
 

 

Lecture 7 

T1, T2, T2
*
 CONTRAST 

Lecture Notes by Assaf Tal 
 
 

T2* Contrast 

Sampling k-Space By Reading It Line-
By-Line With A Gradient Produces 
“Gradient Echoes” 
We've presented the very basic imaging sequence 
in the previous two lectures,  
 

 
 
in which a line is acquired in k-space during each 
excitation: 
 

 
 
This must be repeated for each excited slice. Let us 
put aside for the time being the total time required 
for such a measurement and assume our 
magnetization is in thermal equilibrium before the 
start of each k-space line. 

 Neglecting for a moment the decay of signal 
due to T2 and T2* effects, the signal as a function 
of k is: 
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Recall that measurement doesn’t start at t=0 but at 
some time t=t0 when the ADC opens up. At that 
point, k doesn’t start from 0 but from some initial 
value k0=k(t0), which is the point to which the 
phase and rewinder gradients take us: 
 

 
 
The maximal signal comes from the center of k-
space and the lines kx=0 and ky=0. This can be seen 
by in several ways. First, just by looking at typical 
k-space data: 
 

 
 
Mathematically, using the fact that 

   f x dx f x dx   for any function f(x), 

we have: 
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From a intuitive point of view, what we’re doing is 
integrating a function M0(r) and modulating it by 
some sinusoid function 2 ie  k r . The faster we 
modulate it, the more it integrates to zero since the 
positive and negative lobes cancel each other out, 
assuming 2 ie  k r  varies spatially faster than the 
image: 
 

 

 
This is why we call this sequence a gradient echo: 
the spins are first dephased by taking them to the 
outskirts of k-space. When we cross the kx=0 line 
all of a sudden we get a large amplitude, a so-called 
gradient echo, which then decays back again as we 
travel to the other side of k-space. We’ve seen this 
mental picture before when discussing the 
dephasing effect of gradients. If we think of a one 
dimensional imaging problem and a uniform 
spatial distribution of spins of size L, the analytical 
acquired signal is: 
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and this is what happens to the spins in the sample 
after getting excited and “rewound”: 
 

 
 
 

The Gradient-Echo Sequence Produces 
T2* Weighting (The Simple Explanation) 
We now include relaxation, which occurs via T2* - 
the combined result of microscopic T2 and 
macroscopic T2’ effects. Relaxation “kicks in” right 
after excitation. Let us denote by TE the Time to 
Echo; that is, the time between the center of the 
excitation pulse to the point at which the gradient 
echo forms at the center of the ADC event (when 
we cross kx=0). Then we have: 
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We assumed T2* does not vary spatially, which is 
not true in the brain. However, if it does we can 
just break up our integral into sub-regions in 
which T2* is constant.  
 When viewed in k-space, the T2* decay 
happens along the readout direction (that would 
be the x-direction in the pulse sequence shown at 
the beginning of these lecture notes). Thus we can 
think of our signal in k-space as being the result of 
multiplying the non-decaying signal, s(k), by the 
additional decay accrued due to the T2* decay: 
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To a first approximation, the value of the decay 
function  rk  at the echo time TE when our 
signal is maximal is the dominant quantity, and we 
can replace  rk  merely by its value at the echo 

time, 
*

2/TE Te  , a constant. This implies that the 
reconstructed signal in each voxel will be remain, 
as before, the convolution of the spin density 
M0(r) with the point spread function PSF(r-rijk), 

but now multiplied by 
*

2/TE Te  .  

The Gradient-Echo Sequence Produces 
T2* Weighting (The Complete  
Explanation) 
We now revisit our previous explanation with a 
more complete mathematical explanation for those 
readers interested in the details.  
 Let D be the duration between the center of 
the excitation pulse and the beginning of 
acquisition. Some constant signal decay, common 
to all excitations, is accumulated between 
excitation and the beginning of the ADC. Since 
this duration, D, is fixed between different scans 
this is a constant factor of the form 

*
2exp /D T   . The acquired k-space signal then 

decays as 
*

2/t Te  , where t=0 corresponds to the 
beginning of the ADC. Therefore the acquired k-
space signal will be the k-space data, multiplied by 
a decaying envelope: 
 

