
 

 

Lecture 9 

SNR 

Lecture Notes by Assaf Tal 
 
 
 

Noise 

MRI Noise is “White”, And 
Characterized By Its Standard Deviation 
Noise is a random signal that gets added to all of 
our measurements. In 1D it looks like this: 
 

 
 

while in 2D it looks like the “snow” on your TV 
screen: 
 

 
 
Noise is unavoidable. It comes from resistive 
elements in our system: the electronics, and even 
the patient who has some finite resistance. 
Microscopically speaking, it is because of the 
thermal fluctuations of our system: in the 
electronics and of the spins in the patient. 

A noise signal, n(t), cannot be represented by 
an analytical function. To characterize noise, we 
need to speak in statistical terms. The two most 
important characteristics are the mean (also known 
as the average) and the standard deviation of the 
noise.  They are denoted by n  and 

 2
SD n n  , respectively, and are 

illustrated below: 
 
 

 
 
 
 

 
 

 
 

 
 
In “well behaved” systems, the mean of the 

noise is 0; it sometimes gets added and sometimes 
gets subtracted from our signal at random. When 
<n> is non-zero the signal is said to be biased, or 
have a DC offset. Bias is easy to detect and 
remove, so we won’t focus on it here, and will 
assume the mean of our noise is 0.  
The SD of our noise is basically its “size”. When 
the SD of the noise becomes as large as the signal 
being measured, it becomes extremely hard to 
discern the two. Ideally, we would like to make the 
SD as small as possible. In practice, we often settle 
for making it “small enough”; that is, small enough 
with respect to the signal we’re looking at, so as to 
make the features that interest us discernable. This 
chapter will mostly be devoted to ways of making 
the noise’s SD “small enough”.  

Noise Adds Up As The Square Root of 
the Number of Measurements 
Suppose you have several noisy, independent 
random signals, with the same SD, and you add 
them together. What will be the SD of the sum? 
Let’s do a little experiment. Plotted below are eight 
random signals with a standard deviation of unity, 
before and after addition: 
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The scale of each plot is exactly the same (8). You 
can observe visually that the SD of each individual 
noisy signal is about 1, and the SD of the sum is 
about 3. So, while we’ve added 8 random signals, 
we didn’t increase the SD by a factor of about 3. 
In fact, we’ve increased it only by a factor 
of 8 2.83  to be exact. This is a general fact 
about random signals: Adding N random signals, 
each having the same SD, X, will yield a random 
signal with SD NX . To see this, suppose we 
have two noisy signals which are uncorrelated: 
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We add them up: 
 

 1 1 2 2 3 3, , ,n m n m n m n m      . 
 

The standard deviation each point is the same as 
any other point. Looking at the first point, we 
calculate 
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Because our noise is unbiased, 1 1 0m n  . 
Furthermore, because our noise is uncorrelated1, 

1 1 0n m  . Therefore 
 

     2 2 2
1 1 1 1SD n m SD n SD m     . 

 
If n=m, we get (after taking the square root): 
 

   1 12 2SD n SD n , 
 

proving the assertion. Intuitively, expecting an 
increase by a factor of N is unreasonable, because 
the noise sometimes adds constructively and 
sometimes destructively. This leads to a corollary: 

 
This is because the signal multiplies by N, the 
noise’s SD by N , and their ratio by N : 
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This is sometimes also called signal averaging. 

Noise in MRI Images Comes From The 
Patient! 
A well known theorem from statistical mechanics  
states that, the SD in the voltage in an electronic 
system is given by what’s called the Johnson noise 
or the Nyquist noise or thermal noise of the 
system: 
 

 
 

                                                           
1 imagine tossing two coins repeatedly and multiplying 
the results, where heads=(+1) and tails=(-1): on average 
you’d expect to get 0, although each experiment will be 
either +1 or -1 

Signal 1 (SD=0.96)

Signal 2 (SD=0.97)

Signal 3 (SD=1.06)

Signal 4 (SD=0.97)

Signal 5 (SD=1.03)

Signal 6 (SD=0.95)

Signal 7 (SD=1.01)

Signal 8 (SD=1.00)

Summed Signals (SD=2.88)
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Resistance. Most of the 
resistance in MRI 
comes from the patient!

