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NMR Interactions 

Lecture notes by Assaf Tal 
 
In the previous lecture we learned that the 
dynamics of a quantum system is governed by the 
Liouville equation:  
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What determines the time evolution of the system 
is its Hamiltonian. We’ve already encountered the 
simple Hamiltonian of a magnetic moment in an 
external field: 
 

 ˆ ˆH t  M B . 
 

In this chapter we will introduce the different 
interactions – Hamiltonians – in NMR, and try to 
give you a feel for their relative importance and 
when they can be neglected. 

A Classification of Interactions 
Before “rushing in” it would make sense to classify 
interactions somehow into subgroups. We will 
follow several dichotomies:  
1. Electric vs. magnetic: Some interactions are 

magnetic in nature. Some derive from the 
electric charge distribution in the nucleus.  

2. Internal vs. external: External interactions 
occur between the nuclear magnetic moments 
and fields created by the scientist. They are 
“external” in the sense that they do not 
originate in the microscopic environment of 
the spin but imposed from the “outside”. 

3. Inter- vs. Intra-molecular: some of the 
internal interactions occur within a molecule, 
while others occur between different 
molecules. This distinction is important in 
liquid state NMR, where inter-molecular 
interactions tend to average out to 0 while 
intra-molecular ones tend to remain (although 
this sweeping statement must be regarded 
with caution, as we shall see). 

Interaction Magnitudes 
When does an interaction become important? It is 
important to get a good understanding of the 
“magnitude” of different interactions. This makes 
it easier for us to neglect some interactions. Even 
when we want to take small interactions into 
account we can use an approximation called the 
secular approximation, which makes dealing with 
them easier.  
 Although the dimensions of Ĥ  are those of 
energy – that is, Joules – we will find it much 
easier to think in terms of frequencies in NMR. 
We do this by dividing the Hamiltonian by  : 
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Let’s do a simple exercise to illustrate this. In a 
static magnetic field 0 ˆBB z , for a hydrogen 
(spin-1/2) nucleus,  
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The magnitude of the elements of Ĥ  in a 3 Tesla 
field is: 
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These represent the energy levels of the system in 
question. A more physically meaningful quantity 
would actually be the distance between energy 
levels, not their absolute energy: 
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Dividing by  , we have 
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The “magnitude of Ĥ ” now becomes 
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Since this is in angular frequency, we can divide by 
2 radians  and obtain 
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So, one might say that the magnitude of the 
interaction with the external static field is 127 
MHz (for a proton at 3T).  

Dimensionless Spin Operators 
Another thing we’ll do is “factor” the dimensions 
out of the spin operators, by defining 
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Now we have a dimensionless quantity Î  and this 
means we can lump all of the parts and bits that 
have to do with dimensions outside the main 
Hamiltonian. 

General Form For The Hamiltonians  
Let’s look at the simple and only Hamiltonian 
we’ve seen so far: the magnetic field interaction: 
 

ˆ ˆH   M B . 
 

What this means is that we’ve defined a “vector of 
matrices”,  
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so that 
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We can stick an identity matrix in the middle as 
well: 
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Many NMR interaction Hamiltonians can be put 
in the form:  
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Another common form is 
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Dipoles and Quadrupoles 
The electric field from a static charge consists of 
radial field lines “emanating” from or into the 
charge, depending on whether it is positive or 
negative:  
 

 
 

If you take two charges, positive and negative, and 
put them right on top of each other, they will 
cancel out perfectly. However, if you just put them 
“slightly” off one another they will create field lines 
that look like this: 
 

 
 



This is what’s known as a dipolar field. What does 
“slightly” mean? It means that the separation 
should be much smaller than the point of 
observation, i.e., the field is dipolar only when we 
look far enough from the dipole. 
 Now, can we continue this reasoning and use 
two dipoles to “cancel out” each other? Naively 
we’d think that put one dipole on top of the other 
would do the trick. However, two dipoles means 
you have four charges, so they create four dipoles 
and they all need to cancel out. This is done by 
placing them like this: 
 

 
 

This distribution is known as a quadrupolar field. 
We can keep on going and create octapole 
moments, etc (I actually don’t know what a 
16-charge distribution is called).  

What’s the point of this discussion? After all, 
we’re not dealing with electric fields. In fact, there 
aren’t even any magnetic monopoles (charges). 
However, it turns out that the shapes of the fields 
appear when dealing with magnetic fields.  For 
example, the magnetic moment of the nucleus 
creates a dipolar field. We will also encounter a 
quadrupole (electric) field. Then we will have 
dipolar interactions between two dipoles, etc, so 
it’s a good idea to just keep in mind where these 
terms come from and what is meant by a dipolar 
or quadrupole field.  

