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Quantum Mechanics 

Lecture notes by Assaf Tal 
 
NMR is a semi-classical phenomenon. On the one 
hand, we treat the electromagnetic fields in matter 
as classical, which is justified at the long 
wavelengths encountered1. On the other hand, the 
basic unit we'll be dealing with - the nuclear spin - 
is strictly a quantum mechanical (QM) entity. 
Although in certain cases we can take a classical 
limit in which our system of spins can be described 
by classical equations, for the most part NMR is 
best thought of in quantum mechanical terms, and  
cannot be explained well by classical analogies.  
 Luckily, QM is fairly benign in NMR since it 
deals with simple systems (mostly spin-1/2). We 
review here some of the basic principles which will 
be of use to us in explaining NMR phenomena in 
subsequent chapters.  
1. Kinematics: First, I will explain how to 

describe a QM system. We will start with a 
single spin in a magnetic field. Instead of 
taking the "usual" view adopted by many QM 
textbooks which talk about wave functions 
and vectors, we will immediately start with the 
density matrix formalism, which is in fact a 
generalization of those concepts (and, 
paradoxically, easier to understand!). 

2. Dynamics: I will show you how to “solve” any 
problem in quantum mechanics. That is, 
given the state of the system at time t=0 and 
the electromagnetic field it's in, I'll explain 
how to solve - at least in theory - for its state 
at any time t>0. 

Our philosophy will not be to "understand" 
quantum mechanics, which is rather ambitious,  
but to lay down the basic rules by which we can 
carry out meaningful calculations.  
 

                                                           
1 In physics-speak we'd say we have many photons per 
unit volume. 

 
 Most books begin by talking about "wave 
mechanics" using vectors to describe a pure 
quantum system, and generalize to statistical 
ensembles using the density matrix formulation. 
We will circumvent that step completely to 
simplify the discussion, which means we will be 
saying "just because" at a few spots where we will 
lack the necessary foundations to explain them. 
We will conclude by generalizing our notions to 
more than one spin. 
 

 

Wave Mechanics 

Physical Quantities of The System Are 
Given By Square Matrices 
Physical observable quantities of a system such as 
energy, angular momentum and magnetic moment 
are given by matrices.  
 The simplest system in QM is possibly an 
isolated spin-1/2. Some atomic nuclei have non-
zero angular momentum. It turns out that the 
magnitude of the angular momentum only appears 

in "steps" of / 2h , where 
2m kg34
sec6.62 10h    is 

Planck's constant. So we have spin-1/2 particles 
(having intrinsic angular momentum h/2), spin-1 
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particles (having intrinsic angular momentum h), 
spin-3/2 particles (having intrinsic angular 
momentum 3h/2) and so forth. Some examples 
from nature include: 
 
"Particle" n p Spin  (radMHz/T) 
Electron 0 0 1/2 2 
Proton (1H) 0 1 1/2  
Neutron 1 0 1/2  
Deuterium 
(2H) 

1 1 1  

Carbon 
(12C) 

6 6 0  

Carbon 
(13C) 

7 6 1/2  

Lithium 
(7Li) 

4 3 3/2  

 
For a spin-1/2 particle - such as the electron, or 
proton - the spin angular-momentum components 
are given by: 
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For a spin-1 particle such as deuterium, the 
angular momentum components are 33 matrices: 
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In general, for a spin m/2, the spin operators will 
be (m+1)(m+1) matrices.  

The System's Energy is Called The 
Hamiltonian. It Is A Matrix 
We know from classical electromagnetism that the 
energy of a magnetic moment m is an external 
field B is given by 
 

E   m B . 
 

It is highest when m and B are anti-parallel and 
lowest when they are parallel. 
 The corresponding quantum mechanical 
observable is called the Hamilatonian, and is 
obtained by swapping m out for the quantum 
mechanical magnetization observables: 
 

ˆ

ˆ ˆ ˆ
x x y y z z

H

M B M B M B
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Substituting the full forms for the Mis  ˆˆ
i iM S  

and adding up all three matrices, we obtain: 
 


  

    


*
z xy
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B B
H
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If the magnetic field is time dependent, so is H. 

