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(No J-Couplings) 
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The Goal of Spectroscopy 
In its basic form, the goal of NMR spectroscopy is 
to quantify the constants appearing in the 
Hamiltonian: the chemical shifts, J-couplings, 
quadrupolar constants and so forth. Many of these 
are important to chemists: chemical shifts yield 
information about the electronic cloud and the 
particular chemical groups in our molecule. J-
coupling constants tell us conformational 
information via the Karplus equation, and their 
existence itself tells us various spins are within 1-3 
or so chemical bonds from each other.  
 There are other constants having to do with 
relaxation rates and reaction rates that do not enter 
the Hamiltonian explicitly, and NMR is also used 
to determine their values. Relaxation rates often 
tell us interesting things about the temporal 
dynamics of the system. 
 As we will see, achieving both of these goals 
requires a fair bit of ingenuity, which will be the 
topic of the next few lectures.   

Throughout the remainder of this course we 
will confine ourselves to spin-1/2 spins.  

Liquid State NMR 
In the previous lectures we learned that the 
dynamics of a quantum system is governed by the 
Liouville equation:  
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and went over the various interactions that make 
up our system’s Hamiltonian: 
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In this lecture I will focus on the simplest NMR 
experiment in the liquid state: 1D NMR. In this 

experiment most interactions average out to zero 
due to molecular motion. Furthermore, we won’t 
be using any gradient fields. The Hamiltonian is: 
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Methanol 
Let’s assume our RF field is turned off and look at 
a concrete example: methanol (CH3OH): 

 

 
 

For methanol we assume the carbon and oxygen 
nuclei have no spin (12C, 16O). The three methyl 
hydrogens are chemically equivalent and have the 
same chemical shift, while the hydroxyl hydrogen 
has its own chemical shift. Furthermore they are all 
coupled via J-couplings. The different interactions 
are: 
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By symmetry, the chemical shifts of all methyl 
protons are the same. We will solve this problem 
iteratively, and begin this lecture by looking at a 
single proton, neglecting its couplings. 

Single Spin Spectroscopy 

The Hamiltonian 
Our Hamiltonian has a very simple form: 
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Our initial Boltzmann density matrix is 
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The Strategy 
Because the Hamiltonian is diagonal we can easily 
“solve” our problem; that is, calculate the density 
matrix as a function of time. The propagator is 
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Therefore, for a general density matrix, 
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the time evolution is 
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This looks quite simple! Remember the meaning 
of the elements, derive in the first lecture (you can 
also rederive this by writing out 2

1 2
2

ˆI


 M S


 

explicitly):  
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Comparing the two, we see that Mz remains 
constant while Mxy precesses in the xy-plane 
according to the left hand rule: 
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This is precisely what the classical (Bloch eqs) 
picture tells us as well: the z-component of the 
magnetization remains fixed in time while the 
x & y components rotate around the B0 field in the 
z-direction: 

 

 
 
As the upper illustration shows, the magnetic 
moment M can be decomposed into components 
parallel and perpendicular to the main field, 
M=M+M||, with the parallel component being 
static and the perpendicular component rotating in 
the xy-plane. Their combined motion creates the 
precession of M around B0. This is consistent with 
the quantum mechanical picture presented above. 

Precessing Magnetization Induces 
Currents in Coils Via The Faraday 
Effect 
This leads us to the following general strategy: if 
we can “generate” somehow an x- or y-component 
for the magnetization, We will then pick up this 
precession motion via Faraday’s law. Indeed, the 
basic MR experiment can be described as follows: 
 Thermal Equilibrium: At thermal 

equilibrium, the spins are aligned along B0 
and do not precess.  

 Excitation: The spins are somehow excited, 
that is, tilted to some angle  with respect to 
B0. This usually happens quickly and 
relaxation can be neglected. 

 Precession & Detection: Once tilted, they 
precess and give off a time dependent 
magnetic field. The magnetic field induces a 
voltage in a nearby RF coil via Faraday’s law. 
We can also further manipulate the spins with 
magnetic fields during this period to bring out 
particular contrast types. We usually have a 
time ~ T2 before decoherence "eats up" the 
observable precessing magnetization. 

 Thermalization: Relaxation processes kick in. 
The transverse magnetization decays with a 
time constant T2 while the longitudinal 
magnetization builds up back up due to T1 
relaxation. If we wait for a time 5T1, the 
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magnetization will be back at its thermal 
equilibrium value.  

Each such block (excite-acquire-wait) is called a 
scan. It is in fact not mandatory to wait for a time 
5T1 for the spins to return to thermal equilibrium; 
we'll see later on that waiting a shorter amount of 
time has both benefits (shorter scan times) and 
disadvantages (less signal per scan). For now, 
however, we'll assume that is the case, so M is 
equal to M0 and points along the z-axis before the 
beginning of each scan. 
 We’ve already remarked that BRF<<B0. How 
can we hope to non-negligibly excite the spins with 
such a weak RF field? The answer is that we use a 
resonant field that oscillates at the Larmor 
frequency. Namely, we are going to solve the 
Bloch equations setting G=0, and 
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with 
 

0RF   ("on resonance irradiation") 
 
This means we will need to solve the Bloch 
equations with a time dependent magnetic field. 
Although a numerical solution is possible, we will 
employ a frame transformation trick which will 
enable us to solve this problem without any 
approximations. Our strategy will be this: we will 
transform to a frame of reference (aka “The 
Rotating Frame”) that rotates with BRF and in 
which it appears stationary. We will then solve 
our problem in that frame, and go back to the 
original frame. 

Most of the concepts will be easier to introduce 
using the Bloch equations rather than quantum 
mechanics, so we’ll stick with the Bloch equations 
for the remainder of this lecture. However almost 
all of the concepts can be re-derived within the 
framework of QM, and some will be in the 
upcoming assignment. 