 
 

The actual decay only happens along kr, the 
readout direction. Hence the “decay function” 
(kr) is only a function of kr. The actual extent of 
decay will depend on the ratio between TADC, the 
total acquisition time, and T2* (t=0 corresponds to 
the center of the ADC): 
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Because we set t=0 at the center of the ADC (at 
the echo), we have 
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so k(0)=0, k(-TADC/2) = -kmax/2 and 
k(TADC/2)=kmax/2. This is a slightly unusual choice 
of t=0 but it makes subsequent calculations easier. 
Inverting,  
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Plugging this back into our decay equation, we get: 
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with kmax=GTADC=1/x (where x is the nominal 
resolution).  
 A well known theorem from Fourier analysis 
states that the Fourier of the multiplication of two 
functions – such as s(k) and1 (kr) – equals the 
convolution of their Fourier transforms: 
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In our case: 
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1 (k) includes in it already the windowing of the data – 
namely, that we acquire only from –kmax/2 to kmax/2.  

 

s(k) (kr) 

 

s(k) (kr) 



 
where the ICFT of s(k), the k-space data, is I(x), 
the image, and 
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Although it is possible to calculate the ICFT of the 
decay envelope analytically (try it!), it doesn’t yield 
very good intuition. Instead, let us examine two 
extremes in the next two sections.  

For Short Acquisition Times 
(TADC<<T2*), The Effect Of T2* Is 
Simply A Constant Factor 
In most realistic cases, the acquisition duration TADC 
is much shorter than T2*, so we can neglect it to a 
first approximation. This means that (kr) is just a 
constant function between –kmax/2 to kmax/2: 
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Then: 
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Here we see the “regular” sinc function with a 
width of x, our digital resolution. This is 

multiplied by 
*

2/TE Te  , whatever decay was 
introduced until the acquisition block, implying 

the final image is T2*-weighted by a factor 
*

2/TE Te  . 
If T2* is spatially dependent, different regions in 

the image will be weighted by their own 
*

2/TE Te   
factor. 

T2* Signal Decay Places An Ultimate 
Lower Bound On Our Spatial Resolution 
Along The Readout Direction 
We’ve discussed the PSF of cartesian sampling and 
remarked its width, on the order of 
x=1/kmax=1/GTADC, broadens our signal and 
limits our resolution. It would seem that in theory 
we could get infinite resolution if we had enough 
signal and acquired for long enough (TADC). 
However, T2* prevents that from happening, at 
least along the readout direction. If TADC>>T2* we 

can assume the exponent in (k) has decayed to 0 
by the time we reach kmax/2, and its Fourier 
transform then becomes fairly straightforward 
since we can extend the upper limit to : 
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This is a fairly complicated looking function, but it 
really breaks down into some uninteresting 
constant factors, times 
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which is the T2* weighting (note that now TADC 
appears because it is non-negligible), and  
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i.e., our PSF will now no longer be a sinc but given 
by the above function. Its real part is known as a 
Lorentzian: 
 

 

 
 
In our case, it will have a width approximately 
given by *

2FWHM ~ /ADCT x T . That is, the 
width of our PSF will become larger and larger the 
shorter T2* or the longer TADC become, effectively 
blurring our image even if the nominal resolution 
stays the same. 

FWHM ~ 1/a  
 2

1
1

f x
ax






T2 Contrast 

The Spin Echo Refocuses T2’ And Leaves 
Us Solely With T2 Related Signal Decay  
We now come to the next class of sequences 
known as spin echo sequences, which are 
T2-weighted. These sequences rely on a basic 
element known as a spin echo. Imagine the 
following simplified pulse sequence, in which the 
spins are excited, precess around, and then 
subjected to a 180 pulse – also called a -pulse in 
MR jargon for obvious reasons. If we run this 
sequence and plot the signal as a function of time, 
we will obtain  
 

 

We will now analyze what happens to the signal as 
a function of time. The -pulse inverts the phase 
of the spins in the xy-plane. Focusing on a small, 
mesoscopic subregion, the offset of those spins due 
to spatial, constant field inhomogeneities will be 
   ,t B  r r . Its time evolution will be 
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At time D, right before the 180 pulse, it will have 
accumulated a phase  
 

   D B D   r . 
 