The "Quantum" in Quantum 
Mechanics 
A fundamental property of many quantum systems 
is that many of their observables (physical 
quantities) are quantized. This means that if we 
take a pure, well isolated system, and measure that 
quantity, we will always get an answer that belongs 
to a discrete set of values. This set coincides with 
the possible eigenvalues of the matrix2. We remind 
that reader that (1.) an mm matrix has up to m 
distinct  eigenvalues, and (2.) a diagonal matrix's 
eigenvalues are simply its entries on the diagonal. 
 For example, the z-component of the angular 
momentum for a spin-1/2 particle, 
 

1 0ˆ
0 12

 
   


zS  

 
has two eigenvalues, 2  . This means that when  

                                                           
2 You will get to practice eigenvalues a bit more in 
the tutorial, but to refresh your memory, a vector v 
is an eigenvalue of a matrix M is Mv=(some 
number)v. A simple example is the rotation matrix 
Rz() about the z-axis. It is clear that  ˆ 0,0,1z  is 
an eigenvector with eigenvalue 1, since it is 
colinear with the z-axis:   ˆ ˆzR  z z . 



The State Of An Ensemble is Given By 
A Density Matrix 
A density matrix, often denoted , is just a square 
matrix that follows a few rules. First, it is 
hermitian, just like observables: 
 

†  . 
 

It is also positive semidefinite, meaning that for 
any vector x,  
 

† 0 x x . 
 
Finally, it has a trace of unity: 
 

 tr 1  . 
 

The density matrix has one fundamental physical 
property from which its entire behavior can be 
derived: if the system is described by a density 
matrix , then the average value of a measured 
observable A is given by 
 

 trA A . 
 

Our next order of business will be to generalize the 
state vector formulation to handle statistical 
ensembles of particles, such as the ~1025 spin-1/2 
particles in a 200 mL glass of water. 

The Entries of a Diagonal Density 
Matrix Represent Probabilities 
In the "conventional" way of teaching QM, one 
first learns about wavefunctions and probabilities. 
It is mentioned that a spin-1/2 particle can be in 
either an "up" or "down" state, each having its 
own energy. Using these, the following 
interpretation is then given to the density matrix: 
when in a diagonal form, the elements along the 
diagonal represents the probability of the system of 
being in the up or down state, respectively: 
 

 
 

Pr 0

0 Pr


 
 
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This is also consistent with the properties of , 
namely tr()=1 (probabilities sum up to 1) and 

positive-semidefiniteness (probabilities are  0). 
However, we will not be taking this route and will 
not be using this interpretation except at one point 
down the road, when we discuss the thermal 
equilibrium state of the system. 

A Simple Example: Spin-1/2 Particle 
Let's take an example by looking at a general 2×2 
matrix for a spin-½ particle: 
 

11 12

21 22

 


 
 

  
 

, 

 
where the different elements can be complex. Let's 
carefully apply the conditions for  to be a density 
matrix. Hermiticity means  
 

* *
11 12 11 21 †

* *
21 22 12 22

   
 

   

  
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We see that *

11 11   and *
22 22  , meaning 

both quantities are real. Let's denote them by  
 

11

22

a
d







 

 
where a, d are both real numbers. Furthermore, 
let's denote 
 

12 b ic    
 

with b, c real, such that  
 

a b ic
b ic d


 

   
. 

 
Next, we impose the condition tr()=1, from 
which a+d=1, so: 
 

1
a b ic

b ic a


 
    

. 

 
Before imposing the final condition of positive-
semidefiniteness, let's calculate the expectation 
value for the x, y and z-components of the intrinsic 
magnetic moment, ˆˆ

i iM S  (i=x,y,z): 
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These are just enough equations to solve for the 
coefficients a, b & c: 
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from which 
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or 
 

2

1 2 ˆ
2
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The Time Evolution Of The System Is 
Given By The Liouville Equation 
Much like Newton's 2nd law, F=ma, dictates the 
dynamics of a classical system, Liouville's equation 
dictates the dynamics of a quantum system:  
 

1 ˆ ,
    

d
H

dt i
. 

 
Here Ĥ  is the hamiltonian, and by definition, for 
any two matrices, 
 

 ,A B AB BA  . 
 

If H is time independent, we can solve the 
Liouville formally: 
 

   / / †0iHt iHtt e e U U     . 
 

The quantity   /iHtU t e   is called the 
propagator. To see this solves the Liouville 
equation, note that3 d iH

dt U U 


 and 
differentiate: 
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 

 

 
so it satisfies the Liouville equation and is a 
solution. 

Example: Time Evolution of a Magnetic 
Moment In A Constant Magnetic Field  
Let's use all of the machinery we've seen so far to 
calculate the time evolution of a spin-1/2 magnetic 
moment, starting along the x-axis, and placed in a 
constant magnetic field along the z-axis.  

