
 

 

Lecture 6 

Basic Image Reconstruction 

Lecture Notes by Assaf Tal 
 
 

Sampling k-Space 

We Can "Take A Walk" In k-Space By 
Varying The Gradient  
We manipulate k(t) by changing the gradient. 
According to its definition, 
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it is equal (per-component) to the total area 
underneath the gradient. In 1D, for example: 
 
 

 
 
Of course, a realistic gradient would need non-zero 
ramp up and down times: 
 

 
 
Since we can apply negative gradient values we can 
also “rewind” k back to the origin: 
 

 
 
As another example, consider the following 2D 
gradient waveform function: 
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with T = 5 ms, G0 = 1 mT/m and g =22 Hz. 
We can find k(t) easily by integrating: 
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We will not actually carry out the integration 
analytically as it is not particularly interesting. 
Instead, I've used a plotting software package to 
plot both Gx, Gy and kx, ky as a function of time: 
 

 
 
 
We can think of k(t) as tracing a "path" in the kx-
ky plane, by plotting it parametrically (that is, 
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plotting the position of the vector k(t) as a 
function of the variable t): 
 

 
 
In effect, we are sampling data along the this 
trajectory in k-space (that is, we are measuring s(k) 
along the trajectory). 

Our Sampling Of k-Space Is Limited By 
Both The Total (1) Acquisition Time 
And (2) Sampling Rate 
In theory, s(k) and f(r) are related via a CFT. 
However, we cannot measure s(k) at every point in 
k-space. It should be quite clear to the reader at 
this point that traversing k-space by varying the 
gradients takes time, and that we do not have 
infinite acquisition time, seeing as the 
magnetization decays in the xy-plane with a time 
constant T2. Hence, the extent to which we can 
cover k-space is limited. 
 There is another factor limiting our coverage of 
k-space, which is the sampling rate of the analog to 
digital converter (ADC). The ADC samples at a 
constant rate in time steps t called the dwell 
time. Thus we do not measure data along a 
continuous k variable but only at discrete points, 
i.e. a discrete trajectory: 
 

 

Phase And Frequency Encoding Are 
Often Combined To Read Out A 
Cartesian Data Set In k-Space 
We have previously outlined a 2D pulse sequence 
which combines phase and frequency encoding, 
but have not delved into its workings. We will take 
a closer look at it now, with a small modification: 
we will insert a rewinder gradient before the 
readout gradient, for a reason that will become 
clear in a moment: 
 

 
 
The above sequence is repeated multiple times, 
each time incrementing the phase encoding 
gradient from some initial negative value to some 
final positive value. A particular scan and its 
corresponding dataset in k-space would look like 
this: 
 

 
 
Thus the purpose of the rewinder gradient is to 
shift us back along the readout axis (kx) so we read 
out data symmetrically in k-space.  
 Repeating the sequence multiple times, varying 
the phase encoding gradient each time, yields a 2D 
data set of values of s(k) sampled on a cartesian 
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grid of k points. Each line in k-space will result 
from an excitation-rewinding-acquisition block: 
 

 
 
In the next section we will examine the problem of 
reconstructing the image f(r) from this discrete 
cartesian sampled dataset of s(k). 

The Discrete Fourier 

Transform 

Discrete Sampling Leads To Aliasing and 
Blurring 
In the remainder of this lecture we will concern 
ourselves with two questions: 
1. How do we reconstruct our image from the 

discretely sampled data? 
2. What effect will this have on the image? That 

is, how will our reconstructed image compare 
to the “true” image f(r)? 

The answers to these two questions will be: 
1. Reconstruction takes place via a Discrete 

Fourier Transform (DFT). 
2. The sampling will yield an image that is 

obtained by convolving the true image with a 
point spread function and sampling it on a 
discrete grid. The convolution will lead to two 
effect: the first will be blurring of the original 
image, and the second will be aliasing (that is, 
the appearance of “copies” of the original 
image which may or may not overlap with the 
original image, depending on how we choose 
our imaging parameters). 