The Secular Approximation 
All of NMR happens in an external magnetic static 
large field, B0, taken to point along the z-axis. We 
need this field to polarize our sample, since at 
room temperature the nuclear spins are all 
randomly oriented in a macroscopic sample and 

we can’t detect them (the interaction with this 
external field is called the Zeeman interaction). 
 The presence of such a large B0 field means 
that we can often neglect those parts of other 
interactions that aren’t pointing along the 
direction of the main field: 
 

 
 
It makes sense that we can neglect a small 
component in the presence of a large one, but why 
only the perpendicular one? Here is a simple 
argument which, while not rigorous, will help you 
see where this neglect comes from. Let’s write out 
the two vectors, assuming without loss of 
generality A, the large vector, points along z and B, 
the small vector, is in the xz plane: 
 

 
 
0,0,

sin ,0, cos

A

B B 





A

B
 

 
Adding them, 
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The size of this vector is 
 

 22 2

2 2 2 2 2

2 2

2

sin cos

sin 2 cos cos

2 cos

1 2 cos

B A B

B A AB B

A B AB

B B
A

A A

 

  





   

   

  

        
   

A B

 
Now we can do a Taylor expansion: 
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with x=B/A, a=2cos() and b=1, getting 
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cosA B   A B . 

 
We see that the magnitude of the joint vector 
doesn’t “see” the perpendicular component. It’s as 
if we approximated  0,0, cosB B  and added 
A+B. The same thing happens in the secular 
approximation: an expansion is made in a case 
where there is a large (Zeeman) interaction and a 
small interaction, and the end result is as if we had 
included only the parallel component of the 
interaction. 

Motional Averaging 
Most interactions we’ll see will have some 
dependence on the orientation of the molecules. In 
isotropic liquids, the fast molecular rotational and 
translational diffusion tend to average out those 
quantities. However, some interactions will have 
isotropic parts: parts that do not depend on 
orientation and do not get averaged out. It’s 
important to keep track of what “goes away” and 
what stays, and we shall do so. 
 Even when an interaction gets averaged out, it 
doesn’t become meaningless. Averaged interactions 
appear as random fluctuating fields to the nuclear 
spin. Such stochastic external fields lead to 
relaxation: they cause the nuclear spin to return to 
thermal equilibrium once perturbed. They increase 
the entropy of the system and provide coupling to 
its other degrees of freedom, i.e., to a “thermal 
bath” An example of this is the quadrupole 
interaction. In liquids it gets averaged to zero. 
However, nuclei with non-zero quadrupole 
moments have very short relaxation times due to 
the fluctuating fields due to fast molecular motion. 

External Fields 
External fields refers to fields created by us, as 
scientists, in the lab. The general form of an 
interaction of a magnetic moment with an external 
magnetic field is 
 

ˆ ˆ
extH   M B . 

Zeeman (B0) Interaction 
Here 0ext B B  is a constant, static, homogeneous 
magnetic field created by a powerful NMR 
magnet: 
 

 

 
 

The larger B0, the greater the polarization and the 
greater the resulting signal, which is why high 
fields are desirable in NMR.  
 What makes a magnet “good”? 
1. High field. Today’s MRI magnets are about 

1.5-3 Teslas, going to about 10T, while NMR 
magnets are about 10 T, going up to about 20 
T (large bore magnets are more difficult to 
design, hence the difference between MRIs, 
with ~60 cm bore size, and NMRs, with ~cm 
bore size).  

2. Spatial homogeneity. The spatial homogeneity 
of the magnet is probably as important as its 
field strength. A good magnet will have a 
homogeneity of about 10 ppm over the 
sample; that is, there will not be any spatial 
variations of more than 10 times a millionth 
of the main field. This is then brought down 
even further another order or two of 
magnitude using special additional 
superconducting coils during installation, as 
well as pieces of ferromagnetic iron placed 
around the main magnet, called passive shims. 

3. Temporal stability. The magnetic field must 
remain very stable over time. A good magnet 
will “drift” by no more than about 10-7 of its 

The sole purpose of the spectrometer is to 
generate a large and very stable and 
homogeneous magnetic field, denoted B0. The 
purpose of this field is to polarize the nuclear 
magnetic moments, creating a macroscopic 
magnetic moment which can then be detected 
using methods we’ll discuss below. 



nominal value in an hour. So a 10 Tesla 
magnet should not change by more than a T 
in an hour – again, a highly demanding spec. 