 
 

                                                           
3 For regular functions and numbers, at atd

dt e ae . 
This does not change if we discuss matrices; the 
only time we need to be careful when handling 
matrices is when we have two different matrices 
which don’t commute. If we only have one matrix, 
we can treat it as a number, so: 

ˆ ˆ ˆˆ ˆAt At Atd
dt e Ae e A  . The last line is true because, 

again, we’re dealing with Â  and a function of Â , 
which commute (a matrix commutes with any 
function of itself).  

x

y 

z

M

B0 



 To “solve” this problem, we will ask ourselves 
four questions in this order: 
1. What is our density matrix at time t=0? 
2. What is our Hamiltonian? 
3. What is our propagator, U(t)? 
4. What is our density matrix as a function of 

time? (obtained by computing †U U ) 
Our initial density matrix is obtained by putting 
M=(M0,0,0) in our expression for : 
 

0
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The constant magnetic field is  
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B
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Our Hamiltonian is  
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
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with 
 

0 0B  . 
 

For a proton  rad kHz
mT2 42.576     in a B0=3 

Tesla magnetic field, 0 2 127 MHz   .  
The propagator is easy to calculate because the 

Hamiltonian is diagonal. For any diagonal matrix, 
A, matrix multiplication with itself is very simple: 
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We can use this property by expanding the matrix 
exponential with a Taylor expansion. I remind you 
that Taylor expansion for ex is 
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so for the matrix exponential Âe , 
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Adding up the matrices, we get 
 

2 3
11 11

2 3
22 22

ˆ 11 2! 3!

22 2! 3!

1 0

0 1

A A
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A A

A
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We see that, along the diagonal, we get Taylor 
expansions of 11Ae  and 22Ae , so 
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This result is not true in general. For a non-
diagonal matrix, in general 
 

11 12
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Using this, we can immediately write down the 
propagator: 
 

 
0

0

/2
ˆ /

/ 2

0

0

i t
iHt

i t

e
U t e

e








 
   

 
 . 

 
Finally, with all of this in place, we can compute 
the form of the density matrix as a function of 
time: 
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This looks simple, but we’d like to also 
“understand” it by recasting it in the general form 

   2
1 2
2

ˆt I t


   M S


. Note that, simply by 

inspection, 
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From this we can immediately read off the 
components of the magnetic moment as a function 
of time: 
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We can also write this using matrix notation to 
make it a bit clearer: 
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This describes a circular motion of M0 in the xy-
plane about the axis along which the external 
constant field B0 points, which is the z-axis. The 
rotational motion is left handed, meaning the 

sense of direction is obtained by putting your left 
hand along B, curling it and noting the direction 
in which your fingers curl. 

 
 

Magnetic Moments Precess About An 
External Field 
There was nothing special about the directions 
chosen in the previous section. We could go back 
and solve for a general initial density matrix, but 
our physical intuition should tell us already that it 
shouldn't matter how we start out: if B is constant 
in space, the magnetization will just precess 
around it (note the left handed sense of rotation):  
 

 
 
We won't go back and actually solve the tedious 
Liouville equation with an arbitrary field and 
initial condition, although - aside from extremely 
long-winded algebra - it is quite possible to do so.  
 Since we know M(t), we can also immediately 
write down the density matrix as a function of 
time, using the formula 
 

   2

1 2 ˆ
2




  


t I tM S . 

A Spin-1/2 System Can Be Understood 
Classically: Bloch's Equations 
The above quantum mechanical derivation has a 
completely classical analogue. To see this, we begin 
by proving Ehrenfest's Theorem, which states that 
the time evolution of the expectation of value an 

B 

M

x

y 

z



observable,  ˆ ˆA tr A , evolves in time 

according to: 
 

ˆ ˆ1 ˆ ˆ,
d A dA

A H
dt i dt

   
. 