Graphically: 

 

Statement Of The Problem  
Let us confine ourselves to a one dimensional 
problem. Given f(x), we form its continuous 
Fourier transform: 
 

     

     

2

21
2

CFT

ICFT .

ikx

ikx

s k f x e dx

f x s k e dk






 






 

 




 

 
We sample s(k) on a discrete grid of N points, 
starting from some initial value –kmax/2 and 
advancing in steps k=kmax/N: 
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The N points kn in this particular sampling pattern 
are not symmetrically placed around 0: there is a 
last point missing at kmax/2. However, if you think 
in terms of intervals, it is symmetrically placed. 
Here is an example with N=10: 
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We now pose the question: given the set s(kn), how 
do we recover f(x)? It would be instructive to take a 
particular example. Suppose our “image” f(x) is an 
uninteresting boxcar: 
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It is actually feasible to compute its CFT 
analytically: 
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where we have used    sinsinc x
xx   and 

  2sin ix ixe e
ix
 . The two functions are plotted 

next to each other below: 
 

 
 
This highlights a general feature of Fourier 
transforms, namely that the width of the function 
in one domain is approximately equal to the 
inverse of its transform in the Fourier domain. 

From The Continuous To The Discrete 
Fourier Transform (DFT) 
We would like to be able to compute f(x) by 
inverting the continuous Fourier transform: 
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However, we only know s(k) on our discretely 
sampled grid. Intuitively, let us form the function: 
 

     
1

0

N

D n n
n

s k s k k k




  . 

 
The function  k  is known as a Dirac delta 
function, and you can think of it as a very sharply 
peaked function around k=0 with unit area. sD(k) 
is the sampled version of s(k): 
 

 
 
We hope that, if we sample “enough” points, we 
should be able to approximate the continuous 
Fourier integral by a discrete sum. This motivates 
us to form the discrete Fourier transform and its 
inverse: 

 
Compare this to the CFT and its inverse: 
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Graphically, we have: 
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Given a discrete set of (possibly complex) 
points 0 1 1, , , Ns s s  , we define their discrete 
Fourier transform (DFT) as the set of points 

0 1 1ˆ ˆ ˆ, , , Ns s s  : 
 

 
21

0

ˆ DFT
inmN

N
m n

n

s s e
 



   

 
Then it is possible to prove that, given 

0 1 1ˆ ˆ ˆ, , , Ns s s  , the numbers 0 1 1, , , Ns s s   can 
be recovered by computing the inverse DFT: 
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The Point Spread Function Of Cartesian 
Sampling Is The “Dirichlet Kernel”  
We now calculate the IDFT of the sampled data 
points we’ve acquired in k-space:  
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Now how we call our points n̂s  instead of sn to 
emphasize that we’re going to use an IDFT. We 
get, upon substitution and intechange of the 
summation and integration signs: 
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Since eaeb=ea+b, we simplify as follows: 
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The function in parenthesis is just a function of x, 
shifted by an amount n/k (depending on n). Let 
us define: 
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This will turn out to be the point spread function, 
since, using this definition: 
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Calculating the summation in PSF(x) is 
straightforward since it is nothing more than a 
geometrical series: 
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Substituting and simplifying, we get: 
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This is known as the Dirichlet kernel. We plot it 
and note some crucial features:  
 
 

 
 
It is periodic with a period 1/k, and its lobes have 
a width approximately given by 1/kmax=1/(Nk), 
i.e. N times smaller than its periodicity. We define 
two quantities known as the Field Of View (FOV) 
and spatial resolution (x): 
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The Point Spread Function “Scans” The 
Image From –FOV/2 To FOV/2, In 
Steps Of x 
To visualize the imaging process, I’ve plotted the 
boxcar function f(x) with a width of unity, and 
have chosen the following sampling parameters: 
FOV = 2, N = 16 so x=0.125 and k=0.5. Since 
N=16, we have 16 k-space samples 0 1 15ˆ ˆ ˆ, ,s s s  
from which we construct 16 image coefficients s0, 
s1, ..., s15. The jth coefficient is obtained by 

PSF(x) (Real part) 
FOV=1/k

PSF(x) (Imaginary part) 

Lobe width 
x~1/kmax 



multiplying the true distribution of spins, f(x), by 
PSF(x-nx) and integrating (i.e. calculating the 
area). This is shown in the following diagram: 

 

 
 
We see that the PSF “moves” in small steps of x. 
When the main lobe moves outside the spin 
distribution the area becomes negligible, and when 
it moves back in the signal grows back up. If we 
actually calculate sj and plot the result, we obtain: 
 

 

 
This looks like a “mirrored” version of f(x) about 
x=0. This mirroring is the result of the PSF 
starting from the center of the image at n=0 and 
not from the far left edge. This implies that we 
need to “switch” the right and left parts of the 
image, which yields: 
 

 
 
This is not a perfect image of the boxcar function 
but it’s not too bad. Here are the coefficients sk 
when we increase N to 32, and then 64 (shown on 
the left) and the corresponding changes to the PSF 
on the right: 

 

 
 