4. Weight & space. NMR magnets tend to be 
large. This is unavoidable but at some point 
they become ridiculously so. The 10.5 T 
human MRI in U. Minnesota weighs 110 
tons and is 4 meters in length. The 1 GHz 
(23.5T) Bruker Avance 1000 magnet weighs 
11 tons and occupies an entire 2-floor room.  

5. Price. We’re talking science so we won’t talk 
about the economics of MR, but this is a 
major factor influencing magnet economy. A 
great magnet will just not get manufactured if 
it can’t make a profit.  

There are three major magnet technologies: 
1. Permanent magnets are limited at ~0.2 T. For 

this field, about 10 tons of ferromagnetic 
materials are required, making higher fields 
very impractical.  

2. Resistive magnets: These magnets are based on 
a very simple principle: a ring of current I and 
radius R will generate a magnetic field 
perpendicular to the ring’s plane at its center. 

 

 
 

We can take a wire and make multiple turns, 
building up a cylindrical structure of stacked 
rings: 
 

 
 

One can approximate the field along the center 
of such a solenoid as: 

 
ˆnIB z  

 

where n is the number of turns per unit length, 
I the current and  is the magnetic 
permeability of the medium inside the coil. For 
empty space, =0=410-7 NA-2.  

Let’s do a quick calculation. If we apply 1 
turn per mm (1000 turns per meter) and use 
the maximum current one can draw from a 
home outlet (say, 16 A), the field created will 
be 

 
B=0.02 Tesla = 200 Gauss 

  
To contrast, the earth’s average magnetic field 
is about 0.5 Gauss. Can we go higher? At some 
point the amount of current through the wires 
will become so high so as to melt down the 
wires, even with cooling.  

3. Superconducting magnets: Today’s NMR 
magnets can reach fields of up to ~20 Tesla. 
They do this by using superconducting wires, 
made usually out of niobium-titanium (NbTi) 
which can carry enormous amounts of 
current, around 100 A, without generating 
any heat. The NbTi wires are enclosed in a 
copper sheath to stabilize them mechanically 
and thermally. This enables NMR engineers 
to pump a great deal of current through each 
superconductive wire. The superconducting 
wires need to be kept at very low temperatures 
of a few Kelvins, which is achieved by 
submerging them in liquid helium at 4K. The 
modern NMR magnet is actually a very 
sophisticated thermos, designed to keep the 
Helium isolated and cool the wires to below 
4K. Further layers of either vacuum or liquid 
nitrogen keep the temperature down and the 
wires protected from room temperature.  

Superconducting magnets constitute the bulk of 
our modern MR technology. There are two design 
problems with superconductive magnets: 
1. Whenever some small defect is introduced 

into the system – say, a small amount of 
friction – loss of superconductivity is 
generated and propagates throughout the 
magnet. This is a very violent process called 
quenching, in which the magnet suddenly 
heats up, dissipating the liquid helium and 
nitrogen it is enclosed in. These rapidly 
expand and can cause the magnet to explode if 
measures are not provided for releasing 
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pressure (such measures are in place in 
modern MR magnets, do not fear). Another 
problem with quenching is that it quickly eats 
up the oxygen in the room and can lead to 
suffocation if proper ventilation isn’t 
provided. In other words, if a magnet 
quenches, keep your distance and call a 
specialized engineer.   

2. A more fundamental issue is that 
superconducting wires can only carry a limited 
amount of current at a given field strength 
and temperature. If one desires stronger 
magnets, either more wire or lower 
temperatures are needed. Moreover, the 
higher the current the lower this critical field 
Bc becomes: 

 

 
 
A matter of notation: magnet strengths are often 
not stated in Tesla but in MHz. As we’ve seen in 
chapter 1, a magnetic moment placed in a 
magnetic field will precess with a frequency 

0B  . What one often quotes is / 2   for 

protons, for which =242.57 kHz/mT. For 
example, when one speaks of a “500 MHz” NMR 
spectrometer, they mean 
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where I have defined 
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Radiofrequency (RF) Fields 
If you look inside an NMR spectrometer you will 
find that through its center sits a probe. A typical 
one looks like this:  

 

 
 
The sample sit on top of the probe enclosed in a 
coil called the RF coil. A typical RF coil might 
look like this (this is what’s called a saddle coil): 
 

 
 

The radiofrequency fields are created by coil 
wrapped around the sample. In their most simple 
form, they look like this: 
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Modern RF coils are connected to a waveform 
generator which actually allows almost arbitrary 
shaping of the envelope and phase of the RF field: 
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The typical amplitude of B1 is limited at about 1 
mT for NMR spectrometers and about 20 T for 
MRI scanners. Why the difference? It has to do 
with the radius of the coil. We’ve seen that for a 
single loop,  
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The larger R is, the smaller the field (for the same 
current I).  



