

Lecture 6

Basic Image Reconstruction

Lecture Notes by Assaf Tal

Sampling k-Space

We Can "Take A Walk" In k-Space By
Varying The Gradient
We manipulate k(t) by changing the gradient.
According to its definition,

0

' '
t

t t dt k G ,

it is equal (per-component) to the total area
underneath the gradient. In 1D, for example:

Of course, a realistic gradient would need non-zero
ramp up and down times:

Since we can apply negative gradient values we can
also “rewind” k back to the origin:

As another example, consider the following 2D
gradient waveform function:

0

0

cos

cos

t
x gT

t
y gT

G t G t

G t G t

with T = 5 ms, G0 = 1 mT/m and g =22 Hz.
We can find k(t) easily by integrating:

0

0

' '

' '

t

x x

t

y y

k G t dt

k G t dt

We will not actually carry out the integration
analytically as it is not particularly interesting.
Instead, I've used a plotting software package to
plot both Gx, Gy and kx, ky as a function of time:

We can think of k(t) as tracing a "path" in the kx-
ky plane, by plotting it parametrically (that is,

1 2 3 4 5
Time ms

0.2
0.4
0.6
0.8
1.0

Gradient mTm

1 2 3 4 5
Time ms

50

100

150
k m-1

1 2 3 4 5
Time ms

50
100
150

k m-1

1 2 3 4 5
Time ms

0.2
0.4
0.6
0.8
1.0

Gradient mTm

2 4 6 8 10
Time ms

-1.0
-0.5

0.5
1.0

Gradient mTm

2 4 6 8 10
Time ms

50

100

150
k m-1

plotting the position of the vector k(t) as a
function of the variable t):

In effect, we are sampling data along the this
trajectory in k-space (that is, we are measuring s(k)
along the trajectory).

Our Sampling Of k-Space Is Limited By
Both The Total (1) Acquisition Time
And (2) Sampling Rate
In theory, s(k) and f(r) are related via a CFT.
However, we cannot measure s(k) at every point in
k-space. It should be quite clear to the reader at
this point that traversing k-space by varying the
gradients takes time, and that we do not have
infinite acquisition time, seeing as the
magnetization decays in the xy-plane with a time
constant T2. Hence, the extent to which we can
cover k-space is limited.
 There is another factor limiting our coverage of
k-space, which is the sampling rate of the analog to
digital converter (ADC). The ADC samples at a
constant rate in time steps t called the dwell
time. Thus we do not measure data along a
continuous k variable but only at discrete points,
i.e. a discrete trajectory:

Phase And Frequency Encoding Are
Often Combined To Read Out A
Cartesian Data Set In k-Space
We have previously outlined a 2D pulse sequence
which combines phase and frequency encoding,
but have not delved into its workings. We will take
a closer look at it now, with a small modification:
we will insert a rewinder gradient before the
readout gradient, for a reason that will become
clear in a moment:

The above sequence is repeated multiple times,
each time incrementing the phase encoding
gradient from some initial negative value to some
final positive value. A particular scan and its
corresponding dataset in k-space would look like
this:

Thus the purpose of the rewinder gradient is to
shift us back along the readout axis (kx) so we read
out data symmetrically in k-space.
 Repeating the sequence multiple times, varying
the phase encoding gradient each time, yields a 2D
data set of values of s(k) sampled on a cartesian

Start here after
excitation

Readout rewinder and
phase encoding

gradients shift us along
kx, ky respectively

Acquisition happens
along this line along a

discrete set of points
(red dots)

ky

kx

RF

Gz

Gy

Gx

ADC

90

Rewinder
lobe

Readout
gradient

Slice
selection
gradient Phase

encoding

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

grid of k points. Each line in k-space will result
from an excitation-rewinding-acquisition block:

In the next section we will examine the problem of
reconstructing the image f(r) from this discrete
cartesian sampled dataset of s(k).

The Discrete Fourier

Transform

Discrete Sampling Leads To Aliasing and
Blurring
In the remainder of this lecture we will concern
ourselves with two questions:
1. How do we reconstruct our image from the

discretely sampled data?
2. What effect will this have on the image? That

is, how will our reconstructed image compare
to the “true” image f(r)?

