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So far we’ve seen how spins behave: 

1. When the RF is off, they precess in the 
xy-plane according to their offset, and 
eventually relax back to equilibrium via 
T1 and T2* decay. 

2. When the RF is turned on, they precess 
about the effective field (RF + offset). We 
can give “hard” , /2 and any-other-tilt-
angle pulses about any axis in the xy-
plane. 

In this lecture I’ll introduce an additional tool for 
manipulating the spins: the gradient coils. These 
will tie together space and frequency and allow us 
to image objects. 
 
1. The Gradient Coils 

 
1.1  Qualitative Description 

 
The main MRI bore has three coils around it, 
capable of generating an linearly increasing z-field 
along the x, y and z axes: 
 

 
 Reproduced from www.magnet.fsu.edu 
 
The linear field gradients are creating by pumping 
current through these coils. Ampere’s law tells us 
that flowing current creates magnetic fields around 
it. 

 It is important to understand visually what is 
meant by the gradient coils. Here is a 2D 
illustration: 
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Note: in the absence of RF irradiation, the field 
always points in the z-direction! 
 
1.2 Quantitative Description 

 
Spin physics is quite straightforward: generate a 
magnetic field, and the spins will precess about it. 
Up until now, the fields involved in our discussion 
were, in the rotating frame, (i) the offset, and (ii) 
the RF: 
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The gradient field allows us to add a third term: 
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The quantity G(t) is called the gradient field and is 
completely controlled by us, the scientists, via the 
hardware’s console. Explicitly, 
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Notes: 

1. We can control each term, Gx(t), Gy(t), 
Gz(t) and shape it as we wish. 

2. Note that, e.g., the x-gradient does not 
create a field along the x-axis. Rather, it 
increases/decreases the z-field along the x-
axis. See the pictures above for a 
clarification. 

3. The gradients Gk are measured in 
field/unit length. Usually they’re specified 
in mT/m or G/cm. The 3T Siemens Trio 
we have goes up to 45 mT/m. Non-
human MRIs go up much higher, since 
they’re not subject to the same safety 
considerations as those of human 
magnets (animals, alas, can’t sue). 

4. r is the position of the spin. Different 
spins will have different positions 
(different r values), and hence will 
experience a different z-component of the 
field:   ( )zB t
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2. The Effect of a Gradient  

 
The gradient (when constant), in effect, assigns a 
linearly increasing offset (i.e. field in the z-
direction) to the spins in the sample. Consider, for 
example, a constant z-gradient, the field in the 
rotating frame would be: 
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and the angular frequency: 
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As another example, consider the x-gradient 
(assuming left-right on this page corresponds to 
the x-axis): 
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2.2 Quantitative Description: 

Constant Gradients 

 

We turn next to a quantitative description of the 
effect of the gradients on a bunch of spins. First, at 
equilibrium, the gradients have no effect: since the 
spins are parallel to the main field, and since the 
gradient coils merely change the value of this main 
field (and not its direction), nothing happens to 
the spins1. 
 It is only once we tip the spins onto the xy-
plane using a /2 pulse (or some other tilt angle) 
that the gradient has any effect. Let’s suppose we 
have an object with a uniform magnetization 
density, M0. Thus, at equilibrium, 
 

0 ˆMM z . 
 
Once we’ve tipped this magnetization using a /2 
pulse (say, 90-y), we end up with this 
magnetization along the x-axis: 
 

0 ˆMM x . 
 

At this point, if left alone, and if we neglect 
relaxation, the spin will precess about the local 
field (which is along the z-axis); that is, about the 
offset : 
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If we now turn on a gradient G in addition to the 
offset (whatever it may be), spins at different 
points, r=(x,y,z), will now precess with different 
angular velocities: 
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Note: 

                                                           
1 There is a completely negligible thermodynamic effect here: 
the equilibrium population is proportional to the main 
magnetic field, B0, which is not a constant now. However, this 
effect is extremely minor and will be disregarded. 
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1. M is now a function of both position (r) 
and time (t).  

2. Note the minus sign of the y-
component. This is because the spin 
precesses according to the left hand 
rule. 

3. Terminology: the term  is there 
because of the chemical shift of the spin. 
The term  G r  is the result of the 
gradient. The entire sum,    G r , 
is referred to (as a whole) the spin’s 
offset. It is position dependent. In 
general, the offset is the total z-field felt 
by the spin in the rotating frame 
(chemical shift + gradient), specified in 
units of frequency. In other words, the z-
field felt by the spin at r is  
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It’s convenient to switch at this point to complex 
notation: 
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Furthermore, M0 tends to vary from point to point 
in the imaged object, so M0=M0(r). Thus: 
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To add the effect of relaxation on the transverse 
magnetization, we need merely to add a decaying 
term to both Mx and My  (with a time constant T2, 
since the magnetization is transverse): 
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That is, we merely need to add a factor e-t/T2 to our 
previous result: 
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True for a constant gradient 
(not a time-dependent one!) 



3. A Basic Imaging Sequence 

 
Imaging requires some formal machinery, and I’d 
like to motivate it instead of just dropping it on 
you. To this end, recall the basic spectroscopy 
experiment we’ve described in lecture 2: 
 
 
 
 
 
 
 
The signal measured is sin(t)e-t/T2. The 
periodicity of the signal tells us the offset of the 
spins, while its intensity is proportional to the 
number of spins (double the number, and the 
intensity will double as well).  
 Remember the analogy we drew in chapter 2 to 
the piano: the /2 pulse was likened to a hammer 
striking a black box, and the acquisition was to 
listening to the audible resonances. In the case of 
spectroscopy of a water sample, all molecules had 
the same precession frequency, so we heard just 
one frequency (I’ve taken an odd shaped sample 
for reasons that will become clear shortly): 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 

 
 
If we were to turn on our z-gradient, we’d be 
creating a linearly increasing offset. This means the 

higher up (z-wise) the spins are positioned, the 
higher the “pitch” they’ll emit. Furthermore, 
loudness of each pitch will be determined by the 
number of  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
Thus, we “hear” the shape of the sample! That’s 
the idea behind imaging: turn on a gradient, assign 
a different offset to different positions, excite the 
sample and “listen”. The presence, and intensity, 
of different frequencies will tell you how many 
spins (which are proportional to the number of 
water molecules) you have at each position. 
 Of course, reality is more complicated: 

1. What does it mean to “hear” spins? 
2. Gradients increase the offset along one 

direction, so they’re one dimensional. 
How can we use them to image 2D and 
3D objects? 

3. The acquired signal s(t) will originate 
from all spins simultaneously. Different 
spins will have different frequencies. How 
can we tell apart the different frequencies 
in our signal? How can we tell how many 
protons there are of each frequency? 

The answer to #3 is the Fourier Transform, which 
I’ll introduce in the next lecture. 
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