J/T, 0=410-7 N/A2): 
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This is an incredibly small magnetic field. The 
extremely weak magnetic fields produced by neural 
currents are 1-2 orders of magnitude larger, and 
even those require extremely specialized hardware 
based on super-cooled magnetic field detectors 
known as SQUIDs. These are used in 
magnetoencephalography (MEG) machines, but 

they are not sensitive enough to detect the sort of 
signals we’re interested in. It is possible to 
construct sensitive enough detectors, but even if 
we put aside the engineering complexity and cost 
of these in addition to the MRI magnet itself, we 
are still faced with furhter problems:  
 How can we separate the tiny field created by 

the nuclear spins from the much larger sources 
of magnetic fields created by other 
phenomena in the body, e.g. neural currents?  

 And how can we, by detecting the magnetic 
fields outside the body, deduce the 
distribution of spins within the body? That is, 
can we image M(r) by measuring B(r) outside 
the body? These sort of problems are known 
as inverse problems and are often incredibly 
difficult to solve properly (the same issue 
plagues MEG).  

Is there a better way to detect the MRI signal? The 
answer is yes, and it is linked to the precession of 
spins around the main B0 field. 

Precessing Spins Induce Measurable 
Currents In The Receiver Coils 
The R in MRI stands for resonance. As we’ve 
remarked previously, any spin will precess about a 
constant magnetic field. In particular, if we place 
the spins in a static, strong magnetic field – say, 
the 3 Tesla field of a typical MRI scanner – it will 
precess. For a hydrogen nucleus, this precession 
frequency would be 
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Using a coil and the law of reciprocity we can 
measure the time-depdendent flux induced by the 
spin. This dynamic measurement will create a 
significantly larger signal than a static one. We are, 
however, faced with a paradox: at thermal 
equilibrium, the bulk magnetic moment is parallel 
to B0, and hence the precession is “degenerate” – 
M remains static (even though the microscopic 
moments, m, will precess). For us to observe true 
precession, M must make some non-zero angle 
with B0: 
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Creating such an angle is called excitation. Putting 
that aside for a moment, let’s calculate the voltage 
induced in a coil put around the precessing spin 
via Faraday’s law and the law of reciprocity. Here 
we take a  wo circular coils of radius R in the xz 
and yz planes, with a point magnetic moment 
placed at the origin and performing some rotation 
as a function of time: 
 

 
 
The components of the precessing spin have a 
sinusoidal time dependence: 
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Remember that the law of reciprocity tells us that 
the voltage induced in the coil can be calculated 
via 
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where Brec is the field created by a unit current the 
loop at the position of the magnetic moment (at 

the origin). The expression for the magnetic field 
created by a loop of current at its center is well 
known from basic magnetism: 
 

 
 

where R is the ring’s radius, I the current, and n̂  a 
unit vector normal to the plane of the ring. We 
take unit current (I=1) and so: 
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This is a small but detectable voltage level with 
today’s electronics, and this is the basis of signal 
reception in modern MRI. The smaller the radius 
of the coils, R, the better: always build coils that 
are as small as possible! Furthermore, the signal is 
proportional to =B0, and increases with B0 
(although an exact analysis of the SNR will await a 
later chapter). 

The Spins Can Be Excited 

With A Resonant RF Field 

A Small RF Field Can Have a Large 
Effect if it is Resonant 
The discussion of the previous section has shown 
that, in order to induce non-zero voltage, we must 
tilt the magnetization vector away from 
equilibrium and have it precess. Indeed, the basic 
MR experiment can be described as follows: 

Number Time. For 0=410-7 Vs/(Am), 
=2127 MHz for protons at 3 Tesla, R = 15 
cm (head coil), and M0 = 10-8 J/T (previously 
calculated magnetization of 1 mL of water), we 
get 30 V, around the right order of 
magnitude for the voltages detected in 
magnetic resonance. 
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At thermal equilibrium, M and B0 
are colinear, and no precession is 
observed. 

Only by creating some nonzero 
angle  between M and B0 – that 
is, only by exciting M - can we 
observe precession. 
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 Thermal Equilibrium: At thermal 
equilibrium, the spins are aligned along B0 
and do not precess.  

