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Measuring T1, T2 

Measuring T1: Inversion Recovery (IR) 
To measure T1 of water, consider the following 
experiment: 
 

 
 
Let’s go through what happens to the 
magnetization at each of the points outlined above 
using the Bloch model: 
A. The magnetization is at thermal equilibrium, 

and its magnetization vector is: 
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B. A hard -pulse is used to flip the 

magnetization onto the –z axis: 
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C. We wait a time TI. Longitudinal (T1) 

relaxation kicks into effect: 
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D. We excite the spin onto the xy-plane and 

measure.  
 
 

 
 
 
 
 
 
 

 
 
The magnitude of the signal will be proportional 
to the amount of longitudinal magnetization we 
have at point C just before excitation. One can 
perform multiple experiments and plot the 
magnitude of the resulting NMR peak as a 
function of TI, obtaining a graph like this:  
 

 
 
One can then proceed to fit this to the theoretical 
decay curve and extract T1: 
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This is called an inversion  recovery (IR) 
experiment. Note that for small values of TI the 
peaks’ absorptive peak will appear inverted 
(pointing upside down)! It’s thus important not to 
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phase each IR experiment independently, or you’d 
end up “flipping up” peaks which should actually 
be inverted and appear with a minus sign; rather, 
phase the last one having a long TI, which you 
know has to have an up-pointing peak, and apply 
the same phase to all over scans.  
 If our sample has multiple chemical shifts, a 
Fourier transform will yield a set of peaks, each 
recovering with its own unique T1 rate constant. 

An Energy Level Look At T1 Relaxation 
The Bloch sphere picture can be eschewed in favor 
of a more energy-level-diagram look at relaxation. 
The spin-1/2 system we’ll be looking at has two 
possible states, “up” and “down”, reflecting its 
alignment or anti-alignment with respect to the 
main B0 field. Each level has a different energy 
which leads to a different Boltzmann distribution 
of spins. For example, if we had N spins, the “up” 
state would have slightly more than the “down” 
state: 
 

 
 
These diagrams represent the populations, or 
diagonal terms of the density matrix which we’ve 
seen. Upon any disturbance of the system out of 
equilibrium – say, by excitation – the system will 
re-align itself within a time ~ T1.  

Measuring T2: The Spin Echo  
Imagine having a sample with spins having 
different offsets due to a combination of chemical 
shifts and inhomogeneity of B0. Once you excite 
the spins from thermal equilibrium, they begin 
precessing at different rates, and eventually “spread 
out” in the xy-plane, due to both  B0 
inhomogeneity  and  a  spread  in  chemical  shifts. 
This means that, if you were to acquire their 
signal, it would slowly die out because the spins 
would end up pointing in all sorts of directions 
and add up destructively (remember, the signal is a 
vector sum of the spins in the xy-plane): 
 
 

 

 
 
What would happen if we were to apply a 180 
pulse along, say, the x-axis, after a time T? The 
pulse would invert our spins: 
 

 
 
However, note the interesting part: if we were to 
wait an additional time T, the spins would end up 
re-aligning along the x-axis: 
 

 
 
The reason for this can be understood by thinking 
of a particular spin: suppose a particular spin 
acquired some phase just prior to the 180 pulse. 
After the pulse, its phase would be -. After a time 
T its phase would increase by  once again, so its 
phase at the end would be (-)+ = 0, i.e., it’s back 
at the x-axis.  If we’d continue acquiring 
throughout this experiment, we’d end up seeing 
the signal revive back again. This is called a spin 
echo. In terms of pulse sequences: 
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Now, the above drawing is a bit of a lie: in reality, 
the echo would be somewhat smaller than the 
original signal intensity. To see why, we need to 
divide the decay mechanisms into two: 
1. Decay due to microscopic T2 effects, which 

cannot be reversed with a spin echo. 
2. Decay due to a spatial spread of precession 

frequencies in the sample, as described above. 
This might come about because, for example, 
your main field is not perfectly homogeneous, 

 0 0B B r , leading to a precession 

frequency    0B r r  (per chemical 
shift). This is sometimes called 
inhomogeneous broadening. 