 The RF coil is used to excite the magnetic 
moments from thermal equilibrium to facilitate 
their detection, and also to pick up their signal.  

Gradient Fields 
Gradient coils are wrapped around the sample to 
create a spatially linearly-varying magnetic field in 
the z-direction. So far, the RF and main fields have 
been spatially homogeneous. The general shape of 
the gradient field is: 
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We can “shape” the gradient field by shaping G(t), 
by shaping the current passing through the 
gradient coils. However, they are built to always be 
linear in position, r. 

It is important to understand visually what sort 
of fields the different gradient coils generate. The 
following illustration focuses on the case of a 
human subject placed in constant gradient in an 
MRI scanner: 
 

 
 
In all cases the gradient field superimposes a field 
pointing along the z-axis! This means the Larmor 
frequency of the spins will become position 
dependent. This is used extensively to perform 
magnetic resonance imaging (MRI), and has some 

further uses such as coherence pathway selection 
which we will only briefly touch on this course. 

Typical maximal magnitudes for G are about 
40 mT/m on clinical MRI scanners and up to even 
T/m on NMR spectrometers. This creates a linear 
dispersion of frequencies across the object being 
studied: GL  where L is the object’s size. For a 
human body L~1 m and ~ 1.7 MHzGL , while 
for a sample, L~2 cm and ~ 0.9 MHzGL . In 
both cases maximal field dispersions are about a 
MHz. 

Nuclear Dipolar Interactions 

The Dipolar Hamiltonian 
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The constant bD really tells us how large the 
interaction is. For two protons about 0.2 nm apart, 
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This is much smaller than the Zeeman interaction, 
which is on the order of ~0.1-1.0 GHz. 

Derivation 
Let’s put a dipole moment m1 at the center of our 
coordinate system and orient it along the z-axis. 
The energy of its interaction with an external field 

Effective field in the rotating frame for the cases of no 
gradient (left), z-gradient (middle) and x-gradient (right). 
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B is –m1B. Now imagine this field B21 is created 
by a second dipole m2 at the position of the first 
dipole: 
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where r21 is a distance vector pointing from dipole 
2 to 1, and 21r̂  is a unit vector in the same 
direction. Thus: 
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where we’ve used 21 12 r r . Now,  
we replace the classical moments with magnetic 
moment operators, and use ˆ ˆM I , to obtain 
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Now, we use spherical coordinates to represent 

the direction vector: 
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Plugging this in, we obtain 
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After opening this up and collecting terms we get 
the form presented at the beginning of this section. 
Note that  is the angle between the vector 
connecting the two spins and the external 
magnetic field, taken to be along the z-axis.  

Secular Approximation 
As noted before, the secular approximation means 
dropping out all terms not “along B0”. This means 

retaining only the components containing only Iz, 
which considerably simplifies H: 
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This form works for both homonuclear and 
heteronuclear spins. Further simplification occurs 
for heteronuclear spins, i.e. spins belonging to 
different nuclei, in which case one can further 
approximate 1 2 1 2

ˆ ˆ ˆ ˆ
z zI I I I  and obtain 
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Motional Averaging 
In isotropic liquids, molecules tumble randomly in 
all orientations and our intuition tells us that, at 
least to an extent, an orientation-dependent 
interaction  such as dipolar coupling should 
average to zero. Let’s take a closer look at this. 
 We separate dipolar interactions to three 
groups: intramolecular, occurring between spins in 
the same molecules; short range intermolecular, 
occurring between “close” molecules; and long-
range, occurring between “far” molecules. 
 Looking first at intra-molecular couplings, 
image a diatomic molecule tumbling quickly. As 
the molecule tumbles,  changes randomly: 
 

 
 
 
So,  (and ) vary randomly. However, what 
happens to the coefficient 3cos2()-1? Well, this 
coefficient does not vary symmetrically about 0: 
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Does this pose a problem? We can only know by 
calculating the angular average: 
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where we performed the substitution x=cos on 
the third line. So, the intramolecular dipolar 
interaction does indeed average out to 0. 
 Long range dipolar interactions are separated 
into two: short and long range. Image a “sphere” 
around each molecule representing the distance it 
diffuses during the NMR experiment:  

 
 

Short range molecules basically diffuse around 
each other, causing  to vary randomly in the full 
range [0,], while for long range interactions  
does not vary randomly because of spatial 
constraints of the molecules. Thus, short range 
interactions get averaged out while long range ones 
do not. However, because bD~1/r3, these 
interactions are very small and usually negligible in 
most NMR experiments. 