 Excitation: The spins are somehow excited, 
that is, tilted to some angle  with respect to 
B0. This usually happens quickly and 
relaxation can be neglected. 

 Precession & Detection: Once tilted, they 
precess and give off a time dependent 
magnetic field. The magnetic field induces a 
voltage in a nearby RF coil via Faraday’s law. 
We can also further manipulate the spins with 
magnetic fields during this period to bring out 
particular contrast types. We usually have a 
time ~ T2 before decoherence "eats up" the 
observable precessing magnetization. 

 Thermalization: Relaxation processes kick in. 
The transverse magnetization decays with a 
time constant T2 while the longitudinal 
magnetization builds up back up due to T1 
relaxation. If we wait for a time 5T1, the 
magnetization will be back at its thermal 
equilibrium value.  

Each such block (excite-acquire-wait) is called a 
scan. It is in fact not mandatory to wait for a time 
5T1 for the spins to return to thermal equilibrium; 
we'll see later on that waiting a shorter amount of 
time has both benefits (shorter scan times) and 
disadvantages (less signal per scan). For now, 
however, we'll assume that is the case, so M is 
equal to M0 and points along the z-axis before the 
beginning of each scan. 
 We’ve already remarked that BRF<<B0. How 
can we hope to non-negligibly excite the spins with 
such a weak RF field? The answer is that we use a 
resonant field that oscillates at the Larmor 
frequency. Namely, we are going to solve the 
Bloch equations setting G=0, and 
 

   1 1ˆ ˆcos sinRF RF RFB t B t  B x y . 
 

with 

 

0RF   ("on resonance irradiation") 
 
This means we will need to solve the Bloch 
equations with a time dependent magnetic field. 
Although a numerical solution is possible, we will 
employ a frame transformation trick which will 
enable us to solve this problem without any  

Transforming to a Frame Which Rotates 
At The Same Frequency As The RF Field 
Makes it Appear Static: The Rotating 
Frame 
In the laboratory frame, this amounts to solving 
the Bloch equations with a complicated time-
dependent magnetic field. The Bloch equations are 
easier to solve in a frame which rotates around the 
z-axis with a frequency given by rot RF  . We 
tackle this as follows: consider a static (laboratory) 
frame with time independent, fixed unit vectors 
ˆ ˆ ˆ, ,x y z , and a rotating frame with unit vectors 
ˆ ˆ ˆ', ', 'x y z .  

 

 
If the rotating frame is rotating with an angular 
velocity rot  about an axis given by the unit vector 
n̂ , then each of the axes of the rotating frame 
precess about the vector rot=rot n̂ . This means 
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Schematic for a simple single experiment ("scan") 
(not drawn to scale) 

Excite the spins. This 
usually takes << T1, T2 

Wait for magnetization to "build back 
up" due to T1 before exciting again 

Let spins precess while acquiring a 
signal until it decays due to T2 



each obeys a precession equation identical 
(formally) to the Bloch equation: 
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The magnetization vector can be expressed in 
either frame: 
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For example, if B(t) is  
 

   1 1ˆ ˆcos sinRF RF RFB t B t  B x y  
 
as given above, while the rotating frame rotates at 
the angular frequency rot=RF about the z-axis 
(rot= ˆRF z ) then the components of B in the two 
frames are: 
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Note the components change, but the vector is 
frame-independent since it is a geometrical 
quantity.  
 Differentiating M(t) with respect to time, we 
obtain 
 

 

,, ,

, , ,

,, ,

, , ,

ˆ ˆ ˆ' ' '

ˆ ˆ ˆ' ' '

ˆ ˆ ˆ' ' '

ˆ ˆ ˆ' ' '

  

  

  

   

    
 

y rotx rot z rot

x rot y rot z rot

y rotx rot z rot

x rot y rot z rot rot

rot
rot

dMdM dMd

dt dt dt dt
d d d

M M M
dt dt dt

dMdM dM

dt dt dt

M M M

d

dt

M
x y z

x y z

x y z

x y z ω

M
M ω

 

 
On the other hand, the Bloch equation says 
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Equating, we obtain: 
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This is precisely the Bloch equation but with an 
effective field 1

eff rot B B ω . 