The answers to these two questions will be:
1. Reconstruction takes place via a Discrete

Fourier Transform (DFT).
2. The sampling will yield an image that is

obtained by convolving the true image with a
point spread function and sampling it on a
discrete grid. The convolution will lead to two
effect: the first will be blurring of the original
image, and the second will be aliasing (that is,
the appearance of “copies” of the original
image which may or may not overlap with the
original image, depending on how we choose
our imaging parameters).

Graphically:

Statement Of The Problem
Let us confine ourselves to a one dimensional
problem. Given f(x), we form its continuous
Fourier transform:

2

21
2

CFT

ICFT .

ikx

ikx

s k f x e dx

f x s k e dk

We sample s(k) on a discrete grid of N points,
starting from some initial value –kmax/2 and
advancing in steps k=kmax/N:

 max
2 0,1,..., 1k

nk n k n N

The N points kn in this particular sampling pattern
are not symmetrically placed around 0: there is a
last point missing at kmax/2. However, if you think
in terms of intervals, it is symmetrically placed.
Here is an example with N=10:

Image space k-space

 f r s k

CFT

ICFT

DFT

IDFT

Sample

Reconstructed
Image

Sampled k-space
data

 PSF

 f PSF r

Scan 1

kx

Scan 2

Scan N

ky

0 1 2 3 4 5 6 7 8 9 n:

max
2

kk: 0 max
2

k k

kmax

We now pose the question: given the set s(kn), how
do we recover f(x)? It would be instructive to take a
particular example. Suppose our “image” f(x) is an
uninteresting boxcar:

 21
0 elsewhere

Lx
f x

It is actually feasible to compute its CFT
analytically:

/2 2

/2
/22

/2
2 /2 2 /2

2

1
2

sin
sinc

L ikx

L
x Likx

x L
ikL ikL

s k e dx

e
ik

e e
k i

kL
L kL

k

where we have used sinsinc x
xx and

 2sin ix ixe e
ix
 . The two functions are plotted

next to each other below:

This highlights a general feature of Fourier
transforms, namely that the width of the function
in one domain is approximately equal to the
inverse of its transform in the Fourier domain.

From The Continuous To The Discrete
Fourier Transform (DFT)
We would like to be able to compute f(x) by
inverting the continuous Fourier transform:

 21
2

if x s k e dk

 k r .

However, we only know s(k) on our discretely
sampled grid. Intuitively, let us form the function:

1

0

N

D n n
n

s k s k k k

 .

The function k is known as a Dirac delta
function, and you can think of it as a very sharply
peaked function around k=0 with unit area. sD(k)
is the sampled version of s(k):

We hope that, if we sample “enough” points, we
should be able to approximate the continuous
Fourier integral by a discrete sum. This motivates
us to form the discrete Fourier transform and its
inverse:

Compare this to the CFT and its inverse:

2

21
2

CFT

ICFT .

ikx

ikx

s k f x e dx

f x s k e dk

Graphically, we have:

f(x)

L

1
L

sD(k)

Sample in this
range

Given a discrete set of (possibly complex)
points 0 1 1, , , Ns s s , we define their discrete
Fourier transform (DFT) as the set of points

0 1 1ˆ ˆ ˆ, , , Ns s s :

21

0

ˆ DFT
inmN

N
m n

n

s s e

Then it is possible to prove that, given

0 1 1ˆ ˆ ˆ, , , Ns s s , the numbers 0 1 1, , , Ns s s can
be recovered by computing the inverse DFT:

21

0

1 ˆ IDFT
inmN

N
n m

m

s s e
N

The Point Spread Function Of Cartesian
Sampling Is The “Dirichlet Kernel”
We now calculate the IDFT of the sampled data
points we’ve acquired in k-space:

 max

2

2

ˆ ˆ

, 0,1,..., 1

mik x
m m

ik x im kx

s s k f x e dx

e f x e dx m N

Now how we call our points n̂s instead of sn to
emphasize that we’re going to use an IDFT. We
get, upon substitution and intechange of the
summation and integration signs:

max

21

0
21

2

0

1 ˆ
inmN

N
n m

m

inmik x N
im kxN

m

s s e
N
e

f x e e dx
N

Since eaeb=ea+b, we simplify as follows:

 max

21

0

1 2

0

1 ˆ
inmN

N
n m

m

n nin Nik x im k x
N k N k

m

s s e
N

e
f x e e dx

N

The function in parenthesis is just a function of x,
shifted by an amount n/k (depending on n). Let
us define:

max

max

1
21

0
1

21

0

N
ik x im kx

N
m
N mik x i kx

N
m

PSF x e e

e e

This will turn out to be the point spread function,
since, using this definition:

 in
n

n
s e f x PSF x dx

N k
.

Calculating the summation in PSF(x) is
straightforward since it is nothing more than a
geometrical series:

1

2

0

1
,

1

NN
m i kx

m

a
a a e

a

 .

Substituting and simplifying, we get:

 max
max

sin
sin

ix ke k x
PSF x k N k

k x

This is known as the Dirichlet kernel. We plot it
and note some crucial features:

It is periodic with a period 1/k, and its lobes have
a width approximately given by 1/kmax=1/(Nk),
i.e. N times smaller than its periodicity. We define
two quantities known as the Field Of View (FOV)
and spatial resolution (x):

max

1

1 1

FOV
k

FOV
x

k N k N

The Point Spread Function “Scans” The
Image From –FOV/2 To FOV/2, In
Steps Of x
To visualize the imaging process, I’ve plotted the
boxcar function f(x) with a width of unity, and
have chosen the following sampling parameters:
FOV = 2, N = 16 so x=0.125 and k=0.5. Since
N=16, we have 16 k-space samples 0 1 15ˆ ˆ ˆ, ,s s s
from which we construct 16 image coefficients s0,
s1, ..., s15. The jth coefficient is obtained by

PSF(x) (Real part)
FOV=1/k

PSF(x) (Imaginary part)

Lobe width
x~1/kmax

multiplying the true distribution of spins, f(x), by
PSF(x-nx) and integrating (i.e. calculating the
area). This is shown in the following diagram:

We see that the PSF “moves” in small steps of x.
When the main lobe moves outside the spin
distribution the area becomes negligible, and when
it moves back in the signal grows back up. If we
actually calculate sj and plot the result, we obtain:

This looks like a “mirrored” version of f(x) about
x=0. This mirroring is the result of the PSF
starting from the center of the image at n=0 and
not from the far left edge. This implies that we
need to “switch” the right and left parts of the
image, which yields:

This is not a perfect image of the boxcar function
but it’s not too bad. Here are the coefficients sk
when we increase N to 32, and then 64 (shown on
the left) and the corresponding changes to the PSF
on the right:

Aliasing Is Caused When The Steps In k-
Space Are Not Small Enough
The Dirichlet kernel has a periodic structure with
periodicity given by the Field of View:

PSF(x-nx)
f(x)

PSF(x-nx)f(x)

s0

s1

s2

s5

s15

FOV

 1
PSF x FOV PSF x PSF x

k

.

If the FOV is smaller than the imaged object then
we will get aliasing. This describes a phenomena in
which the distance between adjacent lobes, given
by the FOV, becomes smaller than the object.
Thus, as the PSF “scans” the object, non-central
lobes will re-enter the image, effectively causing
multiple copies of the object to appear in the
reconstructed image. This has a very classic
appearance in MRI, in which one side of the image
“wraps” into the opposite side:

Aliasing is removed by keeping the FOV larger
than the object:

This is illustrated in the following diagram,
showing an object (f(x), two boxcars) of size 3
arbitrary units, and a point spread function with
FOV = 4.0, 3.0 and 2.0. In the last case aliasing
will occur (N=64).