What is the effect of the (180)x-pulse on it? This 
can be deduced via a simple calculation: if we write 
the magnetization vector as 
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and use the form of a rotation matrix about x: 

(90)-y (180)x 

Spin echo 

D D 

Height: s0 
Height: 2

2

0

D
Ts e



  *
2

0decay s e
t

Tt


  

time

y 

x 

z 

y

x 

z 

y

x

z

y 

x

z

180

y

x 

z 

t=0+ 
Following the 
initial (90)-y hard 
pulse, all spins are 
tilted to the 
transverse plane. 

t=D- 
The spins dephase 
due to different 
spatial offsets (T2’) 
and microscopic 
decay (T2). 

t=D+ 
A (180)x flips 
the spins about 
the y axis and 
reverses their 
phases, -. 

t=2D 
All of the spins refocus 
along the y-axis and the 
signal "revives", 
forming a spin echo. 
Some signal is lost due 
to intrinsic, irreversible 
T2 decay. 

t=0- 
All the spins 
start out from 
thermal 
equilibrium. 

(180)x

Spin echo 

D D

Height: s0 

Height: 2

2

0

D
Ts e


B 

(90)-y 

time

90 

Decay: e-t/T2* 



 

     
   

1 0 0
0 cos sin
0 sin cos

xR   
 

 
 

  
  

 

 
we get 
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namely, the phase of the spin will be flipped  
   . Since in the subsequent delay D it will 

acquire again the same phase    D B D   r , 
these two will cancel out and the spin will return 
to the x-axis, regardless of its constant offset. This 
experiment is one of the most important 
experiments in the history of NMR, first carried 
out by Erwin Hahn in 1950 (in a slightly different 
variation). Even though the -pulse negates T2' 
decay due to constant inhomogeneities, it does not 
negate the microscopic T2 decay due to the 
microscopic fluctuations of the fields. We thus say 
that the -pulse has refocused T2' but not T2.  

-Pulses Allow Us To Replace T2* 
Contrast With T2 Contrast 
180 pulses can be used to turn the basic T2* based 
gradient echo (GRE) sequence we've encountered 
previously into a T2 based spin echo (SE) sequence 
as follows: 
 

 
 
Note several changes compared to the GRE 
sequence. First, the rewinding gradient lobe along 
x is now positive. This is because the effect of the 

180 is to invert the phase of the spins. This means 
that spins with a particular k-space position, 
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will get their phase flipped by the 180 pulse: 
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which is equivalent to replacing k by -k. Thus, the 
corresponding trajectory in k-space for a given scan 
looks like this: 
 

 
 
Our simplistic analysis can now be repeated: our 
signal decays and to a first approximation we need 
only take its value at the echo time, TE, into 
account. The decay is now governed by T2 and not 
T2* thanks to the 180 pulse; This means our 
signal in each voxel will be multiplied by 2/TE Te  .  

T1 Contrast 

Waiting For The Magnetization To 
Return To Thermal Equilibrium Takes 
Too Much Time 
Let’s do a simple calculation. Suppose we want to 
acquire an image with 256256192 points, not 
uncommon in MRI. The T1 of water in GM and 
WM in the brain is about 1 second, so after each 
excitation we would need to water about 5T1 for 
the magnetization to return to thermal equilibrium 
along the z-axis, meaning 
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One of the directions would use a readout 
gradient, so we don’t have to “pay” for it with a 
scan, meaning we acquire all of the points in one 
shot after the excitation by applying a readout 
gradient. This still leaves us with 256192 scans 
(256 phase encoding steps and 192 slices), leading 
to a total scan time of 
 

256192TR = 68 Hours. 
 

Obviously not a very practical protocol. This can 
be shortened considerably by either reducing the 
resolution or reducing TR. We will explore what 
happens during the latter. As we’ll see, this will not 
only shorten the measurement but will also 
introduce T1-weighting which is in many times 
desirable. 