 The above equation is true for any rotating 
frame. However, in MRI, when we speak of “the” 
rotating frame, we will be referring to a frame 
which rotates at a constant angular velocity 

rot RF   about the z-axis according to the left 
hand rule. For “the” rotating frame, 

ˆ ˆrot rot RF  ω z z . 
 When expressed in the rotating frame, the 
components of the effective field 1

eff rot B B ω  

are: 
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(in the rotating frame: rot RF  ) 
 

If we select 0 0RF B     we are on resonance: 
the RF irradiates the spins at the same frequency as 
their natural frequency, 0. In this case: 
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On resonance: 0RF   

In the rotating frame: rot RF   

An Analogy From Mechanics 
Imagine the earth going around the sun in a circle: 
 



 
 
This can be understood by an observer in space the 
following way: the Earth wants to “go forward” 
but gravity pulls it “inward”, curving its path into 
a circle. In effect, the Earth is continuously 
“falling” into the sun, but escaping doom thanks 
to its tangential velocity. All this is all a 
consequence of Newton’s second law, F=ma.  
 Next, imagine how things would look to an 
observer standing on the sun and rotating with it. 
Neglecting for the time being the weather on the 
surface, the Earth would appear stationary to such 
an observer:  
 

 
 
If that observer would try to use Newton’s law 
F=ma to understand his world he would fail: 
according to F=Fgravity=ma, earth should be falling 
towards the sun, but it isn’t! The truth is that 
when you transform to a rotating frame you need 
to add a fictitious force. That is, you need to pre-
suppose a force which doesn’t arise out of any 
physical source, called the centripetal force, to 
explain how it is possible for the earth to remain 
stationary: 
 

 
 

So, in mechanics when you try to understand 
things in a rotating frame you need to do two 
things: 
1. Understand how things in the “real” frame 

would look in the rotating frame (e.g., the 
Earth would remain still). 

2. Add fictitious forces (e.g., the centripetal 
force). 

A similar thing happens when you go to a rotating 
frame in magnetic resonance, rotating with the 
same angular velocity as the RF field: 
1. First, the RF field appears stationary in the 

rotating field which “matches” its rotation 
frequency (i.e. because rot RF  ).  

2. Now we need to add the correct fictitious 
"force" - field, to be precise -  given by 

1
  fict rotB . To see, imaging a static spin 

in the lab frame, with no magnetic field. Now 
transform to a frame rotating with an angular 
velocity rot  about the z-axis. In this frame, 
the spin would appear to rotate with an 
angular velocity rot fictB   , as if there was 

a fictitious field rot
fictB 

   present along the 
z-axis.  

The Bulk Magnetization Precesses 
Around The Effective Field In The 
Rotating Frame 
We've seen the magnetization vector obeys the 
Bloch equations in the rotating frame, only 
swapping the field for an effective field, 

1
 eff rotB B ω  and expressing that field in the 

rotating frame basis (i.e. as it would appear to an 
observer rotating with the frame). This means M 
precesses about Beff in the rotating frame. Starting 
from thermal equilibrium at time t=0, M points 
along B0 (taken to coincide with the z-axis) in both 
the laboratory and the rotating frames, which are 
also assumed to coincide for t=0: 
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Now we turn on the resonant RF field in the 
laboratory frame: 
 

   1 1ˆ ˆcos sinRF RF RFB t B t  B x y . 
 

This field rotates in the xy-plane in the lab frame, 
and appears stationary in the rotating frame. 
Furthermore, if we assume our irradiation is on 
resonance, RF=0, the effective field in the 
rotating frame has no z-component: 
 

 
 
The magnetization M precesses about the x axis in 
the rotating frame. We can thus create any angle 
we'd like between it and the z-axis, depending on 
how long we let it precess and how strong B1 is. 
Let's assume we have BRF on for just enough time 
for the magnetization to tilt to the xy plane - that 
is, create a 90 angle between B0 and M. Deducing 
the motion of M in the lab frame is now merely a 
matter of transforming back to the lab frame, 
which simply rotates at an angular velocity -rot 
relative to the rotating frame. That is, M in the lab 
frame performs a spiral as it descends and rotates: 
 

 

Setting The Radiofrequency (RF) Pulse’s 
(Area)=(Duration)(Amplitude) Sets The 
Flip Angle 
We see the spins will perform a rotation about the 
x-axis in the rotating frame at a frequency 1=B1. 
Note this is not the same as RF, (one is the 
amplitude of BRF, the second is its oscillating 
frequency). After a time , M will have created an 
angle 1 1B     : 
 

 
 

Note that 
 

   amplitude of RF duration of RF   . 
 