Transforming to a Frame Which 
Rotates At The Same Frequency As The 
RF Field Makes it Appear Static: The 
Rotating Frame 
In the laboratory frame, this amounts to solving 
the Bloch equations with a complicated time-
dependent magnetic field. The Bloch equations are 

easier to solve in a frame which rotates around the 
z-axis with a frequency given by rot RF  . We 
tackle this as follows: consider a static (laboratory) 
frame with time independent, fixed unit vectors 
ˆ ˆ ˆ, ,x y z , and a rotating frame with unit vectors 
ˆ ˆ ˆ', ', 'x y z .  

 

 
If the rotating frame is rotating with an angular 
velocity rot  about an axis given by the unit vector 
n̂ , then each of the axes of the rotating frame 
precess about the vector rot=rot n̂ . This means 
each obeys a precession equation identical 
(formally) to the Bloch equation: 
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The magnetization vector can be expressed in 
either frame: 
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For example, if B(t) is  
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as given above, while the rotating frame rotates at 
the angular frequency rot=RF about the z-axis 
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(rot= ˆRF z ) then the components of B in the two 
frames are: 
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Note the components change, but the vector is 
frame-independent since it is a geometrical 
quantity.  
 Differentiating M(t) with respect to time, we 
obtain 
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On the other hand, the Bloch equation says 
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Equating, we obtain: 
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This is precisely the Bloch equation but with an 
effective field 1

eff rot B B ω . 

 The above equation is true for any rotating 
frame. However, in MRI, when we speak of “the” 
rotating frame, we will be referring to a frame 
which rotates at a constant angular velocity 

rot RF   about the z-axis according to the left 
hand rule. For “the” rotating frame, 

ˆ ˆrot rot RF  ω z z . 
 When expressed in the rotating frame, the 
components of the effective field 1

eff rot B B ω  

are: 
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(in the rotating frame: rot RF  ) 
 

If we select 0 0RF B     we are on resonance: 
the RF irradiates the spins at the same frequency as 
their natural frequency, 0. In this case: 
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An Analogy From Mechanics 
Imagine the earth going around the sun in a circle: 
 

 
 
This can be understood by an observer in space the 
following way: the Earth wants to “go forward” 
but gravity pulls it “inward”, curving its path into 
a circle. In effect, the Earth is continuously 
“falling” into the sun, but escaping doom thanks 
to its tangential velocity. All this is all a 
consequence of Newton’s second law, F=ma.  
 Next, imagine how things would look to an 
observer standing on the sun and rotating with it. 
Neglecting for the time being the weather on the 
surface, the Earth would appear stationary to such 
an observer:  
 

 
 

Gravity 
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If that observer would try to use Newton’s law 
F=ma to understand his world he would fail: 
according to F=Fgravity=ma, earth should be falling 
towards the sun, but it isn’t! The truth is that 
when you transform to a rotating frame you need 
to add a fictitious force. That is, you need to pre-
suppose a force which doesn’t arise out of any 
physical source, called the centripetal force, to 
explain how it is possible for the earth to remain 
stationary: 
 

 
 
So, in mechanics when you try to understand 
things in a rotating frame you need to do two 
things: 
1. Understand how things in the “real” frame 

would look in the rotating frame (e.g., the 
Earth would remain still). 

2. Add fictitious forces (e.g., the centripetal 
force). 

A similar thing happens when you go to a rotating 
frame in magnetic resonance, rotating with the 
same angular velocity as the RF field: 
1. First, the RF field appears stationary in the 

rotating field which “matches” its rotation 
frequency (i.e. because rot RF  ).  

2. Now we need to add the correct fictitious 
"force" - field, to be precise -  given by 

1
  fict rotB . To see, imaging a static spin 

in the lab frame, with no magnetic field. Now 
transform to a frame rotating with an angular 
velocity rot  about the z-axis. In this frame, 
the spin would appear to rotate with an 
angular velocity rot fictB   , as if there was 

a fictitious field rot
fictB 

   present along the 
z-axis.  

The Bulk Magnetization Precesses 
Around The Effective Field In The 
Rotating Frame 
We've seen the magnetization vector obeys the 
Liouville equations in the rotating frame, only 
swapping the field for an effective field, effB . This 
means M precesses about Beff in the rotating frame. 
Starting from thermal equilibrium at time t=0, M 
points along B0 (taken to coincide with the z-axis) 
in both the laboratory and the rotating frames, 
which are also assumed to coincide for t=0: 
 

 
 
Now we turn on the resonant RF field in the 
laboratory frame: 
 

   1 1ˆ ˆcos sinRF RF RFB t B t  B x y . 
 

This field rotates in the xy-plane in the lab frame, 
and appears stationary in the rotating frame. 
Furthermore, if we assume our irradiation is on 
resonance, RF=0, the effective field in the 
rotating frame has no z-component: 
 

 
 
The magnetization M precesses about the x axis in 
the rotating frame. We can thus create any angle 
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The magnetic field B in the laboratory frame has a 
large z-component and a small, rotating xy-
component (not shown to scale). In the rotating 
frame, assuming BRF is on resonance (RF=0=B0) 
the effective field is static.
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At time t=0 (thermal equilibrium), M points along 
the z-axis in both frames. 
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we'd like between it and the z-axis, depending on 
how long we let it precess and how strong B1 is. 
Let's assume we have BRF on for just enough time 
for the magnetization to tilt to the xy plane - that 
is, create a 90 angle between B0 and M. Deducing 
the motion of M in the lab frame is now merely a 
matter of transforming back to the lab frame, 
which simply rotates at an angular velocity -rot 
relative to the rotating frame. That is, M in the lab 
frame performs a spiral as it descends and rotates: 
 

 

Setting The Radiofrequency (RF) 
Pulse’s (Area)=(Duration)(Amplitude) 
Sets The Flip Angle 
We see the spins will perform a rotation about the 
x-axis in the rotating frame at a frequency 1=B1. 
Note this is not the same as RF, (one is the 
amplitude of BRF, the second is its oscillating 
frequency). After a time , M will have created an 
angle 1 1B     : 
 

 
 

Note that 
 

   amplitude of RF duration of RF   . 
 