Pulsing At A Rate TR~T1 And Below 
Introduces T1 Weighting 
Imagine a static bucket with water. The water is 
said to be in static equilibrium, because nothing’s 
happening to it. Next, imaging (i.) poking a hole 
in the bottom of the bucket, so water start running 
out, and (ii.) opening a tap just above the bucket, 
letting water flow in at a constant rate. What will 
happen? The water may rise or fall, but will 
eventually reach a new state of equilibrium 
(remember, the more water there is, the faster it 
drips out due to pressure; and the less water there 
is, the slower, so eventually the water flowing in 
will equilibrate with the water flowing out, even if 
at first the rates are different). This new 
equilibrium is termed dynamic equilibrium. 
Something is continuously happening to the 
system (in and out flow of water), so it’s not static 
anymore, and yet its state doesn’t change.   
 A similar thing happens in MRI when we use 
rapid pulsing. Consider a train of pulses of flip 
angle  (that is, BRFt = ) around, say, the –y 
axis. Let’s call the time between pulses TR (for 
“Time per Repetition”): 
 

 
 
The spins get acted upon by two “forces”: the 
pulses, which repetitively try to take them out of 

equilibrium, and relaxation, which tries to get 
them back to equilibrium. There’s also precession 
going on. It can be shown (I won’t do it here, but 
it’s not that difficult really) that the spins 
eventually settle into dynamic equilibrium, 
regardless of their initial state; that is, after enough 
pulses have been given, the state of the spins after 
each pulse is identical. In other words, the 
magnetization vector at points A, B, C, ... below is 
the same: 
 

 
 
This state will depend on the variables of the 
system: TR, T1, T2 and , and also the offset of 
the spins, . 

We will assume that TR>>T2 for the time 
being. This serves to ensure the transverse 
magnetization decays to 0 before the next pulse, so 
we can assume Mxy=0 just before any of the pulses. 
In MRI jargon we say that the transverse 
magnetization is spoiled before each excitation. 

 Denote by (A) (B) (C), ,M M M  the 
magnetization vectors at A, B and C, respectively. 
We’re interested in computing M(B) and, 
subsequently, the magnetization’s evolution 
between the pulses. Note that: 

1. By assumption of dynamic equilibrium, 
(A) (C)M M . 

2. Since we’re assuming the magnetization is 
spoiled, (A) (C)

xy xyM M 0  . 

So: 
 

 
 
Since M(B) is a tipped version of M(A) by an angle 
, we have: 
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So      B A
xy zM M sin  . However, we’re not 

interested in the transverse magnetization (yet). 
We know that the longitudinal component of M 
relaxes back to equilibrium with a time-constant 
T1. You’ve shown in exercise 3 that, following the 
pulse and after a time TR, Mz will equal 
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where M0 is the thermal equilibrium value of the 

magnetization (it’s in general not equal to  A
zM !). 

Since    C A
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z zM M cos  , we 
can plug these into the above equation, 
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and solve for  A
zM : 
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From this we can compute      B A
xy zM M sin  , 

and, in fact, deduce Mxy(t) for any time between 
the pulses (t=0 corresponds to the time right after a 
pulse): 
 

     

 
 

 

2

1

2

1

B i t t/ T
xy xy

TR/ T
i t t/ T

0TR/ T

M t M e e

1 e sin
              M e e

1 cos e





  


  





  


k r

k r
 

 

Pulsing At A Rate TR<<T1 Saturates The 
Signal 
Let us plot the intensity of the dynamic 
equilibrium factor, 
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as a function of TR for T1=1 sec and for several 
values of :  

 

 
 
As we take TR to be shorter and shorter three 
things happen: 
1. Our acquisition becomes shorter (good!). 
2. We get more T1 weighting, meaning the 

intensity becomes more sensitive to T1, albeit 
only in a certain range. This is usually good. 