This relation is true only on resonance, when 
RF=0, where Beff has no z-component.  
 
To “tip” the magnetization onto the y axis, we wait 
a time t90 such that: 
 

1 90 2
  B t , 

 
or 
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1
90 4  Bt . 

 
In the original laboratory (unrotating) frame the 
spins execute additional motions, but the 
important thing to realize is that a spin which is in 
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Shown here is the trajectory of the magnetization 
M in the lab (left) and rotating (right) frames. The 
two frames are connected by a simple rotation. 
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The magnetic field B in the laboratory frame has a 
large z-component and a small, rotating xy-
component (not shown to scale). In the rotating 
frame, assuming BRF is on resonance (RF=0=B0) 
the effective field is static.
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At time t=0 (thermal equilibrium), M points along 
the z-axis in both frames. 
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the xy plane in the rotating frame, must also be in 
the xy-plane in the laboratory frame (although 
where in the plane is a different story!).  
 

 
 

Signal Is Acquired Via Faraday’s Law 
 

Relaxation Can Be Neglected During 
Excitation Since Most Pulses Are Shorter 
Than T1, T2 

Our calculations in the previous section have 
shown that excitation mostly happens on the 
timescale of milliseconds in MRI, which is much 
shorter than T1, T2. Hence, to an excellent 
approximation, relaxation effects can be neglected 
for most pulses and most tissue types in the body. 
We will make some remarks about the effects of 
relaxation later on but, in general, will neglect it 
unless specifically stated otherwise. 

The Phase of the Pulse Determines The 
Phase of the Excited Magnetization 
We have so far modeled BRF in the lab frame as: 
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Since we have full control over the x and y 
component we have no problem modulating both 
B1(t) and adding a time-dependent phase (t) to 
the RF field: 
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In the rotating frame, this will look like this1: 

                                                           
1 To prove this, use      rot lab

z cR tB B , where 

 z cR t  is a RH rotation matrix about the z-axis by an 
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Let's keep B1(t) and (t) fixed. Then the constant 
phase (t)=0 is called the phase of the pulse, and 
is equal to the angle the RF field makes with the 
x-axis.  determines where the RF pulse will point 
in the transverse plane.  
 The phase of the magnetization is defined as 
the angle made by the transverse component of the 
magnetization vector (i.e. its projection on the xy 
plane) with the x-axis.  
 Because the magnetization gets tipped at right 
angles to the RF field following the left hand rule, 
the relation between the pulse's and 
magnetization's phase is given by: 
 

2m RF
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The standard notation for a constant RF pulse 
then assumes the form  , where  is its flip angle 

and  its (constant) phase. The following 
conventions are also used: 
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Some examples are shown below (magnetization is 
assumed to start out from z, and is the blue vector; 
the RF is the red vector):  
 

                                                                                
angle ct   (the rotating frame rotates with a left 
handed rotation and angular frequency c; in it, it 
appears the RF field rotates at the same angular 
frequency but in the opposite direction). There is a bit 
of algebra and trigonometry involved but the proof is 
straightforward. 

Number Time. We’ve remarked that B1,max ~ 
10 T for an MRI scanner. For protons, one 
would need 

190 2 ~ 0.5 msBt 
 to excite the 

spins onto the xy-plane. For 13C, 

190 2 ~ 2 msBt 
 . 



 

Excitation Flip Angles < 90 Are Used To 
Minimize The Duration, Decrease Power 
Deposition At The Cost Of SNR 
An excitation pulse need not tip the spins by 90, 
and can create any angle  between M and the 
main B0 field. The disadvantage of this is its 
reduced  signal: in our simple model we've seen 
that the voltage, 
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is proportional to the time derivative of My 
(reorienting the coil would introduce the time 
derivative of Mx, and would not change our 
conclusions). The magnitude of My will be 
proportional to the flip angle. Hence, the signal 
itself will also be proportional to sin() and 
decrease with the flip angle2: 
 

 signal , siny xM M   .  