The Chemical Shift 

Origins 
If you place an atom in an external constant field 
B0, the electrons orbiting the nucleus will shield 
the nucleus from B0. The field at the nucleus will 
therefore be B0-B. Furthermore, this shielding 
will be proportional to the main field: double B0 
and you also double the amount of shielding, so 
B=B0, meaning the field observed at the nucleus 
will be B=(1-)B0. This is called the chemical 
shift. Why chemical? Well, the amount of 
shielding, , will depend on the electronic 
configuration around the nucleus; that is, on the 
chemistry of the atom or molecule. Typical 
magnitudes for  in proton liquid state NMR are 
about 10-5-10-8, or 0.01-10 ppm. Thus, the 
chemical shift is much smaller than the Zeeman 
interaction and, unlike many other interactions, it 
scales with B0. 
 The physical origin of the chemical shift has to 
do with Faraday’s law. In short, Faraday’s law tells 
us that when we place a current loop in an external 
magnetic field B0, an opposing current will be 
generated, given by the time derivative of the 
magnetic flux: 
 

 
Faraday loop

magnetic fluxd d
d

dt dt
      B S . 

 
In the chemical shift effect the electrons orbiting 
the nucleus play the role of the current loops, 
which are then placed in the strong B0 (Zeeman) 
field. 
 The chemical shift is closely related to 
diamagnetism, in which a material  placed in an 
external constant field B0 will generate a field B 
that opposes and diminishes B0. For example, if we 
place a uniform diamagnetic sphere in an external 



field, the field will induce many atomic magnetic 
moments on the sphere’s rim which will create the 
opposing B field: 

 
 
Usually B<<B0, but in extreme cases it can even 
match is, as is the case in super conductors, in 
which the magnetic field of the induced moments 
completely cancels out B0 inside, known as the 
Meissner effect. In general we refer to the creation 
of a diamagnetic field opposing the main field as 
diamagnetic screening. 
 The chemical shift is non-isotropic and 
depends on the orientation of the molecule with 
respect to B0. The simplest example is that of a 
benzene ring. When it is perpendicular to B0, the 
aromatic electrons go around in a circle and create 
a magnetic field, while when it is parallel to B0 no 
such current exists: 

 

Hamiltonian 
A linear, non-isotropic shift proportional to the 
main field can be represented by a Hamiltonian of 
the form 
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where we’ve assumed our external field lies along 
the z-axis. The matrix σ  is called the chemical 
shift tensor. It depends on two things: 

1. The overall shape of the electrons orbiting the 
nucleus. 

2. The orientation of the molecule with respect 
to the external field B0.  

It is a dimensionless quantity on the order of 0.01-
10 ppm for protons, as noted above. It has a very 
simple physical interpretation: 
 

 
 
 
 

 
For example, consider the Benzene ring shown 
above in its planar orientation, and the induced 
field felt by the proton in-plane with the ring. If 
we apply an external field about the z-axis, we 
induce a positive (de-shielding) field at the 
position of the proton, and hence we deduce the 
form of the last column is: 
 

 
  
If we apply the external field about x, we generate 
no induced field because there is no flux through 
the ring, indicating the first row should be 0:  
 

 
 

The same goes for a magnetic field along the 
y-axis: 
 

 
 
So here we have our chemical shift tensor. The 
exact value of zz will depend on the shape of the 
ring, distance of the proton from it, etc ...  
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ij is the field creating in the ith direction  
when applying an external field B in the jth 
direction (i,j=x,y,z) 



 It is obvious from the above discussion that the 
chemical shift tensor depends on the orientation of 
the molecule with respect to the external field B0. 
For example, if we have repeated the same exercise 
for a benzene ring parallel to the field, we would 
have gotten a somewhat different answer: 
 
 

 
 

 
 

 
 
It should be clear that xx zz   in these two cases 
since all we did was rotate the problem. In general, 
σ  will be a function of the orientation of the 
molecule with respect to the main field.  