This relation is true only on resonance, when 
RF=0, where Beff has no z-component.  
 
To “tip” the magnetization onto the y axis, we wait 
a time t90 such that: 
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In the original laboratory (unrotating) frame the 
spins execute additional motions, but the 
important thing to realize is that a spin which is in 
the xy plane in the rotating frame, must also be in 
the xy-plane in the laboratory frame (although 
where in the plane is a different story!).  
 Example: We’ve remarked that B1,max ~ 10 T 
for an MRI scanner. For protons, one would need 

190 2 ~ 0.5 msBt 
 to excite the spins onto the xy-

plane. For 13C, 
190 2 ~ 2 msBt 

 . 

The Phase of the Pulse Determines The 
Phase of the Excited Magnetization 
We have so far modeled BRF in the lab frame as: 
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Since we have full control over the x and y 
component we have no problem modulating both 
B1(t) and adding a time-dependent phase (t) to 
the RF field: 
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In the rotating frame, this will look like this1: 
 
                                                           
1 To prove this, use      rot lab

z cR tB B , where 

 z cR t  is a RH rotation matrix about the z-axis by an 

angle ct   (the rotating frame rotates with a left 
handed rotation and angular frequency c; in it, it 
appears the RF field rotates at the same angular 
frequency but in the opposite direction). There is a bit 
of algebra and trigonometry involved but the proof is 
straightforward. 
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Shown here is the trajectory of the magnetization 
M in the lab (left) and rotating (right) frames. The 
two frames are connected by a simple rotation. 

Lab Frame Rot. Frame 

z' 

x' 

y'

Rot. Frame

 

t 

|BRF(t)| 

 

B1 



 

    
    

1

,
1

cos

sin
0

RF rot

B t t

B t t





 
 

  
  
 

B . 

 
Let's keep B1(t) and (t) fixed. Then the constant 
phase (t)=0 is called the phase of the pulse, and 
is equal to the angle the RF field makes with the 
x-axis.  determines where the RF pulse will point 
in the transverse plane.  
 The phase of the magnetization is defined as 
the angle made by the transverse component of the 
magnetization vector (i.e. its projection on the xy 
plane) with the x-axis.  
 Because the magnetization gets tipped at right 
angles to the RF field following the left hand rule, 
the relation between the pulse's and 
magnetization's phase is given by: 
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The standard notation for a constant RF pulse 
then assumes the form  , where  is its flip angle 

and  its (constant) phase. The following 
conventions are also used: 
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Some examples are shown below (magnetization is 
assumed to start out from z, and is the blue vector; 
the RF is the red vector):  
 

 
 

The Signal Is A Decaying Sinusoid 
After the magnetization is tipped onto the xy-plane 
it precesses around the external B0 field. We can 
pick it up by measuring the voltage it induces in a 
nearby coil via Faraday’s law. We’ll get into the 
practical aspects of signal detection in the next 
lecture, but for now I merely remark that this 
voltage is proportional to the xy-magnetization. 
That is,  
 

       xy x ys t M t M t iM t   . 
 

What does a complex signal mean? It just means 
that we get two signals out of the NMR 
spectrometer, one proportional to Mx and the 
other to My, and we combine them in the 
acquisition computer to generate a complex signal 
which is just easier to deal with.  
 For a spin having an offset   01 iso B    , 
we have 
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and so 
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In reality, due to decoherence, the signal decays as 
well with a time constant called T2: 
 

  2/
0

t Ti ts t M e e  . 
 
We discuss this decay next. 

Spin Interactions Lead To 
Relaxation Phenomena  

Spins Are Subjected To Microscopic 
Fluctuating Magnetic Fields Due To 
Their Thermal Motion 
Each microscopic nuclear magnetic moment m 
“sees” a magnetic field made up of two 
components: the macroscopic field generated by 
the coils in the lab, and the microscopic fields 
given off by its surroundings. For example, the 
dipolar field generated by one nuclear spin in a 
molecule will be felt by other nuclear spins in the 
same molecule.  

 
 
It’s very important to realize that the orientation of 
the nuclear magnetic moment has nothing to do 
with the molecular orientation: if you rotate the 
molecule by 90, the nuclear moment will not 
change, since it’s not related to the nuclear charge 
or mass distribution; it “lives” in its own space and 

“talks” to the environment only through the 
magnetic fields it feels and emits: 
 

 
 

Since most of the water molecules in the body 
are in the liquid state in the extra and intracellular 
matrices2 –All molecules rotate and tumble around 
very rapidly. A small water molecule might 
perform a rotation on picosecond timescales, while 
larger molecules would rotate more slowly. This 
molecular rotation leads, by the arguments just laid 
out, to fluctuating microscopic fields.  

Fluctuating Microscopic Fields Lead To 
Decoherence (T2) And Return to 
Thermal Equilibrium (T1) 
The magnetic field felt by a microscopic nuclear 
magnetic moment can be subdivided into two 
parts, macroscopic and microscopic: 
 

      macro microt t tB B B , 
 

where the macroscopic fields are those generated 
by the laboratory coils and controlled by the 
scientist, and the microscopic fields are those 
fluctuating fields created by other spins in the 
molecule, electrons, and so forth. Consequently, 
the Bloch equations which describe the spin’s 
precession become: 
 

                                                           
2 This is actually not entirely correct, since water 
molecules often get “stuck” to cell membranes or 
confined in tight spaces. We will look more into this in 
later lectures.  