                                                           
2 We will see later on this decrease is actually mitigated 
in most sequences where pulses are applied rapidly (on 
the order of, or faster than T1) and don’t afford the 
magnetization enough time to return to thermal 
equilibrium before the next excitation. 

 
On the other hand, the pulse's duration, 
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is proportional to the flip angle and decreases 
linearly (assuming we keep B1 fixed). 
 Another advantage of short pulses is that they 
have reduced specific absorption rate (SAR). Some 
of the RF energy is absorbed in the patient’s tissue 
and causes undesired heating. The amount of SAR 
is proportional to the square of B1 and the pulse’s 
duration: 
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We observe SAR reduces linearly with the flip 
angle. The amount of SAR is limited by most 
modern scanners' hardware based on our 
understanding of the effect of SAR on biological 
tissues. Modern RF coils deposit power on par 
with modern cell-phones and are generally 
considered safe as long as guidelines are observed.  

Off-Resonant Excitation 

And The Concept of 

Selective Excitation 

The z-Field Can Vary as a Function of 
Position, Which Leads to Non-zero 
Offsets In The Rotating Frame 
So far our approach has been to make B0 disappear 
by moving to a rotating frame at a frequency 

0 0rot B    , in which the fictitious field 
negates B0 completely: 
 

   
0 0 0rotefflab

z zB B B B 
     . 

 
However, when B0 varies as a function of position, 

 0 0B B r , it is impossible to make the 
z-component of the field disappear at every point: 
 

       0 0 0rotefflab
z zB B B B 

    r r . 
 

Some sources of variation could include: 
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1. Imperfections in the main magnet field. 
2. Susceptibility artifacts in the sample, in which 

the external field induces microscopic 
magnetic moments which themselves distort 
the main field (in all directions, but 
predominantly in the direction on B0). 

3. Some patients might have metal implants 
which distort the magnetic field – again, in 
many directions, but their effect is most 
pronounced along B0. 

4. Often we intentionally create these 
inhomogeneities, as is the case with gradient 
coils, in which we create a linear dependence 
of the z-field on position: 

 
 0 0B B t  G r . 

 
For example, when a gradient is turned on,  
 

       0
efflab

z zB B t B t     G r G r , 
 

and, when the RF is turned on: 
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If we have some form of spatial inhomogeneity due 
to hardware imperfections/susceptibility artifacts, 
we could write it as  
 

   0
lab

zB B B   r , 
 

and in the rotating frame its z-component will be 
 

     roteff lab
z zB B B

    r . 
 

 
 

In the case the z-component is not completely 
zeroed out, we must analyze and understand the 
case for which 
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0eff
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  
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The quantity B will be referred to as the offset of 
the spins. Since we will be looking at a specific 
point in space we can assume B is just a constant. 

A Qualitative Solution: All Pulses Are 
Selective With A Finite Bandwidth Given 
By ~ 1/B1 
It is fairly simple to divide our analysis into two 
extreme cases: in one, B<<B1, and we can neglect 
it, obtaining: 
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We thus recover the previous case in which we 
excite the spins “as usual”, as if they were on 
resonance. On the other extreme, 1B B  , 
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and the RF excitation will have no effect, resulting 
in no excitation. We can guess and extrapolate 
between these two extremes, saying that there is a 
cutoff to the effect of B1 when B1~ B . In other 
words, a range of offsets B ~B1 will be excited. 
This is known as the bandwidth of the pulse: the 
range of offsets (or frequencies) it will excite. 
 

1BW B . 
 
This can also be understood graphically, by 
plotting the precession cone of the spins about the 
effective field, starting out from thermal 
equilibrium (i.e. M along the z-axis): 
 

Number Time. A gradient will create a range 
of frequencies given by G z   over a spatial 
region of width z. Across a 1 mm pixel, this 
will be 420 HzG z   . Susceptibility 
artifacts at 3 Tesla will create spatial variations 
across the head on the order of hundreds of 
Hz, mostly in regions where air-tissue 
interfaces exist such as the prefrontal cortex, 
close to the oral cavity or ears, and so forth.  