Aliasing Is Caused When The Steps In k-
Space Are Not Small Enough 
The Dirichlet kernel has a periodic structure with 
periodicity given by the Field of View: 
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If the FOV is smaller than the imaged object then 
we will get aliasing. This describes a phenomena in 
which the distance between adjacent lobes, given 
by the FOV, becomes smaller than the object. 
Thus, as the PSF “scans” the object, non-central 
lobes will re-enter the image, effectively causing 
multiple copies of the object to appear in the 
reconstructed image. This has a very classic 
appearance in MRI, in which one side of the image 
“wraps” into the opposite side: 

 
 
Aliasing is removed by keeping the FOV larger 
than the object: 
 

 
 
This is illustrated in the following diagram, 
showing an object (f(x), two boxcars) of size 3 
arbitrary units, and a point spread function with 
FOV = 4.0, 3.0 and 2.0. In the last case aliasing 
will occur (N=64). 
 

 
 
 

Another Way To Understanding Aliasing 
Aliasing can also be understood from a different 
perspective: we are sampling the image in k-space, 
which is its Fourier space. This space represents the 
frequencies of the object. Once we only consider 
discrete frequencies in jumps of k, we lose the 
ability to tell apart positions x and x+1/k, as 
shown in the following diagram, in which k=1 
(in arbitrary units) and cos(2x0k) and its sampled 
version are both plotted for x0=0, 0.1, 0.5 and 1.0, 
showing that, for x0=0 and 1, the set of sampled 
points coincides and the two positions cannot be 
discerned: 
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Blurring Occurs When We Don’t Go Far 
Enough In k-Space 
The width of the Dirichlet kernel’s main lobe sets 
the resolution of the image. Any point image 
 0x x   will be replaced by the PSF, centered at 

x0: 
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This means features will get “broadened” by the 
PSF’s lobe’s main width, which is approximately 

max

1
k . This determines our real spatial resolution. 

The same effect can be seen in 2D and 3D 
cartesian sampling schemes as well. For example, 
in 2D (FOVx=FOVy=256 mm, Nx=Ny=64): 
 

 
 
The wiggly edges of the PSF are responsible for an 
artifact often referred to as Gibb’s ringing, 
observed as “wiggles” upon transitioning from one 
intensity sharply to another: 
 

 
 
Since the wiggles become smaller as N while 
keeping the FOV fixed, one way to reduce it (but 
not completely eliminate it) is to simply take more 
points.  

Back to resolution: the rule of thumb is 
 

 
 
Of course, how far we can go out in k-space will 
depend on how long we have to sample and how 
strong our gradients are.  

Another Way To Understand Blurring 
Blurring can also be understood as follows: if we 
could sample all of k-space we could reconstruct 
our source image perfectly with an inverse 
continuous Fourier transform: 
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Putting aside for a moment the question of the 
discreteness of sampling, we look at the effect of 
the finiteness of our sampling extend. We’re 
basically sampling s(k) only in some interval 
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To reduce blurring, keep x=1/kmax as small as 
possible. 
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interval. What would we get if we were to apply an 
ICFT to that? 
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Fortunately, a well known theorem from Fourier 
theory1 called the Convolution Theorem states 
that the Fourier of the product equals the 
convolution of the Fouriers. That is: 
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We already know that    f x ICFT s k    , and 
we’ve also shown that the Fourier transform of a 
boxcar function W(k) of width kmax is a sinc of 
width ~ 1/kmax. Thus,  
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This in essence restates our previous result: features 
will get “broadened” by the sinc function’s main 
width, which is approximately 

max

1
k . 

Why The Nominal Resolution Tells 
Only “Half The Story”  
Suppose we image in one dimension with the 
following parameters: FOV = 10 mm and N=10, 
meaning our nominal resolution is 
x=FOV/N=1 mm. However, the PSF is not a 
perfect boxcar with a width of 1 mm. Rather, there 
is no unique way to define the “resolution” of the 
PSF, only to say it is approximately 1/kmax. Some 
parameters of the main lobe are shown below: 

 

 

                                                           
1 It’s not difficult to prove. You should try it. 

 
So the width at the base is actually twice the 
nominal resolution (x), and even the width at 
half the maximal amplitude is approximately 
1.2x. It is best to keep in mind these two figures 
of merit and not the nominal resolution itself, 
although almost all published papers do not 
mention the PSF at all and quote solely the 
nominal resolution. Still, it is quite easy to 
visualize the true form of the PSF given the 
nominal resolution, at least for cartesian sampling. 

2/kmax 

1.2/kmax 