Upon rotation of the molecule, the spins (black arrows) 
do not change their orientation. Consequently, the 
spin feels a different magnetic field, in both magnitude 
and direction.  

Shown here is the magnetic field (red arrow) felt by one 
spin  due to the dipolar field of the other spin in an 
H2O molecule. 
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Now assume we have N magnetic moments, m1, 
m2, ..., mN, each experiencing its own unique 
microscopic field, but all experiencing the same 
macroscopic one: 
 

     

     

     

11
1 1

22
2 2

macro micro

macro micro

NN
N macro N micro

d
t t

dt
d

t t
dt

d
t t

dt

 

 

 

   

   

   

m
m B m B

m
m B m B

m
m B m B


 

 
We now sum over multiple microscopic spins: 
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Since Bmacro is common to all summed terms, and 
since the derivative of the sum equals the sum of 
the derivatives, we can substitute the microscopic 
moments by the macroscopic one, 1

N
n n M m  

and obtain:  
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The last term on the RHS represents the effects of 
the fluctuating fields and is intractable really. 
Physically speaking, these fluctuating magnetic 

1.5 T 3 T 7 T Tissue Type Nuc. Mol. 
T1 T2 T1 T2 T1 T2 

Gray Matterb 1H H2O 1188  69 95  8 1820  114 99  7 2132  103  
White Matterb 1H H2O 656  16 72  4 1084  45 69  3 1220  36  
Cerebrospinal 
Fluidb 

1H H2O 4070  65    4425  137  

Bloodb 1H H2O 1540  23 290  30 1932  85 275  50 2587  283  
Kidney Cortexa 1H H2O 966  58 87  4 1142  154 76  4   
Kidney 
Medulaa 

1H H2O 1412  58 85  11 1545  142 81  8   

Livera 1H H2O 586  39 46  6 809  71 34  4   
Cartilage, 0 d 1H H2O 1024  70 30  4 1168  18 27  3   
Cartilage, 55 d 1H H2O 1038  67 44  5 1156  10 43  2   
Bone marrow 
(L4 vertebra)a 

1H H2O 549  52 49  8 586  73 49  4   

Prostatea 1H H2O 1317  85 88  0 1597  42 74  4   
Subcutaneous 
fata 

1H Fat 343  37 58  4 382  13 68  4   

NAA CH3 
(GM)c 

1H NAA 1270  50  1470  80 269  7   

NAA CH3 
(WM)c 

1H NAA 1360  60  1400  150 374  9   

Typical T1 and T2 relaxation times from the literature, in milliseconds, in humans. The  sign indicates standard 
deviation of the cohort examined. Note that variations may occur within a particular tissue (e.g. cortical vs. deep gray 
matter), and that numbers provided from different papers might originate from different regions within the same 
tissue. Also, some skepticism should be practiced when using values obtained for flowing/pulsating media, such as the 
cerebrospinal fluid. 
a  From: Bazelaire et. al., Radiology 230(3):652-659 (2004) 
b  T1 values at 1.5 T and 7 T taken from Rooney et. al., Magn. Reson. Med. 57:308-318 (2007).  

T1, T2 values at 3 T taken from Rooney et. al., Magn. Reson. Med. 57:308-318 (2007) and Stanisz et. al., Magn 
Reson Med 54:507-512 (2005). 

c  T2 values at 3T taken from Kirov et. al., Magn. Reson. Med. 60:790-795 (2008). 
 T1 values at 1.5T and 3T from Ethofer et. al., Magn Reson Med 50:1296-1301 (2003) 
d From: Stanisz et. al., Magn Reson Med 54:507-512 (2005).



fields are the source of (1) decoherence (i.e. loss of 
signal) and (2) thermalization (return to thermal 
equilibrium). Luckily, phenomenologically these 
effects can be respectively embodied by two 
constants, T2 and T1, respectively, which can be 
integrated into the Bloch equations using simple 
terms: 
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We will omit the subscript macro and take the 
magnetic field appearing in the Bloch equations to 
signify only the macroscopic (lab-generated) 
magnetic field.  
 M0 is the thermal equilibrium value of the 
magnetization, as can be seen by turning “off” the 
macroscopic RF and gradient fields, setting the 
time derivatives to 0 and solving: 
 

2

2

0

1

0

solve
0

0

0 0

0 0

0

x

y

z

M
y T

x
M

x yT

M M
zT

M B M

M B M

M M






           
    

 

 
A table of some T1 and T2 values has been 
compiled above. We note that for most tissues, T1 
is on the order of a second, while T2 is on the 
order of 100 ms. Furthermore, T1 tends to increase 
with increasing field strength, while T2 tends to 
decrease. The field-dependence of T1 and T2 will 
await a further chapter which will discuss T1 and 
T2 as sources of contrast. 

T2 Leads To Decoherence 
To gain a better understanding of the sort of effect 
T2 has on the spins, let us set the macroscopic 
laboratory field to 0 and examine the time 
evolution of the magnetization.  
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One interesting this is that the transverse (x, y) and 
longitudinal (z) components of the magnetization 
become decoupled: Mz does not feature in the 
equations for Mx and My, and Mx and My do not 
appear in the equation for Mz. 
 The equations for Mx and My have simple 
solutions: 
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This means that, whatever magnetization we start 
out with, it will decay with a time constant T2 to 
zero: 
 

 
 
This is called decoherence, and represents the 
physical fact that, unless something specific is 
done, the spins will point in all possible directions 
perpendicular to the MRI’s static B0 field, since 
there is no reason – energetic preference – for them 
to align in any single particular direction. The time 
T2 can be thought of the time it takes Mx (or My) 
to drop to 1/e~37% of its initial value. 