3. The signal diminishes (bad). 
The first is obvious. We will take a look at the 
second in a moment. The diminishing intensity is 
called saturation. When we excite the 
magnetization from thermal equilibrium we 
diminish the Mz by an amount sin(). After we do 
so, Mz will start building up towards thermal 
equilibrium during TR with a time constant T1. 
This means there are two "forces" acting on Mz: T1 
relaxation, which builds it up, and our pulsing, 
that reduces it. If TR<<T1 the pulsing wins and Mz 
reduces to 0 (that is, we saturate the signal). If 
TR>>T1, Mz has sufficient time to build towards 
thermal equilibrium and we start up from the full 
intensity before the next pulse. 
 It is not uncommon to see sequences with 
TR=5 ms. We can repeat our calculation of the 
sequence's duration and get: 
 

256 192 4 minutesTR   . 
 

A significant reduction compared to our previous 
68 hours, and also a reasonable scan time. 

Getting T1 Contrast With Rapid Pulsing 
The other beneficial aspect of rapid pulsing, other 
than reducing TR, is introducing T1 contrast. As 
we've previously remarked, the dynamic 
equilibrium factor depends on the ratio between 
TR and T1. Let’s plot it for a fixed flip angle - say, 
=90 - as a function of T1, for a fixed TR=10 ms: 
 

=22.5 

=45 

=90 



 
 

We see that, say, gray matter (T1~1.5 s), white 
matter (T1~1 s) and CSF (T1~4 s) yield different 
signal intensities: 
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The signal intensity of WM would be higher since 
it is less saturated. It would thus appear “white”, 
while GM would appear “grey”, on a T1 weighted 
image – this is a complete coincidence and should 
not be taken as a rule. On T2-weighted images, for 
example, WM has a lower intensity than GM and 
their visual roles are switched! 
 

 
 
What happens if we increase TR? Let’s set TR=1.0: 
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Lowering The Flip Angle Reduces 
Maximal SNR  
The dynamic equilibrium factor really depends 
only on two parameters: the flip angle and the 
ratio TR/T1: 
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Let us plot it as a function of the ratio, for several 
different flip angles: 
 

 
 
The maximal signal is obtained when the signal 
becomes independent of T1. Naively, it looks like 
this might happen when TR>>T1, which is true, 
since then 1/ 0TR Te    and 
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However, the above plots show this happens even 
before that for small ! How so? Let’s take the 
degenerate case 0, at which cos()1 and: 
 

   
 

1

1 1

/

/

1 sin
, sin

1


 





   


TR T

TR
T TR T

e
DEF

e
. 

 
So, the smaller , the more similar the nominator 
(1-e-TR/T1) and denominator (1-cos()e-TR/T1) 
become and consequently the less dependent on 
TR/T1. The true criterion is: 
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Higher Relative CNR Is Obtained At 
Lower Flip Angles. Higher Absolute 
CNR Is Obtained At Higher Flip Angles. 
The following useful table evalutes some 
parameters relations and their respective signal 
intensities: 
 

WM GM 

MPRAGE 
(T1-weighted) 

FLAIR
(T2-weighted) 

=90

=30

=5

Greatest 
contrast



 SNRmax  
1 0

TR
T  TR* 

(ms) 
Example: 

CNRWM,GM 
1 0.017 0.0001 0.1  0.001 
5 0.09 0.0038 3.8 0.008 
10 0.17 0.0153 15.3 0.017 
30 0.5 0.1438 144 0.053 
90 1.0  1000 0.145 
90    0.0012 

(TR=3.8 ms) 
TR* is the value of TR given T1=1 sec (typical for in-vivo brain 
GM, WM tissue at 3T). For =1, TR*=0.1 ms is too fast for 
almost all current imaging hardware. 
 
The example is given by setting TR=TR* and 
calculating the CNR between WM and GM, 
assuming a standard deviation of noise of unity: 
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 The above table illustrates two simple points: 

1. Lower flip angles result in less SNR. 
2. Lower flip angles “force” shorter TRs to 

get any sort of contrast (i.e. to be in the 
part of the signal curve which is sensitive 
to TR/T1). 