Bandwidth of 
frequencies being 
observed. 

Adding N measurements improves the SNR by 
a factor of N . 



 

where Joules23
Kelvink 1.38 10   is Boltzmann’s 

constant, T is the temperature of the system (in 
Kelvin), R is the its resistance (in Ohms) and   
is the range of frequencies we’re observing. What is 
R? There are two sources of resistance in an MRI 
experiment: 

 The RF coils (Rc) and associated 
electronics. 

 The patient (Rp). 
Both the coils and the patient are conductors, to a 
degree. When a magnetic field infringes upon a 
conductor it dissipates partially as heat. We are 
basically made out of water, which is a conductor. 
When a magnetic field tries to penetrate a 
conductor it creates “eddy currents” as it dissipates 
slowly. This is known as the skin effect.  The 
currents induced in the patient then induce 
currents in the coils that are picked up as noise. 
This is called patient loading. It turns out that for 
high fields (~1 Tesla and above in practice), 
patient loading is more important than the 
intrinsic hardware noise: 
 

p c pR R R R   . 

The Patient Loading Increases as The 
Square of B0 
Here we show that  
 

2 2 2
0 0~pR B  . 

 
You can skip the proof without loss of continuity.  
 The human body has a certain conductivity  
which is tissue-dependent. A current flowing 
through a conductor will dissipate into heat 
because the conductor has some resistance. If we 
create a time varying flux through the conductor, 
it will create tiny currents called eddy currents 
which will, in turn, heat up the object – that is, the 
patient. This principle underlies some of the newer 
induction heating stoves being sold today. 
 If we denote by R the resistance of a 
conductor, by G=1/R its conductance, and by V 
and I the voltage across and current through the 
conductor, then the power dissipated in the 
conductor is simply: 
 

2 2P I R V G   

 
The voltage by a sinusoidal RF field can be 
calculated via Faraday’s law. Let’s suppose we have 
a loop of area A through which we apply a 
perpendicular RF field of the form  1 0cosB t : 
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V B t A
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The conductance of the loop is  
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This result will change for a different geometry, 
but what will remain the same is the dependence 
on the RF and B0 fields, which is both quadratic. If 
we set I = 1 ampere we get the loop’s resistance: 
P=I2R=R. By reciprocity, when I=1 ampere, B1 
becomes the coil’s sensitivity, so we can say 
 

  22
0~ rec

c xyR B  . 

 
 Our conclusion assumes that B1 is the same 
everywhere in the body, an assumption that breaks 
down at higher fields where the near field 
approximation is no longer valid. However, we’ll 
put aside these issues and simply conclude that 
 

2
0~p c pR R R R    . 

 
The constant of proportionality will depend on the 
geometry of the body, its conductance, and on the 
coil’s sensitivity pattern, factors we will not trouble 
ourselves with in this course. 

The Noise Increases As The Square Root 
of the Bandwidth Per Pixel 
For a typical 1D MRI experiment, where we 
acquire in the presence of a gradient Gread, 
=GreadFOV: 
 



 
 
To sum up: 
 

2 2
04  read readV kTCB G FOV  

 
Note I’ve added the “read” subscript, to emphasize 
that the range of frequencies we observe during 
acquisition is determined by the read gradient (and 
not, say, the slice selection or phase-encoding 
gradients). 

A Fourier Transform of a Signal With N 
Points Increases The SNR by N 
The MRI signal is measured in k-space and 
consequently Fourier transformed to yield an 
image. The Fourier transform of noise is just ... 
more noise.   
 