T1 Leads To Thermal Equilibrium 
At thermal equilibrium the spins align themselves 
along the external B0 field. This is brought about 
by T1 relaxation. The solution to the equation 
involving Mz is: 
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We see that, for t>>T1, 
 

  1 0zM t T M . 
 

Thus, whatever longitudinal magnetization we 
start out from at t=0, it will converge back to its 
thermal equilibrium value M0: 
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Relaxation Can Be Neglected During 
Excitation Since Most Pulses Are 
Shorter Than T1, T2 

Our calculations in the previous section have 
shown that excitation mostly happens on the 
timescale of milliseconds in NMR, which is much 
shorter than T1, T2. Hence, to an excellent 
approximation, relaxation effects can be neglected 
during excitation. This might have to be re-
examined in solid-state NMR or when dealing 
with large macromolecules, where T2s can be 
prohibitively short (even in the microsecond 
range!). 

The NMR Spectrum 

The Fourier Transform 
The complex signal from a single nucleus having a 
given chemical shift is 
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It is fairly easy to deduce 1  looking at the signal 
in the time domain. However, what happens if our 
signal has, say, three components? 
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It is exceedingly difficult for humans to deduce the 
is by looking at the signal in the time domain. 
Fortunately, there is a tool that simplifies this, 
known as the Fourier transform (FT). The FT acts 
as a “magic box” which reveals the frequency 
characteristics of a time domain signal s(t) in the 
form of a spectrum. The spectrum is comprised of 

peaks: a peak centered at i tells us s(t) has a 
frequency component ii te  , and the peak’s “size” 
tells us what its coefficient si is.  
 Given a signal s(t), its Fourier transform is 
defined as:  
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Example: if s(t)=1 for t[-T/2, T/2] and 0 
elsewhere (a rectangle), then: 
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The sinc has a main lobe with width 1

T  . 
This is typical of FTs: the width of the FT is 
usually inversely proportional to the width of the 
original function.  

The Fourier Transform of a Decaying 
Exponential 
The NMR signal is made up of decaying 
exponentials. The Fourier transform itself is linear, 
meaning that if  
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so we only need to calculate the FT of a single 
summand. This is easily achieved: 
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(the last line is obtained by multiplying and 
dividing by the complex conjugate of the 
denominator and simplifying.) 
 The real part is a Lorentzian function and is 
called the absorptive part of the spectrum. The 
imaginary part is called the dispersive part of the 
spectrum. These names are a legacy from optical 
spectroscopy, from which they were originally 
borrowed. There, the coefficient of refraction in a 
material, n, has a real and imaginary part: the real 
part causes the signal to decay (get absorbed) while 
the imaginary part causes different frequencies to 
progress as different speeds through the material, 
leading to dispersion of the components of the 
incoming wave packet. 
 We’ll note here in passing that the Lorentzian 
lineshape is “well behaved”: it is fairly well-
localized and corresponds to what a peak “should 
be”. The dispersive component is quite the 
opposite: it transitions sharply from negative to 
positive, and decays very slowly – i.e., is non-
localized. Dispersive components are almost always 
unwanted but they are a fact of life NMR 
spectroscopists need to live with. In a well acquired 
spectrum, the dispersive component will appear in 
the imaginary part of the spectrum and will not 
interfere with the absorptive part, but in non-ideal 
acquisitions the two can get “mixed” and must be 
dis-entangled via a process known as “phasing”. 
This will be discussed in the next lecture. 
  
 

 
 

Practical Aspects of NMR: 
Acquiring a Spectrum 

Setting the Acquisition Time 
A typical FID looks like this: 
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How long should you acquire for? On the one 
hand, if you acquire for too long you might end up 
just wasting time and acquiring unnecessary noise. 
If you don’t acquire for long enough you might 
lose out on important signal. The rule of thumb is 
to acquire until your signal decays away, which 
happens around 5T2 ms. This means you should 
have an idea of when the signal decays by running 
a preliminary experiment or knowing something 
about your sample. In the example above, T2 was 
about 15 ms. You’d might have to run a quick 
reference scan to get a rough idea of how far your 
signal goes. 

Sampling and The Nyquist Criterion 
The acquired signal is digitized and we record not 
the continuous analog signal, but a set of points 
acquired at equidistant time intervals. This time 

Absorptive (left) and dispersive (right) components 
of the NMR spectrum. 

Noise tail 



interval is called the dwell time and usually denoted 
dt or t.  
 If one acquires for a time T and a dwell time 
dt, then they will end up with 
 

T
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    

 

 
at times 0, dt, 2dt, 3dt, ... Consequently, the 
fourier transform the occurs in the computer is 
called the discrete fourier transform. The MATLAB 
command that carries it out is called fft. 
 The effect of the dwell time is to cause aliasing 
in the spectrum: imagine the spectrum not as a 
linear graph, but as a sheet of paper wrapped 
around a cylinder of length 1/dt. If the cylinder is 
too short, the paper will “wrap” onto itself and will 
make it difficult to read the spectrum. As long as 
1/dt is bigger than the length of the sheet of paper 
you should be ok. This is demonstrated in the next 
example, in which there are four peaks at -110, -
10, 40 and 70 Hz: 
 