Secular Approximation 
The chemical shift is much smaller than the 
Zeeman interaction and we can apply the secular 
approximation to it. This means we will only 
retain the component of the induced field which is 
parallel to B0: 
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Thus, the Hamiltonian becomes: 
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ˆ
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where the notation  zz   reminds us that the 
coefficients of the chemical shift tensor depend on 
the orientation of the molecule with respect to the 
main field. 

Motional Averaging 
What happens to the chemical shift as we average 
over all orientations? Does it disappear like the 
dipolar interaction? Well, no.  
 The energy of a system cannot depend on the 
orientation of the system it is described in. 
Therefore, 
 

T
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is coordinate-independent. Using ind indB σB , 
 

T
cs indH m σB . 

 
This should have the same numerical value in 
another coordinate system: 
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Now, we know how vectors transform 
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so 
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cs ind indH R R m σ B m σB . 
 

Comparing these two expressions, which must be 
true for any combination of vectors and matrices, 
we deduce that 
 

'TR R σ σ  
 

or (multiplying by R from the left and RT from the 
right): 
 

' TR Rσ σ , 
 

which gives us the transformation rule for any 33 
tensor. This means that as the molecule reorients, 
the chemical shift tensor changes as TR Rσ . Now, 
note that 

Bext 
ind

0 0 0 0

0 0 0 0

0 0 0 00

xx

extB

    
         
    
    

B

H 

Bext 

ind

? 0

0 ? 0 0

0 ? 0 0

0

0

extxx

xx ext

B

B





  
     

    
 
   
 
 

B

H 

Bext 

ind

? ? 0 0 0

? ? 0 0 0

? ? 0 0extB

    
         
    
    

B

H 



 

     tr tr trT TR R R R σ σ σ  

 
The trace of the chemical shift tensor does not 
change as a function of time, even though we 
reorient our system. I will not prove it explicitly 
here, but this invariant quantity of the tensor is 
the only one that survives under motional 
averaging: 
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So, under motional averaging and the secular 
approximation, 
 

 1
03 trcsH B  σ . 

Atomic Mass Increases the Range of 
Chemical Shifts 
Heavier atoms have a wider range of chemical 
shifts (in ppm) because of the existence and 
contribution of lower lying electronic states. The 
range of chemical shifts is about 10 ppm for 
protons (1H), about 200 ppm for carbon (13C),  
and many thousands for lead (209Pb).  

Local vs Non-Local Shielding 
Local shielding is the “simplest” kind of shielding 
that results from electron currents surrounding the 
nucleus. Here the main factor influencing the 
amount of shift for different groups is the electron 
density around the nucleus. Nearby groups will 
withdraw electrons from a nucleus, an effect 
known as electronegativity. Some groups/atoms 
do so more than others. For example, consider 
what happens to the chemical shift of the protons 
of a CH3 group as we attach different atoms to the 
remaining C bond: 
 

X atom (CH3X) Predicted ppm Electronegativity 
H 0.23 2.3 
I 2.16 2.4 

Br 2.68 2.7 
Cl 3.05 2.7 

OH 3.4 O=3.6 
F 4.26 4.2 

 
The higher the electronegativity the more it 
“draws” electrons, the less shielded the methyl H 
nuclei become, the higher their resonance 
frequency (and ppm). 
 

more electronegative neighbors
less shielding

high ppm low ppm  

 
 

 
Another form of local shielding comes from 
resonance (aka mesomerism). Here, electrons are 
delocalized and withdrawn from an atom. This is a 
non-local effect (although the shielding is local, 
because the effect is directly applied to the 
electrons orbiting the nucleus in question). An 
example of this is a benzene ring in which there are 
two resonant structures which alternate between 
them and cause an electron current in the ring: 
 

 
 
 A third effect is hybridization, in which 
orbitals change their shape upon being combined 
in molecules, making electrons move closer or 
farther away from the nucleus and changing their 
effective shielding. 
 Non-local shielding, on the other hand, refers 
to non isotropic electron distributions that can also 
affect the chemical shift of far-away nuclei. Let’s 
first think about an isotropic electron distribution. 
The diamagnetic shielding currents induced by the 
external magnetic field to not change as we rotate 
the molecule because, well, it’s isotropic! However, 
if we think about what happens to an attached 
nucleus – say, a proton – then this proton is 
occasionally shielded and occasionally deshielded: 
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Scalar (Spin-Spin, J) Coupling 

Origins (Direct Coupling) 
The scalar coupling, also called J-coupling, is 
independent of the field B0. It is an interaction 
between two nuclear moments mediated by their 
joint electronic structure (chemical bond). 
Consider for example a 1H-13C bond: 
 

 
 
It thus stems from two types of interactions acting 
in unison: 
1. Electron A’s magnetic dipole moment creates 

a non-zero magnetic field at the position of 
nucleus A. This is called the Fermi contact 
interaction, because it is proportional to the 
probability of finding the electron at the 
nucleus, which is non-zero for s-states.  