 
The proof is obtained simply by applying the 
definition of a derivative and using the fact the 
trace is linear in the derivative: 
 

  ˆˆ

ˆ
ˆ

ˆ ˆ, ˆ

ˆ ˆ ˆˆ ˆ

d tr Ad A

dt dt
d dA

tr A tr
dt dt

H dA
tr A tr

i dt

H A HA dA
tr tr tr

i i dt



 




  



           
              
     

            
     



 

 

 
Now, the first term on the last line can be changed 

to  1 ˆ ˆ
itr AH  since the trace is cyclic: 

     tr ABC tr BCA tr CAB  . Using the fact 

that  ˆ ˆA tr A  for any operator Â , we can 

write this as 
 

ˆ ˆ1 1ˆ ˆˆ ˆ
d A dA

AH HA
dt i i dt

  
 

 

 
which is precisely equivalent to the claim made.  
 With Ehrenfest's theorem, we can take each of 
the magnetization operators and write down: 
 

ˆ
1 ˆ ˆ,

i

i

d M
M H

dt i
   

 

 
where the explicit time derivative of the operators 
is zero since they are time independent4. 
Remember what the Hamiltonian of the system 
looks like: 

                                                           
4 Some observables can be time dependent, but that is a 
topic we will not touch upon in this course. 

 
ˆ ˆH   M B . 

 
Substituting in Ehrenfest's theorem, we get: 

 

 

ˆ
1 ˆ ˆ ˆ ˆ,

1 1ˆ ˆ ˆ ˆ, ,

1 ˆ ˆ, , , .

i

i x x y y z z

i x x i y y

i z z

d M
M M B M B M B

dt i

M M B M M B
i i

M M B i x y z
i

     

        

   



 



 

 
I leave it to the reader to verify that 
 

ˆ ˆ ˆ,

ˆ ˆ ˆ,

ˆ ˆ ˆ,

x y z

y z x

z x y

M M i M

M M i M

M M i M







   
   
   







 

 
from which (along with the fact that [A,B]=-[B,A] 
and [A,A]=0 for any A,B) follows that 
 

ˆ
ˆ ˆ

ˆ
ˆ ˆ

ˆ
ˆ ˆ

x

z y y z

y

x z z x

z

y x x y

d M
M B M B

dt
d M

M B M B
dt

d M
M B M B

dt

 

 

 

  

 

  

 

 
Looking closely at these three equations, we see 
they can be succinctly written using vector 
notation as: 
 

ˆ
ˆ

d

dt
 

M
M B . 

 
The same equation can be derived completely 
classically as follows: A microscopic (point-like) 
magnetic moment m in a magnetic field B will be 
affected in two ways: it will feel a torque (which is 
the time derivative of the angular momentum): 
 

d
dt

  
L

m B . 

 



A nucleus has an intrinsic angular momentum S  
and proportional moment M=S. Its derivative is 
 

 dd d
dt dt dt


      

SM S
m B . 

 
The solution of the Bloch equations, which we will 
not pursue here, predicts - you guessed it - that the 
moment m will precess around any constant 
magnetic field B.  

The Initial State Of A System is Given 
By Boltzmann's Distribution 
We now know how to solve for the time evolution 
of a system given its initial state. But what should 
that initial state be? Well, that’s a question that 
should be answered by you: what physical state is 
your system in initially? However, one initial 
condition presents itself repeatedly: thermal 
equilibrium. I’ll give you the “answer” for how  
should look like and then we’ll discuss its meaning: 
 

 
ˆ ˆ

1
, tr .

H H
TE kT kTe Z e

Z


  
    

 
. 

 
Let’s assume our field is along the z-axis. The 
Hamiltonian is: 
 




 
      
 
 





0

0

2
0

2

0ˆˆ ˆ
0zH S BM B . 

 
Because it is diagonal, we can immediately write 
down: 
 

0

0

0 0

ˆ 2

2

ˆ

2 2

0

0

tr .

H kT
kT
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H
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Z e e e
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



 

 
   
 
 
 

    
 





 

 

 
We will be working at room temperature, and can 
thus simplify, by noting 
 

26
0

21

8 10 J

kT 4 10 J

 



 

 


 

 

This means the term in the exponential is very 
small. Going back to our Taylor expansion, for 
small x we can approximate 1xe x   quite well, 
whence 
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 
 
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 
   
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and 
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0 01 1 2.
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kT kTZ e e
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
 
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 
 

 
Simple! Dividing the two,  
 

  0

2
0

2

1
2 2

1 2
2 4

ˆ

ˆ

TE
zkT

zkT

I S

I S



 



  

  



 

 
Since  TE  is now in the form 2

1 2
2

ˆI


   M S


, 

we can immediately write down the z-component 
of the magnetization5: 
 

 
2

0

4
eq

zM
kT

 



 

 
This tells us something that’s physically intuitive: 
when B0 is static and along z, the spins align along 
B0 because there is an energetic preference for 
them to point along the field. However, the 
amount of this alignment is quite small because of 
the thermal effects that disperse the magnetization. 
The x & y components of the magnetization are 
zero, which can also be confirmed by calculating 

                                                           
5 We could have equally derived the thermal equilibrium 
components of the magnetization by first calculating  

and then taking the traces  ˆtr iM . 