 
 

A Hard Pulse Is One With High Peak 
Power And An “Infinite” Bandwidth 
When we are interested in flipping all of the spins 
onto the xy-plane regardless of their offset we must 
create a bandwidth larger than the range of offsets 
in our sample. Since 1BW B , this means we 
need to have a very high B1>>range of offsets in 
our sample. The duration of an (on-resonance) 
90-pulse,  
 

1

1
90 4  Bt . 

 
We see that hard pulses are short and have a high 
peak power. Such pulses are called hard pulses in 
MR jargon. The “ideal” hard pulse is one for 
which B1, duration0, such that 

 1 durationB   equals the desired flip angle. 

A Constant Pulse's Excitation Profile 
Let us explore what happens when our pulse is not 
“hard” and has a finite duration. We’ll look at a 
90 pulse, although our conclusions will apply to 
any pulse flip angle.  
 For a 90 flip angle, the duration must be 
 


90

1

1
4

t
B

. 

 
However, as previously discussed, this only ensures 
a 90 flip angle for spins when B=0. As we 
increase B, the magnitude and direction of Beff 
and its direction vary, and the corresponding final 
position of the magnetization - assumed to start 
out from thermal equilibrium along the z-axis - 
varies. In fact, even if B1 is applied along x, spins 
not at the center do not even remain in the yz 
plane anymore. The following diagram shows the 
effective field and the precise trajectory traced by 
the magnetization vector during the pulse's 
duration, t90, for the four cases outlined previously: 
 

 
 
Instead of these pictorial diagrams, one can plot 
the components of M as a function of the offset, 
B. This is known as the pulse's response or pulse 
profile. Such a response is plotted below for  1B = 
1 kHz (B123.5 T), t90=0.25 ms (B1 applied 
along the x-axis as in the above diagrams, i.e. has 
0 phase): 
 

B>>B1 

B<<B1 B=0

B=B1

B=0 
Beff points in the xy-plane – 
say, along the x-axis in this 
example - and the spin 
precesses in a circle in the yz 
plane. 

B<<B1 
Beff starts tilting up in the xz 
plane, causing the rotation 
cone to start “folding”.  

B=B1 
In this “dividing case”, the x- 
and z- components of Beff are 
equal. The “precession cone” 
just touches the xy plane. 

B>>B1 
Beff now becomes close to the 
z-axis. The precession cone 
becomes very narrow: even if 
we wait for a long  amount of 
time the spins will not stray far 
from the z-axis. 



 
 

In the above, 2 2
xy x yM M M  . The 

magnetization was assumed to have an arbitrary 
magnitude of unity, and the vertical axis stretches 
from 1. The dashed red lines signify the points at 
which 1 1B B kHz    , which define the 
bandwidth of the pulse. It is quite clear that the 
concept of bandwidth has some artbitrariness to it 
since the profile of Mz and Mxy are not sharp.  

The profile of Mxy actually looks somewhat 
wider than Mz, which is a result of the 
magnetization vector’s constant magnitude, 

2 22 2 22 1x y z xy zM M M M M     M  

and the relation between Mz and 
21xy zM M  . For example, if |Mz|=0.9, then 

2 0.81zM   and  0.436xyM  . So, even if |Mz| 

is almost unperturbed, |Mxy| might still appear to 
be quite sizable, leading to its wider profile. 
 Also note the extensive “wiggles” in Mxy 
outside the slice, indicating that some excitation 
occurs even for B>>B1. We will deal with this in 
a moment by introducing shaped pulses. 

Shaping The Pulse Affects The Pulse's 
Profile 
Modern RF transmitters have the capability of 
shaping the RF pulse,      RF x yB t B t iB t  ; 
that is, controlling its x- and y- components. Such 
pulses are called shaped pulses. For the constant 

pulse we had Bx=B1, By=0. Let us see what happens 
if we vary Bx(t) in a sinc-like manner: 
 

 
 
The new pulse maintains the same peak B1 and 
same area (and hence flip angle) as the rectangular 
pulse, but is necessarily longer (since the negative 
lobes of the sinc detract from the area). The 
frequency response of this pulse can be calculated 
by solving the Bloch equations numerically, 
yielding: 
 

 
 