2. Electron A and B have opposite magnetic 
moments because of Pauli’s exclusion 
principle. 

3. Finally, electron B creates a non-zero 
magnetic field at the position of nucleus B. 

Both the chemical shift and J-coupling tie in NMR 
closely with chemistry: the first via the electron 
cloud, and the second via electronic (chemical) 
bonds. Both are intramolecular interactions.  
 J-coupling is also dependent on the molecule’s 
orientation, much like the dipolar interaction. As 
the molecule physically rotates the nuclear spin 
remains unchanged, which means that, like the 
dipolar interaction, J-coupling is described by a 
tensor. 

Origins (Geminal & Vicinal Coupling) 
J-couplings extend over more than one bond. For 
example, in a 1H-12C-1H covalent bond the outer 
electrons of the carbon “merge” with the electron 
cloud of the hydrogen. Due to Hund’s rule, the 
electronic spins of the carbon’s electrons (which 
are closer to the carbon nucleus due to its charge) 

tend to remain parallel to minimize the system’s 
energy: 
 

 
 
This has an interesting consequence: J-coupling 
coefficients  

Hamiltonian 
The J-coupling hamiltonian is 
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where J is the J-coupling tensor 
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The elements of the tensor J have dimensions of 
frequency (Hz).  

Motional Averaging 
After averaging only the trace survives, much like 
with the chemical shielding tensor: 
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Substituting this back into the Hamiltonian: 
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The full matrix form of this Hamiltonian for two 
spin-1/2s is 
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Typical values for hydrogen couplings are: 
 
Bond Name Magnitude 
H-H direct  1J275 Hz 
H-C-H geminal  2J5-10 Hz 
H-C-C-H vicinal 3J5-20 Hz 
H-C-C-C-H N/A 4JUsually too small 
H-C-C-C-C-H N/A 5JUsually too small 

 

The Sign of J 
Note also that an odd number of bonds leads to 
positive J-coupling coefficients, while an even 
number leads to a negative value (i.e. for an even 
number of bonds the minimum energy 
configuration is obtained when both nuclear spins 
are parallel, meaning that for H to be minimal J 
must be negative).  

Secular Approximation 
J-coupling exists between two spins, each with its 
own resonant frequency: 
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The secular approximation for the J-coupling 
Hamiltonian is such that when the difference in 
chemical shifts is much larger than J: 
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For two spin-halves,  
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The Karplus Equation 
J is not just an annoying constant that splits lines, 
but can actually convey useful information and 
assist in analysis and peak assignment. For lactate, 
J-coupling assisted us in assigning peaks to 
chemical groups, since we knew the CH should 
yield four lines (split three times by CH3) while 
CH3 should yield two lines (split once by CH). 
This helped us assign the resonances in the 
spectrum without even knowing anything about 
their chemical shift a-priori. 
 The value of the J-coupling constant can yield 
structural information about a molecule. A 
scientist by the name of Martin Karplus found an 
empirical relation between the magnitude of 
vicinal (3-bond) 3JHH couplings and the dihedral 
angle  of the bonds: 
 

 
 
Basically, each plane is defined by the C-C bond 
and the corresponding C-H bond, and  is the 
angle between the two planes. The Karplus curve 
usually looks something like: 

 

 
 
The idea is that the overlap between molecular 
orbitals – and hence the strength of the exchange 
interaction – varies when the angle  changes. The 
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overlap is minimal when the wavefunctions are 
orthogonal, so 3J tends to be smallest when =90. 
 The Karplus equation (above) is a major tool 
in structural chemistry. For example, the vicinal 
coupling changes between cis and trans 
configurations of double-bond alkenes:  
 
 
 
 
 
 
   cis      trans 
 
This difference is seen for example in 1,1-
difluoroethylene: 
 

 
 
The 3J coupling constant of Ha to Fb (trans) is 
different from the coupling of Hb to Fb (cis).  

Incidentally, Karplus’s original JACS paper 
from 1963 remains one of the journal’s most cited 
papers of all time, and Karplus himself is a notable 
theoretical chemist who won the 2013 nobel prize 
(although not for his NMR work, but for his 
theoretical chemical modeling work). 