Another Way To Understanding Aliasing
Aliasing can also be understood from a different
perspective: we are sampling the image in k-space,
which is its Fourier space. This space represents the
frequencies of the object. Once we only consider
discrete frequencies in jumps of k, we lose the
ability to tell apart positions x and x+1/k, as
shown in the following diagram, in which k=1
(in arbitrary units) and cos(2x0k) and its sampled
version are both plotted for x0=0, 0.1, 0.5 and 1.0,
showing that, for x0=0 and 1, the set of sampled
points coincides and the two positions cannot be
discerned:

To avoid aliasing, keep FOV=1/k bigger than
the object’s dimensions.

PSF(x)
f(x) (“True” image)

Reconstructed
Image

FOVFOV

Blurring Occurs When We Don’t Go Far
Enough In k-Space
The width of the Dirichlet kernel’s main lobe sets
the resolution of the image. Any point image
 0x x will be replaced by the PSF, centered at

x0:

0 0

0

' ' 'x x x x PSF x x dx

PSF x x

This means features will get “broadened” by the
PSF’s lobe’s main width, which is approximately

max

1
k . This determines our real spatial resolution.

The same effect can be seen in 2D and 3D
cartesian sampling schemes as well. For example,
in 2D (FOVx=FOVy=256 mm, Nx=Ny=64):

The wiggly edges of the PSF are responsible for an
artifact often referred to as Gibb’s ringing,
observed as “wiggles” upon transitioning from one
intensity sharply to another:

Since the wiggles become smaller as N while
keeping the FOV fixed, one way to reduce it (but
not completely eliminate it) is to simply take more
points.

Back to resolution: the rule of thumb is

Of course, how far we can go out in k-space will
depend on how long we have to sample and how
strong our gradients are.

Another Way To Understand Blurring
Blurring can also be understood as follows: if we
could sample all of k-space we could reconstruct
our source image perfectly with an inverse
continuous Fourier transform:

 f x ICFT s k

Putting aside for a moment the question of the
discreteness of sampling, we look at the effect of
the finiteness of our sampling extend. We’re
basically sampling s(k) only in some interval

max max
2 2,k k . This is the same as fully sampling

s(k) times a windowing function W(k), which is

equal to 1 in max max
2 2,k kk and 0 outside the

To reduce blurring, keep x=1/kmax as small as
possible.

-1.0 -0.5 0.0 0.5 1.0

True image Recon. image

cos(2x0k): x0=0

cos(2x0k): x0=0.1

cos(2x0k): x0=0.5

cos(2x0k): x0=1.0

Point source (real part of) image

Main lobe,
width 1/kmax

interval. What would we get if we were to apply an
ICFT to that?

 ?ICFT s k W k

Fortunately, a well known theorem from Fourier
theory1 called the Convolution Theorem states
that the Fourier of the product equals the
convolution of the Fouriers. That is:

ICFT s k W k

ICFT s k ICFT W k

We already know that f x ICFT s k , and
we’ve also shown that the Fourier transform of a
boxcar function W(k) of width kmax is a sinc of
width ~ 1/kmax. Thus,

max

1image sinc of width k

ICFT s k W k

This in essence restates our previous result: features
will get “broadened” by the sinc function’s main
width, which is approximately

max

1
k .

Why The Nominal Resolution Tells
Only “Half The Story”
Suppose we image in one dimension with the
following parameters: FOV = 10 mm and N=10,
meaning our nominal resolution is
x=FOV/N=1 mm. However, the PSF is not a
perfect boxcar with a width of 1 mm. Rather, there
is no unique way to define the “resolution” of the
PSF, only to say it is approximately 1/kmax. Some
parameters of the main lobe are shown below:

1 It’s not difficult to prove. You should try it.

So the width at the base is actually twice the
nominal resolution (x), and even the width at
half the maximal amplitude is approximately
1.2x. It is best to keep in mind these two figures
of merit and not the nominal resolution itself,
although almost all published papers do not
mention the PSF at all and quote solely the
nominal resolution. Still, it is quite easy to
visualize the true form of the PSF given the
nominal resolution, at least for cartesian sampling.

2/kmax

1.2/kmax