   ˆ ˆtr , trx yM M  , and this is because there is 

no energetic preference for the spins to point 
perpendicular to the main static field.  
 This calculation could have been repeated with 
any spin and yielded a similar result. For a spin S 
(S=1/2, 1, 3/2, 2, ... ), the equilibrium 
magnetization is 
 

   2
0 1

3
eq

z

S S
M

kT

  



. 

 
What happens if we have N spins? If they do not 
interact with each other, the total magnetic 
moment of the ensemble will (on physical 
grounds) just be multiplied by a factor of N: 
 

     2

0 1

3
eq

z

N B S S
M

kT

 



 

 
(it’s written in a slightly different way – I took 0 
and wrote it explicitly as B0) 

The Identity Element Is Often Omitted 
From The Density Matrix 
Remember that for a single spin-1/2, we saw that 
the most general density matrix has the form 
 

2

1 2 ˆ
2

I


  M S


. 

 
In other words, it looks like this: 
 

1
2 I    . 

 
Now, whatever our propagator is,  
 

† †1
2   U U U IU U U . 
 

The part with the identity matrix stays the same: 
 

† †1 1 1
2 2 2U IU IUU I   

 
because the propagator is unitary (so †UU I ). 
This means it’s “boring”. Not only does it not 
change with time – for whatever interaction we 
have! – but it also usually does not even contribute 

to many observables. For an observable Â , if 
I   then6 

 

   ˆ ˆtr trA A A   

 

Many observables satisfy  ˆtr 0A  . You’re free to 

check that      ˆ ˆ ˆtr tr tr 0x y zS S S   , and that 

for a spin in an external constant magnetic field, 

 ˆtr 0H   as well. This is why many authors 

simply omit it. We will do that as well and simply 
not write it out. One consequence of this is that 
the density matrix at thermal equilibrium assumes 
a simple form: 
 

  ˆTE
zS  . 

Product Operators 
We've seen that for a single spin-1/2, 
 

2

1 2 ˆ
2

I


  M S


. 

 
This means we can write it as a linear sum of the 
form: 
 

    0
ˆ ˆ ˆ

x x y y z za I a I a I a I  
 

where we've defined 0̂S I , and where7  
1 ˆˆ

j jI S  
(j=x,y,z). This is like saying that the set of 

operators  ˆ ˆ ˆ, , ,x y zI I I I  forms a basis for the space 

of density matrices of spin-1/2 particles: every 
density matrix can be written as a linear sum of 
these four operators. Now, 
 

   

     
0

1 2 3

ˆtr tr 2

ˆ ˆ ˆtr tr tr 0

S I

S S S

 

  
 

                                                           
6 Of course this is not strictly a density matrix because 
its trace is not one. However, this reasoning holds for 
any part of  that is proportional to I, like the 1

2 I  term. 
7 I’m dividing by   to make all basis “elements” 
dimensionless (it would be weird to have one element of 
the basis have no units, while another have units of 
angular momentum). 



 
The demand  tr 1   means 
 

 

 

3

0
3

0
1

0 0 2

ˆtr tr

ˆtr

2

n n
n

n n
n

S

S

 



 





   
 



  



  

 
This is of course nothing new: it means we get the 
1
2 I  term.  

Time Evolution of Product Operators 
The interesting thing about this formulation is the 
way it makes us think about propagation. Given a 
propagator U, an initial density matrix evolves as: 
 

†U U  . 
 

Plugging in our density matrix expression, we get 
 






   
 

 





3
†

0
3

†
0

1

ˆ

ˆ

n n
n

n n
n

U a I U

a I a UI U
 

 
So, in this completely equivalent picture, the 
coefficients are time independent and the basis 
vectors themselves “evolve” over time. If we know 
what the propagator does to each of the 
propagators, we can immediately write the solution 
down. This way of thinking will become extremely 
useful when trying to understand basic 
experiments down the line. 
 Let’s do an important example. For a spin-1/2 
system, we want to calculate 
 

†
n̂UI U  
 

under the influence of a general and constant 
magnetic field B. I’ll show you that you already 
know the answer. We’ve said that M(t) precesses 
about a constant magnetic field B: 
 

       ˆ 0LHt R t nM M  
 

where    ˆ
LHR n  is a left handed rotation matrix 

about an axis defined by the unit vector n̂ , which 
points along the direction of the constant field B. 
The angular velocity of the precession is B  . 
This means that the density matrix changes from  
 

   

 

2

1 2 ˆ0 0
2

1 2 ˆ0
2

I

I






  

  

M S

M I





 

 
at time t=0, to  
 

     1 2 ˆ0 0
2

I R t


    M I


. 