Electron-Nuclear Interactions 

Orbital Angular Momentum  
The classical picture of the electron is one in which 
it orbits the nucleus in a circle or ellipse. This is 
similar to a loop of current which, as we’ve 
remarked, creates a magnetic moment associated 
with the electrons’ orbital motion. However, we do 
not actually see this in molecules or solids due to a 
phenomenon known as quenching of the orbital 
angular momentum, in which the atoms in most 
molecules do not have orbital angular momentum. 
This surprising fact shows up also when trying to 
understand e.g. transition metal solids.  We will 
not discuss its origins here and simply state it as a 
fact and assume it to be so (which is true for the 
vast majorities of systems you will encounter in 
NMR, and more so in liquid state NMR). 

Paramagnetic Interactions 
Most materials studied in NMR are diamagnetic. 
Their total electronic spin is zero due to the Pauli 
exclusion principle: electron spins line up in anti-
parallel pairs and cancel each other out. When this 
doesn’t happen – i.e., in paramagnetic materials – 
one must taken into account the paramagnetic 
interactions between a nuclear and an electron 
(intrinsic) spin. Typical Hamiltonian magnitudes 
are in the ~100 kHz range. Examples of 
paramagnetic materials include liquid oxygen (O2), 
or proteins with metal coordination complexes 
such as myoglobin.  

We will not deal with paramagnetic NMR in 
this course.  

Chemical Shift 
We’ve already treated the chemical shift 
interaction. To be consistent, it should also be 
classified as an electron-nucleus interaction. 

Spin-Rotation Interactions 
As a molecule rotates its electrons rotate as well, 
creating effective currents which will also interact 
with the nucleus. Except in gases, this is in general 
a negligibly small interaction which we will not 
describe in this course. 

Quadrupolar Interaction 
Spins > ½ have a non-spherically symmetric charge 
distribution in the nucleus. This distribution 
interacts with the electrical field gradients created 
by the electrons. This is called the quadrupolar 
interaction. But where does the magnetic moment 
come in? For reasons we will not go into here, this 
interaction appears magnetic, as if having to do 
with coupling of the nuclear magnetic moment to 
itself. As far as I know there is no semi-classical 
derivation of this, and this is a completely QM 
phenomenon1. 

The quadrupolar Hamiltonian is: 
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1 If you, the knowledgeable and/or resourceful reader, 
can semi-classically derive the quadrupolar Hamiltonian 
without invoking the Wigner-Eckhart theorem, you’re 
getting a straight A in this course. 
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e is the electron’s charge, and Q is the quadrupole 
moment of the nucleus in question: 
 

 
 

The matrix V is the electric field gradient matrix 
(EFG), having units of volt per meter2. It basically 
is comprised of the second order derivatives of the 
field potential: 
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Secular Approximation 
For most nuclei (but not all!) the secular 
approximation is justified. Under this 
approximation, the Hamiltonian has the general 
form: 
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Motional Averaging 
The secular approximation exhibits the same sort 
of angular dependence as the dipolar 
approximation, and hence gets averaged to zero 
under motional averaging. Even without motional 
averaging, the trace of the electric field gradient 
tensor is zero and as such it gets averaged to zero in 
liquids. 



 
 

Interaction Hamiltonian  ˆ /H   Typical Magnitudes (Maximum) 
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 0=2127 MHz (1H at 3 T) 

0=230 MHz (13C @ ~3 T) 
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1=21 kHz (Proton at peak B1 in 
clinical MRI scanner) 

Gradient 
field 
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 ~ 100 kHzg G z     (over 
head in clinical MRI) 

1 MHzg G z      (over 
NMR sample tube) 

Chemical 
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In isotropic liquids: 
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~10-6 (ppm) 
Protons at 3 T:  1 kHz 

Electric 
Quadrupole 
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Secular approximation: 
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Secular approximation, homonuclear spins: 
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Secular approximation, heteronuclear spins: 
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between the vector joining the two spins and the 
external magnetic field. 

Two protons 0.2 nm apart: 
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Spin rotation Unimportant in liquids and solids.  
J-Coupling ˆ ˆ2 j jk k  I J I  

Isotropic liquids: 
ˆ ˆ2 jz kzJI I  

J~1-100 Hz for protons coupled to 
other nuclei 

Paramagnetic 
Shift 

Interaction with unpaired electronic magnetic 
moments. 

~50-100 kHz 

 