-110 -10 40 70 90

Dwell Time: 1.67 ms. SW = 600 Hz

-110 -10 40 70 90

Dwell Time: 3.33 ms. SW = 300 Hz

-110 -10 40 70 90

Dwell Time: 5.00 ms. SW = 200 Hz

Hz  
 
In the third case, dt=5 ms and 1/dt = 200 Hz. The 
peak at -110 then “folds” back onto 90 Hz (90 = -
110+1/dt = -110 + 200). 
 The reason for aliasing can be understood by 
looking at the following example, in which the 
signal cos(2t) is digitized for different offsets  

at a dwell time of 4 ms (total acquisition time 40 
ms):  
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We see that once we progress by 1/dt=0.25 kHz 
from =0, we once again acquire a constant set of 
points, making it impossible for us to distinguish 
between =0 and =0.25 kHz (or =0.5 kHz, 0.75 
kHz, etc ... ). Think of the ADC as a stroboscopic 
party light: we only observe the scene at 
equidistant time points (0, dt, 2dt, 3dt, ...), but 
have no way of knowing what happened between 
those time points. If we tried to view something 
that had a periodicity of the stroboscopic light we 
wouldn’t see anything and mistake it for being 
constant.  
 The range of non aliased frequencies we 
observe is called the spectral width (denoted SW), 
and we have just shown that: 
 

1
SW
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 . 

 
Q: Why not sample really really fast (use tiny t) 
and make the SW really big so we don’t have to 
worry about aliasing? 
A: First, all ADCs have a maximal sampling rate, 
which may or may not allow fast sampling. 
Second, most ADCs tend to use really small dwell 
times “behind the scenes”, and actually NMR 
spectrometers tend to oversample (use small ts) 



and then digitally downsample. This is a slightly 
complex process which is done because it makes it 
possible to build simpler analog low pass filters in 
the ADC. We won’t go into the reasons in this 
course (but you can come and ask me if you’re 
curious).  

Back to Acquisition Time: Digital 
Resolution 
A complementary parameter to the dwell time is 
the total acquisition time, T. If we have N points 
and a dwell time dt, then 
 

T N dt  . 
 

The total acquisition time determines the digital 
resolution: the smallest frequency range one can 
observe in the Fourier transformed spectrum: 
 

1
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T
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Thus we have an “inverse” relationship between 
the time and frequency domains: 
 

 
 
Where does the relation T=1/d come from? We 
can understand this by examining the FT of a 
complex exponent, f(t)=ei2t. We have seen in the 
previous lecture that 
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and, if we zero out the function outside [-T/2, 
T/2], 
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As T we have    0

ˆ
Tf      . However, 

for a finite T – that is, for a finite acquisition 

time – we obtain a broadening of the signal on the 
order of d=T-1. This means that anything thinner 
than d=T-1 (say, a delta function) will “fatten up” 
and get a width of d=T-1 simply because we 
acquire for a finite amount of time, T. This can be 
seen in the following example, in which two 
chemical shifts at 0 Hz and 200 Hz were simulated 
with different acquisition times, 512 acquisition 
points and T2=. Ideally for an acquisition time of 
T= we should get a perfect delta function. For 
T< the delta function is replaced with sinc-like 
functions. The real part of the spectrum is 
displayed after 15-fold zero filling of the FID (See 
below for what zero filling is): 
 

Acq. time: 500 ms 

 
Acq. time: 200 ms 

 
 

Acq. time: 50 ms 

 
 

Acq. time: 10 ms 

 
 
In general, the width of each peak behaves as 1/T 
(approximately). 

Time Domain 
(FID) 

Frequency Domain 
(spectrum) 

Total time, T 

Dwell time, dt Spectral width, SW=dt-1

Digital resolution, dv=T-1

N N 



 The example highlights another interesting 
feature: ringing, which refers to the sinc-like 
wiggles accompanying each peak. This comes 
whenever we truncate our signal, which is the case 
here, since we suddenly stop acquiring after a time 
T. Ringing is avoided if the FID decays smoothly 
to zero, which is the case if T>>T2. Even if T<T2 
the FID can be multiplied by a function that has a 
smooth decay, such as exp(-t/Tsmooth). This will 
make the ringing go away.  
 The digital resolution is not the only factor 
affecting resolution. We have already remarked 
that the width of a Lorentzian peak is determined 
by T2 and given by approximately 1/T2. This 
means that even if we acquire for an infinite 
amount of time (T=), our spectral peaks will still 
be broadened by their natural T2 decay which also 
limits our resolution. So the following should be 
kept in mind: The fastest decay factor of our 
signal determines our ultimate resolution. If T2<T 
then our resolution will be 1/T2. If T<T2 then our 
resolution will be 1/T. If there is some other factor 
causing our signal to decay even faster than T, T2 
then that will determine our peaks’ widths and, 
hence, our resolving power. 

Lock 
NMR samples are prepared in a solvent. Many of 
these are sold in deuterated forms. For example, 
D2O instead of H2O. This is done for two reasons: 
to reduce the very large signal from the solvent, 
which is often at a much larger concentration than 
the solute and might overpower it; and to provide 
a signal from the deuterium atoms to “lock” the 
spectrometer’s frequency.  
 The spectrometer’s field is not constant over 
time but slowly diminishes due to tiny dissipative 
losses in the superconducting wire. A typical 
magnet might drift by 10-7 Tesla/hour. This might 
not sound like a lot, but in reality it translates to 
 

7 Hz
Hour10 ~ 1 10 T   . 

 
Some NMR experiments are left overnight for 
many hours to increase the SNR or simply because 
they are complicated and take a lot of time (see the 
lecture about 2D NMR). This amounts to drifts 
much larger than the linewidth and can lead to 
severe spectral issues. 

 To overcome this, the signal from the 
deuterium – which is completely independent 
from the hydrogen/carbon/nitrogen/phosphorous 
signals one usually measures in NMR – is acquired 
in rapid pulses and used to track the field’s drift by 
looking at the frequency of the deuterium nuclei of 
the solvent. When the spectrometer “sees” this 
changes, it adjusts the current through a ring 
which creates a homogeneous main field much like 
B0, only not superconducting. This is fine because 
the changes this ring needs to make are very small, 
so we don’t need it to be superconducting. 
Samples without any deuterium cannot “lock” the 
spectrometer’s frequency and this should be kept 
in mind when running long experiments. 