The response is shown using the same scaling and 
plot range as the rectangular pulse for a "fair" 
comparison. The dashed red lines represent the 
same bandwidth (= 1B ) calculated for the 
rectangular pulse. The ensuing response is 
significantly better-behaved, with less wiggles and 
sharper transition lines. We won't go into the 
theory of shaped pulses in this course, but we will 
remark without proof that for tip angles up until 
about 90 the profile of Mxy resembles the Fourier 
transform of BRF(t). 
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The Slice’s Center Can Be Shifted By 
Sinusoidally Modulating The Pulse’s 
Phase 
The pulses discussed so far excite a bandwidth 
about a central frequency 0B  . There is a very 
simple way to shift the center of the excited slice, 
by modulating the pulse’s phase with a linear term. 
Mathematically, this means: 
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To understand why this shifts the pulse, imagine 
being given  shift

effB  in the rotating frame, where it 
rotates around the z-axis according to the left hand 
rule with angular frequency c. By performing a 
second rotating frame transformation, into a frame 
which rotates with c relative to the original 
(“first”) rotating frame, we fix B1 and add an 
additional fictitious field: 
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In this 2nd rotating frame the z-component has a 
fixed offset. All of our previous arguments can be 
repeated, but now the center of the profile would 
not occur at 0B  , but rather at a frequency 

defined by 0cB 
   , or: 

 

2
cB 
  . 

 
Current MRI hardware enables one to control the 
phase and amplitude of the RF pulse as a function 
of time, making shifting the profile’s center easy 
(we can generate any practical frequency c ). It 
also places almost no demands on the hardware3. 
 It’s interesting to note that, using complex 
notation, our constant original field 
 
                                                           
3 This “trick” for shifting the pulse's profile and the 
relevant analysis outlined, also holds for non-constant 
pulses. 
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becomes 
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The complex notation makes the effect seem much 
simpler (i.e. only multiplying the complex BRF 
waveform by ci te  ). 

Slice Selection 

Often, We Are Interested In Exciting A 
Single Slice 
We now come to the first form of spatial selectivity 
in MRI: selective excitation, in which only a part 
of the sample is excited. We will confine ourselves 
to the simple scenario of one-dimensional 
excitation, meaning selectively exciting a range of 
positions along a fixed axis: 
 

 
 

Without such selective excitation, an RF pulse 
would excite the entire sample. Although this can 
be and is sometimes done, a slice-selective 
approach also has its own merits. 

Applying A Pulse In The Presence Of A 
Gradient Will Excite A Slice 
In the joint presence of a gradient and an RF 
irradiation, the effective field in the rotating frame 
is: 
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We will assume for simplicity our gradient is 
constant and turned on along the z-direction, so 
  ˆt GG z , and so: 
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The gradient creates a linearly increasing offset 
along z: 
 

 
 
The gradient assigns frequencies to positions via 

Gz  , and hence any pulse that excites a range 
of frequencies 1BW B  will, in the presence of 
a gradient, excite a range of positions given by: 
 

1BBW
z

G G
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This is, in fact, the slice thickness. 
 The excited slice will be perpendicular to the 
direction of the gradient vector G. For example 
applying the same pulse with a gradient in a 
different direction - say, at 45 to the z-axis - will 
excite a slice that is itself tilted by 45, since now 
our gradient will create a linear correspondence 
between frequency and the x+z=const planes: 
 

 
 
 Finally, just as the profile of a pulse can be 
shifted in frequency space as a function of the 
offset, thus the slice's center can also be shifted by 
simply modulating the RF pulse's shape: 

Acquisition 

The Time Evolution Of The 
Magnetization In The Rotating Frame In 
The Absence Of RF Irradiation 
In the absence of RF irradiation, the Bloch 
equations consist only of a z-field, made up of its 
position-dependent offset due to gradients, 
inhomogeneities and so forth: 
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We would like to solve the Bloch equations: 
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Substituting the field above, we obtain: 
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 The first thing to note is that the transverse 
(xy) and longitudinal (z) components of M(t) are 
decoupled: the transverse magnetization precesses 
in the xy-plane and decays with a time constant 
T2, while the longitudinal component builds up 
towards thermal equilibrium with a time constant 
T1, and is unaffected by the z-component of the 
field. We can solve for Mz independent of the 
gradients, field inhomogeneities, etc ... the solution 
having been already introduced in lecture 4: 
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The equations for Mx and My are mixed together, 
or coupled in mathematical terms. We will 
therefore treat the transverse magnetization (Mx 
and My) as one entity: 
 

xy x yM M iM  . 
 