      
 
Don’t forget our FT is discrete: it’s carried over a 
finite number of points. Because every point in the 
original (k-space) function affects every point in 
the Fourier (image) space, this means the noise at 
some point r in our image is added up from all 
points in k-space. If we have a total of N points in 
k-space, then the SD of the noise in image space 
will increase as N .  This is a  
 

However, the discrete Fourier transform also has a 
factor of 1/N in its definition. Without going into 
the technical details, here is the bottom line that’s 
relevant for us: 
 
 Fourier transforming noise over a discrete  
 set having N points decreases its SD  

by N . 
 
This works in 2D and 3D as well. For a 2D grid 
having Nx points along the kx axis and Ny points 
along the ky axis, the noise’s SD will increase by a 
factor x yN N . 

Signal 

We’ve seen the signal in MRI is proportional to 
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0 body
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The exact form of Mxy will depend on the sequence 
used. Let’s assume for simplicity that we have a 
simple GRE acquisition, so after each excitation: 
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The signal in each voxel will be proportional to 

 rot
xyM , assuming the different parameters are 

slowly varying on the scale of a voxel.  

The Discrete Fourier Transform Given A 
Factor of N to the Signal Amplitude 
Let's look at a simple 1D acquisition, in which we 
acquire N equi-spaced points in k-space: 
 

        2rot
0 body

jik xrec
j xy xys B x M x e dx   . 

 
Here max

2
k

jk j k     (j=0,1,...,N-1). Following a 
DFT, the signal from the jth voxel becomes: 
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         0ˆ rec rot
j xy xy js B x M x PSF x x dx




   

 
where the PSF was derived in an earlier lecture:  
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The overall shape of the PSF is such that it is 
comprised of a main lobe of width approximately 
given by 

max

1
kx  , i.e. the voxel size. 

Furthermore, its height is obtained by taking the 
limit 0x   and using  sin x x , which yields: 
 

  0 maxx k
PSF x N

k
 


. 

 
Thus, the area of the main lobe is x N   and we 
can approximate the signal as coming from xj, 

assuming Mxy and    rec
xyB x  are constant over the 

voxel's dimensions: 
 

       0ˆ rec rot
j xy j xy js B x M x N x  . 

 
This can be immediately generalized to the case of 
sampling in 2D and 3D k-space: 
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Non Fourier Transformed Axes Do Not 
Enjoy The N Factor 
Multislice 2D imaging, in which slices (say, along 
z) are excited sequentially  and each slice is phase 
encoded (say, in the kx-ky) plane, has a slightly 
different expression for its signal compared to the 
3D case: 
 

         0ˆ , , , ,multislice rec rot
jmn xy j m n xy j m n

x y

s B x y z M x y z

N N x y z


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Athough both sequences can cover 3D volumes, 
they differ by a factor Nz: 

 
   3ˆ ˆD multislice
jmn z jmns N s . 

 
To see why this is so, we go back to the signal 
equation prior to DFT. The (jmn) data point, 
which originates from the  ,j m

x yk k  point in the 

kx-ky plane in the nth slice, is given by:  
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The signal is only phase encoded along kx and ky, 

which is why a factor 2 n
zik ze   is lacking. 

Furthermore, is  rot
xyM  and  rec

xyB  do not vary 
inside the slice, we can approximate the integral 
over z: 
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Note the integration is really only carried out 
within the slice, since Mxy is 0 outside the slice 
(because no magnetization was excited outside the 
slice by assumption of a slice-selective pulse). z is 
the slice thickness. Using the above, we have 
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which is then DFT-ed along kx and ky to yield the 
signal from the (jmn) voxel:  
 

       0ˆ , , , ,multislice rotrec
jmn xy j m n xy j m n

x y
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which proves our initial assertion. 