Calibrating the Excitation Pulse 
As an experimentalist, we can only vary the voltage 
on the transmitter. How does one give a 90 pulse? 
That is, how does one know which voltage 
corresponds to such a pulse? The answer is we need 
to calibrate it.  
 The flip angle  is proportional to the B1 field: 
 

1 pB t   
 

and B1 is proportional to the applied voltage by the 
fundamental equations of electrodynamics, known 
as Maxwell’s equations. We now fix tp at a very 
short duration and start increasing the voltage in 
constant steps, looking at a particular peak in the 
sample. Often this is the solvent which gives off 
the strongest value when unsuppressed. What we’ll 
get is something that looks like this: 
 

 
 
Each peak represents a separate experiment with a 
different B1 (which you don’t know). The peak 
amplitude is modeled by 
 

   1sin sin pA A B t    . 

 



By fitting the maxima of the peaks with this 
function you can easily find both A (which is 
meaningless) and B1, and determine which voltage 
corresponds to it: 
 

 

Averaging and SNR 
The signal to noise ratio (SNR) of an NMR 
spectrum is one of its most important aspects, 
particularly because peak strengths are so weak in 
NMR and often get swallowed up in the noise, 
becoming unobservable. This is mainly because 
nuclear paramagnetism is a very weak effect. 
Because we (usually) can’t control the 
paramagnetic polarization, we have to average over 
many measurements. The idea is that each 
measurement has a signal and noise: 
 
 s(t) = sactual(t) + n(t) 
 
where n(t) is some random noise term: 
 
 sactual(t)    n(t)    s(t) 

 
 
Because the Fourier transform is linear, the same 
thing happens in the spectral domain (the noise 
term there will be the FT of the noise term in the 
time domain, which is ... also noise!): 
 
 s()    nspec()   spectrum() 

 
 
The SNR of a given peak is defined as the ratio of 
its amplitude to the standard deviation of the 
noise: 
 

  
 
Two independent measurements will have exactly 
the same signal sactual(t) but the noise term will be 
different. What happens when we add them 
together? The signal doubles in intensity. What 
happens to the noise? Noise + noise still equals 
noise, but remember these are random signals: 
some of the time the signals will cancel out, some 
of the times they will add constructively, so we 
won’t really get a factor of 2 in the standard 
deviation. What we actually get is a factor of 2 , 
so the SNR grows by 2  as well: 
 

avg. 2 signalsmax max2
SNR 2 SNR

2

s s

 


    . 

 
In general, for N averages, the SNR will increase 
by a factor of N . This is the principal of signal 
averaging. It’s not very efficient. For example, if we 
repeat the same experiment 100 times, we only get 
10 SNR but have to spend 100 time. 
Unfortunately, it’s often the best we can do.  

Shimming 
The quality of the spectrum depends greatly on the 
macroscopic homogeneity of the B0 field. In 
inhomogeneous field will lead to a spatial 
distribution of larmor frequencies (say, for one 
chemical shift): 
 

     01 B   r r . 
 

Our spectrum will therefore contain an integral 
over all these peaks: 
 

    2/

sample

i t t Ts t e d   r r . 

 
Its Fourier transform will consequently look 
distorted. When is B0 inhomogeneity an issue? 
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When the range of frequencies it creates is wider 
than a linewidth, which is about 1 Hz in liquid 
state NMR. Think about what sort of amazing feat 
it is to achieve this level of homogeneity: we 
require that 
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We require the field to be homogeneous to about 1 
part per billion! Think of building a wall 10 cm 
thick that is so straight it does not deviate (say, by 
shear forces) by even 10-9 of its thickness, which is 
1 Å! This is an amazing feat of engineering. While 
today’s modern B0 main coils can produce a field 
that’s homogeneous to about 10-6 over the sample 
size, further improvements are achieved via shims. 
There are two types of shims:  
 Passive shims are small ferromagnetic (e.g. 

iron) elements placed inside the magnet’s bore 
during construction to cancel out spatial 
inhomogeneities. The shims produce spatial 
fields which are specifically engineered to 
cancel out imperfections in the main coil. 

 Active shims are conducting loops of wire 
placed around the sample. Current passed 
through them will generate spatially varying 
magnetic fields. By adjusting the levels of 
current we can build spatial patterns that 
cancel out (some of) the remaining spatial 
inhomogeneity. 

Q: Why do we need active shims? Why aren’t 
passive shims enough? 
A: Very simple. Most samples have bulk atomic 
diamagnetism which will depend on (i) the 
sample’s shape and (ii) composition. This means 
our magnetic field will be distorted by the sample 
itself and we can’t account for it beforehand 
because we don’t know what sort of samples the 
user will want to test! Active shims let the user fix 
those sample-specific effects. 
 Most active shims produce spatial fields which 
approximate linear combinations of spherical 
harmonics Ylm(,). The first few are: 
 
 
 
 

Order 
(l) 

Deg. 
(m) 

Polar function Cartesian 
function 

Symbol 

0 0 1 1 Z0 
1 0 rcos z Z 
1 1’ rsincos x X 
1 1 rsinsin y Y 
2 0 r2(3cos2-1) 2z2-(x2+y2) Z2 

2 1 r2 sincossin zx ZX 
2 1’ r2 sincoscos zy ZY 
2 2 r2sin2cos2 x2-y2 X2-Y2 
2 2’ r2 sin2sin2 2xy XY 
3 0 r3(5cos3-3cos) 2z3-3z(x2+y2) Z3 
... ... ... ... ... 