We now multiply the second equation by i and  
add up the first two equations: 
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The LHS is merely the time derivative of Mxy. 
Similar simplifications can be made for the RHS, 
and we obtain: 
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This equation is of the form  
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with 
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If a were constant, its solution would be simple: 
   0 aty t y e . Once a is time dependent we 

must break down the time interval into small steps 
t such that a(t) is constant in each time step. 
Then the solution in each interval is  
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The full solution is obtained by concatenating the 
short-time solutions: 
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This can be continued by induction, with the sum 
turning into an integral as t0: 
 

     0
' '

0
t
a t dt

y t e y . 
 

Returning back to our case and substituting the 
expression for a(t)=  ,t r , we obtain: 
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Usually, t=0 will correspond to the point in time 
right after the excitation pulse, so Mxy(r,0) will be 
the transverse magnetization right after excitation. 
 Note that we haven't really said if we're in the 
rotating or lab frame, and our derivation - and 
final expression - are valid for both. Since 

        0, ,rot labt t   r r , we can also deduce 
that 
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which makes sense, because the lab and rotating 
frames differ by a constant rotation about the z-
axis by an angular frequency 0.  

The Acquired Signal In MRI Is 
Proportional To The Transverse 
Magnetization 
We now state a very fundamental relation in MRI: 
the acquired signal is proportional to the integral 
of the magnetization, weighted by the receiver 
profile: 
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where  rec

xyB  is the spatial field dependence of the 
receiver coil when we drive a unit current through 
it. In the remainder of this section we derive this 
equation, but you can skip this without loss of 
continuity.  
 
Proof: Armed with our expression for the time 
course of the magnetization, we turn to deriving a 
usable expression for the acquired signal (voltage) 
in our receiver coil. We've seen in Lecture 3 that, 
for any receiver coil, 
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Here M and Brec are both measured in the 
laboratory frame. First, the time derivative of the 
z-component of the magnetization, which changes 
with a time constant T1 (on the order of Hz) is 
much smaller than the x- and y- components, 
which precess with a frequency of MHz. 
Therefore, we can neglect the z-component to an 
excellent approximation: 
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We define xy x yM M iM  , xy x yB B iB   and 
note: 
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so 
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Therefore: 
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Since we have an expression for Mxy in the lab 
frame, we can differentiate it. Since 0 varies much 
faster than T2 and G(t)r, we can neglect both 
terms and obtain4: 
 

       
lab

lab
0

,
,xy

xy

dM t
i M t

dt
 

r
r  

 
so 
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The interesting signal is modulated by a rapid 
(~100 MHz) phase term, 0i te  , which is "hidden" 
inside Mxy. It is beneficial to get rid of it for both 
convenience, as well as to lessen the burden on the 
analog-to-digital converter (which needs to deal 
with slower varying signals). This is called 
demodulation. To do this, vrec is split into the 
identical copies, with one multiplied by cos(0t) 
and the other by sin(0t), and each is then passed 
through a low-pass filter (LPF) 
 

 
 
Using 
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and writing 
 

                                                           
4 This assumption needs to be modified when studying 
solids with very short T2s (on the order of 
microseconds). However, such short T2s are rarely 
observed in MRI since they lead to signals well below 
the noise levels. 

vrec 

sin(0t)

cos(0t)

LPF

LPF ADC 

ADC Real 
channel 

Imaginary 
channel 
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we obtain, right before the LPF: 
 

     

     
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0 0 0

2 body

2 body
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    

    

   

   




 
Since the LPF removes the fast changing 
component 0 M Bt     , we obtain, after the 
LPFs: 
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We then form the complex signal in the computer: 
 

     
     0 0lab

2 body
M B

rec recre im

i trec
xy xy

s t v i v
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 

  
 

 

Since    lab rot
xy xyM M , and since the rotating and 

lab frame magnetization vectors are related via 
        0rot lab, , i t
xy xyM t M t e r r ,  we can simplify:  

 

         rot
0 body

,rec
xy xys t B M t dV  r r  

 
We've omitted the constant of proportionality 
since the actual measured signal's magnitude will 
depend anyway on the electronics, amplifiers and 
so on. 