3. The resulting “forced” short TRs also lead 
to quicker sequences. 

However, the last line in the table shows that, for 
the same TR, GM/WM contrast is actually 
enhanced at lower flip angles (compare TR=3.8 ms 
for =90 and =5). Thus: 
 

 
 
This is also shown in the next page for a “model” 
of the brain with WM (T1=1 s), GM (T1=1.5 s) 
and CSF (T1=4 s) for different TRs (50, 400, 1000 
ms) and flip angles (10, 30, 90): 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For a given TR, the relative CNR is (usually) 
maximized by taking lower flip angles, at the cost of 
less SNR. The absolute CNR is maximized by 
taking larger flip angles and longer TRs, at the cost 
of longer sequence duration. 



Given TR and T1, There Is A Flip Angle 
That Yields Maximal SNR: The Ernst 
Angle 
We're remarked that reducing  reduces the 
maximal SNR achievable, but this does not mean 
that reducing  always reduces the SNR. This is 
clearly seen in the above pictures, where, for 
TR=50 ms, it is the smallest  that has the highest 
SNR. Furthermore, for TR=400 ms, =45 has 
more SNR than either =10 or =90. We 
understand this as follows: While reducing  
reduces the amount of magnetization excited, it 
also leaves more longitudinal magnetization intact 
before the next excitation pulse. There are thus 
two competing "effects" at play, implying that 
there should be some optimal flip angle (for a 
given TR/T1 ratio) at which SNR is maximal. This 
flip angle is called the Ernst Angle. To find it, 
simply differentiate the dynamic equilibrium factor 
with respect to  and equate to 0 to find its 
maximum: 
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After some algebra, one finds 
 

 1/arccos TR T
E e  . 

 
For example, for TR=50 ms, T1=1 sec (WM), we 
have 
 

18E   . 
 

This indeed shows that we'd expect larger signals 
for the =10 case than 45 or 90. For TR=400 
ms, T1=1 sec again, 
 

48E   , 
 

again, agreeing with our simulation results 
showing that the =45 has the largest intensity 
out of all cases.  
 Two words of caution, though: (1) the Ernst 
angle is T1 specific and therefore tissue specific; (2) 

alpha=10.00 deg., TR=50 ms alpha=10.00 deg., TR=400 ms alpha=10.00 deg., TR=1000 ms

alpha=45.00 deg., TR=50 ms alpha=45.00 deg., TR=400 ms alpha=45.00 deg., TR=1000 ms

alpha=90.00 deg., TR=50 ms alpha=90.00 deg., TR=400 ms alpha=90.00 deg., TR=1000 ms
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Longer TR, longer sequence duration, more SNR (less saturation) 

TR=0.4s 
GM,WM  

TR=1s
GM   WM  

=45

=10

=90



the Ernsr angle maximizes the SNR but not 
necessarily the CNR! Indeed, for the TR=400 ms 
case, it seems that =90 yields greater CNR 
between WM and GM than =45. We can verify 
this numerically, using a noise with a standard 
deviation of 1: 
 

Flip Angle Tissue SNR 
WM 0.443 
GM 0.361 

=45 

CNRWM,GM = 0.082 
WM 0.330 
GM 0.234 

=90 

CNRWM,GM = 0.096 
 

Qualitative Analysis of 

Non-Spoiled Sequences 

A quantitative, or even qualitative analysis of non-
spoiled sequences, is beyond the scope of these 
introductory lecture notes. We do however 
mention a few points of interest regarding these 
sequences below. 

Spoiling Fails When TR~T2 Or Shorter 
All of our discussion up to this point assumed that 
our sequence is spoiled; namely, that Mxy=0 prior 
to each excitation pulse. This occurs naturally 
when TR>>T2 so the transverse magnetization 
decays to 0 due to T2 relaxation before the next 
pulse in the train is applied.  
 Any unspoiled transverse magnetization prior 
to the next  excitation pulse will be partially 
stored - that is, converted to longitudinal 
magnetization - and partially remain in the xy 
plane. Any longitudinal magnetization will be 
partially excited and partially remain along the z-
axis. The effect of each pulse can be described as: 
 

 
 
This complicates the analysis and understanding of 
the sequence considerably; even more so when the 
flip angle is not 90. Just to provide a visual 
picture, here is what happens to an ensemble of 

spins when the inter-pulse spacing is 50 ms, with 
=60, T1=500 ms, T2=100 ms:  
 

 
 
Below I’ve simulated what happens to an ensemble 
of spins with a distribution of offsets (different 
hues of blue correspond to different offsets): 
 

 
 
At point (C), just before the second pulse, we still 
have transverse magnetization – this is the meaning 
of a non-spoiled sequence.  