 
There are 2l+1 shims of degree l, which are linear 
combinations of spherical harmonic functions. In 
theory, if we had an infinite number of shims of 
orders l=0 until  we could approximate any 
spatial inhomogeneity. In reality: 
 We only have a limited number of orders. 

NMR spectrometers usually have shims up 
until orders 5 or so, and often not the full set 
(it might be missing degrees). 

 We are limited with the amount of current we 
can pass through the shim coils. 

 Actual shim coils’ fields deviate from the 
perfect spherical harmonics, which 
complicates things a bit. 

Shimming however is a major preliminary part of 
any NMR experiment, in which one adjusts the 
active shims to minimize B0 inhomogeneity. There 
are many ways to assess the level of B0 
inhomogeneity, but on the most basic level we 
adjust the shim currents until our peak looks 
lorentzian and narrow. 
 The effects of different “types” of field 
inhomogeneity are shown below. 
1. A homogeneous B0 field and a perfect 

lorentzian (left: real part of FID; right: real 
part of spectrum): 

 
2. A linear inhomogeneity B0=z: this yields a 

“beating” in the FID and a loss of signal: 

 
3. A quadratic inhomogeneity, B0=z2, will lead 

to an asymmetric spectral lineshape: 



 
 
All types of B0 inhomogeneity lead to loss of SNR 
and spectral resolution, and are extremely 
detrimental to spectroscopy! 

Setting the Filter Bandwidth 
Before the ADC there is a low pass filter (LPF) 
which cuts off high frequencies. Why? Because if it 
didn’t, the high frequencies – which contain only 
noise – would alias into the spectrum and increase 
its noise level. The width of this filter is called the 
filter bandwidth. For the types of electronic/white 
noise present in the NMR bands, one can say with 
great precision that 
 

FID noise levels  fbw . 
 

The filter bandwidth is directly related to the 
spectral bandwidth, and in some spectrometers 
they are implicitly set to be equal. 

Practical Aspects of NMR: 
Processing a Spectrum 

Apodization 
 
Apodization means multiplying the FID by a 
decaying envelope before performing the FT: 
 

 
 
Apodization has two effects: it decreases the noise 
and hence increases the SNR, since it “kills off” the 
tail of the FID which is usually more dominated 
by noise than signal; but it also widens the peaks, 
because it makes the signal decay faster, meaning 
in increases the effective T2, reducing spectral 
resolution.  

Zero-filling 
Another trick used in NMR post processing is 
known as zero filling: adding zeros to the end of 
the FID. This seemingly innocent extrapolation in 
the time domain action is quite useful, and can be 
shown mathematically to be equivalent to 
interpolation in the frequency domain. Note that 
zero filling does not change the ADC dwell time 
and therefore does not change the spectral width. 
 

 

 
 
In the above example there were two frequencies 
present at -0.5 Hz and 2.5 Hz with T2=125 ms, 
acquisition time of 512 ms and 32 points. We miss 
out on the two frequencies not because of T2 but 
because of the total acquisition time, i.e. our 
digital resolution. Zero filling magically made 
them appear! ZF is no regular linear interpolation 
in which we “connect the dots” but a special type 
of interpolation known as “Dirichlet 
interpolation” which on some mathematical level 
is ideal for NMR.  This magical property increases 
the resolution by up to several percent to several 
tens of percent. We won’t go into the math of why 
this happens, but it’s almost always a good idea to 
zero fill a spectrum to twice its size before applying 
a FT. Zero filling of more than a factor of 2-4 is 
usually meaningless and should be avoided. 

Phasing 
Due to hardware constraints, the peaks can have a 
zero or first order phase. A zero-order phase is a 
term of the form:   is t e  . Without it, the FID 
transforms into absorptive (lorentzian) and 
dispersive parts: 
 

     FTs t A iD    
 

With it, the two parts “mix”: 
 

FT FT

FT FT 

ZF



     
       
       

cos sin

sin cos

i FT is t e A iD e

A D

i A v D

  

   

  

   
   
   

 

 
This looks like this: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Luckily, 0th order phase is easy to correct: just 
multiply the spectrum by ie  . The phase  is not 
known a-priori so the correction is usually done 
manually, and terminated when the operator 
deems his real spectrum “looks absorptive”. 
Alternatively, sophisticated algorithms can do a 
pretty good job of automating this correction. 
 First order phases come about due to electronic 
imperfections as well as finiteness of the RF pulses. 
Here, a frequency-dependent phase gets added to 
the peaks. For example, if you have N peaks with 
frequencies j then your FID will be: 
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   . 

 
This seems almost trivial to correct: why not 
multiply the FID by e-i? But wait: what is ? We 
don’t know our frequencies a-priori, and even if 
we did, we can’t “access” each summand and fix it 
independently of the others. When we look at the 
effects of 1st order phase in the frequency domain, 
is will look something like this: 

 
 
 
 

 
 
You see the phase at 0 Hz is not affected at all, 
because its frequency is =0 and therefore its 
linear phase is always =0 regardless of . The 
effect becomes more and more pronounced for 
peaks farther away from 0 Hz.  
 Q: Why can’t we fix the linear phase by 
multiplying the spectrum by ei for some ? 
 A: Each peak has a constant phase that 
increases linearly with frequency. This is not the 
same as having a linear phase for the entire 
spectrum. To illustrate this, just look at what 
happens to (the real part of) the spectrum when we 
multiply it by ei: 
 

 
 

Quite horrible! This happens because ei affects 
the entire lineshape and not that lineshape’s 
overall phase! You’re trying to fix a problem that 
looks like this: 
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  ji

jL e    

 
by doing this: 
 

  ji i
jL e e     

 
where L() is a Lorentzian peak.  
 Of course, a real spectrum will have both 0th 
and 1st order phase issues, and good luck telling 
them apart! It takes skill, or a good computerized 
algorithm.  
 
 
 