Signal-to-Noise 

"True" 3D Acquisitions 

Focusing on a single voxel where  rec
xyB  and  rot

xyM  
are more-or-less homogeneous, and assuming a 



true 3D acquisition, we can write down the SNR 
in the voxel as: 
 

 

   

  

3

0

22
04

D
voxel

rec rot
xy x y z xy

rec
xy read read

SNR

B N N N M x y z

kTC B G FOV



 



    

 
We can simplify if we denote V x y z     , the 

voxel size, and plug in  rot
xyM  for the experiment at 

hand. Let's assume it's a spoiled GRE: 
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where 1/TR TE e  . Some factors, such as  , C and 
kT are constant in MRI and uninteresting from 
our perspective, so we will drop them and remain 
with 
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2D Multi-slice Acquisitions And The 
Multiplexing Advantage 
We seen that the DFT affects the signal and the 
noise in the following manner: 
 

Signal  Signal

Noise   × Noise

N

N

 


 

 
Thus, Fourier-transforming along any axis will 
increase the SNR by N , where N is the number 
of voxels along that dimension: 
 

SNR SNRN  . 
 

This is called the multiplexing advantage by some 
authors. The idea is simple, and let's think for a 
moment about the slice (foot-to-head) direction: 
in each excitation we acquire the entire volume. 

Then when we reconstruct our signal, the signal 
from the jth slice originates from all N k-space 
points, which the DFT adds up with varying 
phases. It is therefore a form of signal averaging. 
Since there are N slices we end up averaging N 
"signals", leading to the N  factor (e.g. slice #2 
in the following illustration): 
 

 
 
In particular, it should be clear that multislice 2D 
acquisitions do not enjoy the multiplexing 
advantage along the slice direction, and the reason 
should be clear: each excitation excites only a 
single slice instead of the entire volume, acquiring 
"less signal". Thus, you will see in some books 
statements such as: 
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This is true but it also omits other important 
factors. For example, suppose we have Nz slices, 
and within each slice we phase encode the y-axis 
and frequency-encode the x-axis. If the total 
acquisition time Tacq is fixed, this would imply that 
 

acq

y z

T
TR

N N
 . 

 
However, comparing 2D multi-slice and 3D 
acquisition the effective TR for the multislice 
acquisition is NzTR. This effective TReff is defined 
as the time between sequential excitation of the 
same slice: 
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Thus (assuming the total acquisition time is the 
same),  
 

eff zTR N TR  . 
 

It is the effective TR that enters into the dynamic 
equilibrium factor, since that is the period of time 
between successive excitations of the same group of 
spins: 
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There is therefore substantially less signal 
saturation in 2D multislice acquisitions, which can 
often make them as attractive - or even moreso - 
than true phase-encoded 3D acquisitions.  
 In reality, spins with short T1s are ideal 
candidates for true 3D acquisitions, since even if 
we excite them rapidly they still manage to relax 
quickly back to thermal equilibrium. This isn't 
always the case for protons, but other spin species - 
e.g., 17O - have extremely short T1s (< 1 ms) and 
are almost impossible to saturate.  

Dependence of SNR on 

Imaging Parameters 

Increasing the Bandwidth Per Pixel 
Decreases SNR but Increases Robustness 
A quantity that makes an appearance in many 
imaging sequences is the bandwidth per pixel: the 
number of Hz across a single voxel once the 

readout gradient is turned on. Shortly, if Gread is 
the readout gradient, and x is the pixel size 
(assuming readout is along the x-axis), then the 
bandwidth per pixel 1/NBW  is:  
 

1/N readBW G x   
 
The BW for the entire FOV is 

read read read xBW G FOV G N x    , so: 
 

1/ x

BW
N NBW  . 

 
This means we can rewrite the above using: 
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Thus we see that, along the readout, the SNR is 
proportional to 1/1 NBW .  
 It would seem that increasing BW1/N is 
detrimental. However, there are also associated 
benefits: a higher BW1/N minimizes chemical shift 
displacement and the effects of B0 inhomogeneity.  

Dependence of SNR on Readout 
Duration 

We've just seen that 1/1 NSNR BW . This can 
be slightly rewritten: we know that  
 

1/N readBW G x   
 

but also that 
 

max,

1 1

x read read

x
k G T

    

 
where readT  is the readout time (i.e. the time 
during which we acquire a signal while the readout 
gradient is on). Plugging this back into BW1/N: 
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1

N
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and so we could equally say: 
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Dependence on Voxel Size & Number of 
Voxels (for a Fixed FOV) 
If we fix the scan time and number of voxels, our 
expression for the SNR clearly shows  
 

SNR V   (Ni, FOVi fixed, i=x,y,z). 
 