It is quite clear that any attempt to visualize the 
spins’ individual trajectories is impossible after 2-3 
pulses. Some spins spend time in the xy-plane and 
are affected by T2, while others spend time along z 
and are affected by T1, and each spin rotates by a 
different amount.  

What happens if we keep on giving pulses? 
Below I’ve simulated the state of the spins just 
before the 12th (left) and 13th (right) pulses: 
 

A C D E F B

(60)x (60)x (60)x 

Transverse Transverse 

LongitudinalLongitudinal 

Before 1st pulse (A) After 1st pulse (B)

Before 2nd pulse (C) After 2nd pulse (D)

Before 3rd pulse (E) After 3rd pulse (F)



 
 
It is clear that the two states are very similar. Even 
though our sequences are non-spoiled, they still 
converge to a state of dynamic equilibrium.  

Spoiling Can Still Be Achieved Even At 
TR~T2 Via Either Spoiler Gradients Or 
RF Pulse Phases 
Before taking a look at non-spoiled sequences we 
note that we can create “effective spoiling” via two 
mechanisms at our disposal: by introducing spoiler 
gradients at the end of each TR, or by 
incrementing the phases of the RF pulses between 
successive excitations. The first approach is called 
gradient spoiling and the second approach is called 
RF spoiling. 
 The basic idea you should grasp is the 
following: 
 

 
 
The question now becomes: how can we make sure 
the spins inside a voxel point in different directions 
in the xy-plane? 
 One answer to that would be: apply a strong 
gradient! A strong (constant, for simplicity) 
gradient applied for a time t will create a phase of 
the form: 
 

   t  r G r . 
 

The signal from the voxel (assuming an ideal 
boxcar PSF) will be: 
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Let’s suppose we have just a z-gradient, so 
 

 z Gzt  . 
 
We’ve already plotted the shape of the spins as a 
function of z: 
 

 
 
Each “winding” in this helix corresponds to a 
phase difference of 2, and means the spins 
belonging to that helix are evenly distributed in the 
xy-plane. Adding up the spins will give zero signal 
if the spins are all equal magnitude. This may or 
may not be a good approximation, which is why 
we want as many windings as we can possibly get 
to null the signal: 
 

2voxel    
 
or 
 

2voxelG z t   . 
 

This would ensure that 
 

   
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0i t
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There is another way of viewing this: by applying a 
constant gradient we’re getting farther and farther 
away from the center of k-space, and we’ve already 
remarked that the farther out we go in k-space the 
smaller our signal (in the following diagram we 
assume the strong gradients are applied along the 
x- and y-axes, not the z-axis):   
 

If the transverse components of spins inside a 
voxel are randomly and/or evenly distributed 
in the xy plane then their transverse vector sum 
will add up to zero and we will have effective 
spoiling. In MRI jargon we say that we’re 
dephasing the intra-voxel magnetization. 

=0 

=0+2 

=0+4 

=0+6 



 
  
Spoiler gradients are an effective and simple way of 
ensuring effective spoiling, but they can be tricky 
to design since they might refocus unwanted 
signals (see homework assignment). 
 RF spoiling can also be used to dephase the 
intra-voxel transverse magnetization. The ideas 
here are significantly more complex than gradient 
spoiling, so we will not go into the details2, but the 
philosophy is very straightforward: can we cause 
the newly excited magnetization after each pulse to 
cancel out the magnetization from all of the 
previous excitation? The answer is yes. One way to 
do this is increment the phase of the RF pulses by 
117 between excitations: 
 

 
 

                                                           
2 Readers interested in the details are referred to Zur et. 
al., Magn. Reson. Med. 21(2):251-263 (1991) 

(60)0 (60)117 (60)234

ky 

kx

Wherever we start, 
a strong gradient 
will take us far 
away in k-space 