 
Now, another way to represent the dot product is 
using matrices: 
 

 

x x y y z z

x

x y z y

z

T

a b a b a b

b

a a a b

b

a b

   

 
 

  
 
 



a b

 

 
The transpose T has a nice property8, by which it 
switches the order of the matrices (just like for the 

hermitian conjugate):  T T TAB B A . This is true 
regardless of the sizes of the matrices, and they 
don’t even have to be square. So, for our 
multiplication, 
 

      
      
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n

M I
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8 This is easily proved. The transpose of A has elements 

 T
jiij

A A . For the product AB,  
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In other words, the “basis matrices” ˆ ˆ ˆ, ,x y zI I I  
themselves perform a precession around the 
magnetic field. For example, if our field is along 
the z-axis, 

 

0

0

0

B

 
   
 
 

B  

 
then our Hamiltonian is  
 

0 0
ˆ ˆ ˆ

z zH M B I     
 

and 
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ˆ
ˆ
z

iHt
i tIU t e e 

   
 

so 
 

   

   

0 0
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x
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U t I U t

e I e
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 
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
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where in the last line we just treated ˆ

xI  as a 
“vector” along the x-axis and applied a left handed 
rotation to it with an angle 0t . 

Multiple Spin Systems 

Multiple Spin Systems Are Described 
By Outer (Kronecker) Products 
By now we've seen how to describe the state of a 
system and calculate its time evolution if we know 
its Hamiltonian, using Liouville's equation (at least 
in theory, or for the simple system of a single spin-
1/2). This can be extended to multiple spin 
systmes by using the kronecker product of these 
spin spaces. The rules are simple and are listed 
below for two spin-1/2 systems; they can be 
generalized in a fairly straightforward manner: 
1. Any operator A of system (1), 
 

11 12
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ˆ a a
A

a a
 
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  is now transformed into 
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 where I is the identity operator of system two.  
2. Any operator A of system (2),  
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A
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 is now transformed into 
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For example, the x-component of the angular 
momentum for spin #1 is 
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Another example: the y-component of angular 
momentum for spin #2 is: 
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These ideas can be extended to any number of 
spins, by taking successive kronecker products. For 



example, for three spin-1/2s, the x-component of 
the 2nd spin is 
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That is truly a frightening matrix! Down the road, 
we’re going to come up with other ways of dealing 
with multiple spin systems that avoids mostly 
dealing with direct matrix multiplication. 

Product Operators For Multiple Spins  
 Can this be extended to two spin-1/2 operators 
easily. There are a total of 6 components of 
angular momentum: 
 

ˆ ˆ ˆ, ,

ˆ ˆ ˆ, ,

x y z

x y z

S I S I S I

I S I S I S

  

  
 

 
We can also form kronecker products that do not 
correspond to any physical observable: 
 

ˆ ˆ ˆ ˆ ˆ ˆ,

ˆ ˆ ˆ ˆ ˆ ˆ,

ˆ ˆ ˆ ˆ ˆ ˆ,

x x x y x z

y x y y y z

z x z y z z

S S S S S S

S S S S S S

S S S S S S

  

  

  

 

 
Along with the trivial identity operator, I I , we 
get 16 combinations ˆ ˆ

n mS S  where, as before, 

n,m=0,1,2,3 and 0̂S I , 1̂ x̂S S , 2̂
ˆ

yS S , 

3̂ ẑS S . We won't prove it mathematically, but 

these form a basis for all density matrix of the 
combined system: 
 

3

, 0

ˆ ˆ
nm n m

n m

S S 


   

 
This makes sense in terms of number of constants: 
 is now a 44 matrix having 16 complex 
elements, or 32 real numbers. Hermiticity cuts this 
down to 16, precisely the number of coefficients in 
the expansion above (note the requirement tr()=1   
fixes 1

00 4  , leaving us with 15 real coefficients). 