However, this is rarely the case in practice. When 
the voxel volume is halved, the number of voxels is 
usually doubled because one is often interested in 
keeping the FOV fixed. One must then also decide 
whether to keep the BW per pixel fixed (meaning 
you would have to change either Gread or FOVread) 
or not. If we assume the total bandwidth is fixed, 
so both Gread and FOVread remain fixed, our SNR 
expression tells us that  
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Note the "hidden" assumption: if we keep the 
same total acquisition time fixed then TR - the 
time it takes to read out a k-space line in each slice 
- must be halved, which may or may not be 
possible.  
 If the bandwidth per voxel along the readout 
direction (x) is kept fixed (as opposed to the total 
BW along the readout direction) - by increasing 
the gradient and therefore the noise - the above 
expressions need to be amended by dividing by 

xN : 
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Dependence of SNR on 

Hardware/Sample 

Dependence of SNR On Main Field (B0) 
The above expression seems to suggest the SNR 
increases linearly with B0. This however does not 
take into account hidden dependencies of T1 and 
T2 on B0. Empirical evidence suggests that for 
biological tissue and at the field strengths 
encountered in the clinic, 1 0

aT B  with 1/ 3a  . 

For example, 1 1 secWMT   at 3T, so 
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For a spin echo experiment (in which T2* is 
swapped by T2, which has little B0 dependence), 
the SNR behaves as 
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This dependence is plotted as a function of B0 (in 
arbitrary units) for TR=1 sec, =45,  and 
compared to the simple linear B0 dependence in 
the plot below: 
 

 
 

Dependence of SNR On Receiver Coil 
An interesting consequence was that both the noise 
and the signal depend linearly on  rec

xyB  in our 
model, and so cancel out. The final expression of 
the SNR has no dependence on  rec

xyB  and on the 
sensitivity of the RF coil. 
 In reality the SNR does show dependence on 
coil sensitivity. We made some assumptions in our 
derivation, such as neglecting the coil resistance, 
which are not 100% correct. In reality, it's quite 



easy to build a very poor coil which would 
dominate the noise term.  
 The quality of a coil is usually characterized by 
its quality factor, Q. In general, the coil is an 
inductor with some inductance, L, and it stores 
magnetic energy. Due to dissipation, some of that 
energy is lost for every cycle of the RF irradiation. 
The Q is defined as: 
 

energy stored in coil
energy lost per RF cycle

Q  . 

 
The amount of energy lost will depend on what's 
inside the coil, so an unloaded (empty) coil will 
have a different and higher Q than a loaded coil 
with a patient in it, since energy is lost in the 
patient as well. It is possible to show that 
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If we adhere to the requirement that Rc be 
minimal, we see that a "good" coil is one for which 
Q drops dramatically once loaded.  
 For a good coil, typical values of Qloaded are 
roughly in the 50-200 range. Unloaded values of 
Q are in the hundreds.  

Dependence of SNR on Gyromagnetic 
Ratio 
Some care must be exercised when expressing the 
dependence of the SNR on   (or, equivalently, on 
 ), since it depends on how precisely we compare 

two acquisition. If we keep the total acquisition 
time constant (or, equivalently, the bandwidth per 
pixel constant), then  
 

2SNR  . 
 

It’s very difficult to test this prediction in practice, 
for different reasons: 
1. Different nuclei will use different coils. 
2. Different nuclei will precess at different 

resonant frequencies, 0 0B  . Many 
physical properties of the tissue being imaged, 

relaxation constants, conductivities, etc. are all 
frequency dependent and will affect both the 
noise and signal. 

However, this is one of the main drawbacks of 
imaging low- nuclei, even when at 100% natural 
abundance (such as 31P), alongside their small 
concentrations and (sometimes) quadrupolar 
moments. 
 
 