Each of these processes is characterized by its own 
decay constant. The microscopic decay is described 
by T2 which we’ve already met. Inhomogeneous 
broadening leads to exponential-like decay in 
many cases and is denoted by T2’. The combined 
rate, denoted 1/T2*, is under most circumstances 
given by the sum of rates: 
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Only the inhomogeneous broadening is refocused 
by the 180 pulse. The microscopic fluctuations 
are unaffected, meaning T2’ decay will be refocused 
but T2 will not, leading to: 
 
 
 
 
 

The Carr Purcell Meiboom Gill 
(CPMG) Experiment 
What would happen if we were to give successive 
180x pulses, spaced 2T apart? One might initially 
think this pattern would repeat itself indefinitely, 
since the spins would dephase, get flipped (by the 
180), rephase, dephase again, get flipped (by the 
180), rephase, dephase, ... ad infinitum; in effect, 
there is relaxation that needs to be taken into 
account. But what relaxation? Because the 180 
pulse refocuses spins with different precession 
frequencies, there are no B0-inhomogeneity effects 
in the overall decay. Only the “true microscopic 
decay”, T2, plays a role here: 
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The decay after the excitation is determined by T2* 
(by both microscopic field fluctuations and field 
non-homogeneities), but the overall decay of the 
echoes is determined by T2 alone. This furnishes us 
with a method of measuring the “true” T2 
microscopic decay of a sample. 

Homonuclear Spin Echoes and J-
Coupling 
It is very important to realize that J-coupling 
evolution continues to evolve during a train of  
pulses given on a homonuclear system, and is not 
refocused by them. This makes quantifying the T2 
decay of J-coupled species tricky. We will not 
spend any time on this topic, but you should keep 
in mind it’s a non-trivial topic.  

Modeling T1, T2 

Spins Are Subjected To Microscopic 
Fluctuating Magnetic Fields Due To 
Their Thermal Motion 
We’ve already remarked that spins are subjected to 
fluctuating fields due to their rotational thermal 
motion (see “Spin Dynamics” lecture). It is these 
fluctuating fields that lead to relaxation. The 
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fluctuating fields BD felt by a spin can be 
composed into components transverse & 
longitudinal to the main B0 field: 
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It is instructive to assign some orders of magnitude 
to these fluctuations. We define the rotational 
correlation  time, c, in an informal manner as 
follows: imagine opening your eyes at t=0, then 
shutting your eyes and re-opening them at some 
time t>0. If we open the eyes "fast enough", you 
can predict that the orientation of the molecule 
will remain close to its orientation at t=0. 
However, after a certain amount of time, you will 
not be able to predict the orientation of the 
molecule at all. The time-scale at which this 
happens is the rotational correlation time.  
 

 
  
The correlation time of a molecule will depend on 
the temperature, its environment and its size. For a 
spherical molecule of hydrodynamic radius r in a 
liquid with viscosity , Stoke derived an expression 
for the rotational correlation time: 
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How about the size of the fluctuations? In a water 
molecule the sources of fluctuations are dipolar 
and can be divided into intra- and inter-molecular. 
Because the dipolar field goes as r-3, the 
intermolecular contributions are only a second 
order effect, and we are left with the 
intramolecular ones, exerted by one hydrogen in 
H2O on the other. First, we must examine the 
geometry of the water molecule: 
 

 
 
The dipolar field created by one spin at the 
position of the other is: 
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where r is the vector connecting both hydrogen 
atoms. We see that the maximal and minimal 
values of B occur when m and r are either parallel 
or antiparallel, leading to the values: 
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Hence the magnitude of the fluctuations vary 
between max B . Fixing |r|=1.52Å and 

261.4 10 J
T

 m  (1H magnetic moment), this 
amounts to 
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To a first approximation, as we will argue next, the 
longitudinal fluctuating field causes transverse 
relaxation and the transverse fluctuating field 
causes the longitudinal relaxation. 

The Longitudinal Fluctuating Field 
Leads to T2 Relaxation 
We start by showing how a fluctuating 
longitudinal field leads to transverse T2 decay. 
Imagine exciting a spin onto the xy plane. Without 
the fluctuating field, it would just execute 
precession and make a phase =B0t after 
precessing for a time t. With the fluctuating field 
along z the precessing frequency fluctuates as well, 
with the end result being a slightly different 
precessing frequency at the end, +, where  
depends on the exact nature of the fluctuations 
(imagine turning a wheel with a shaking hand): 
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Some  numbers. For water (18 Da) at room 
temperature it is about one picosecond = 10-12 
seconds. For ubiquitin (9 kDa) in water, c is 
a few nanoseconds.  
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        Note here <0 
 
Now imagine a number of spins. In the absence of 
fluctuations they would all make the same angle. 
In the presence of fluctuations, they would fan out 
(remember, each spin feels a different fluctuation): 
 
 
 
 
 
 
 
  
 Many spins,      Many spins, 
 no fluctuations.     fluctuations. 
 (microscopic view)    (microscopic view) 
 
This is what happens microscopically. Now, the 
macroscopic magnetization is the (vector) sum of 
the microscopic magnetization. What happens 
when you sum vectors that don’t point in the same 
direction? They (partially) cancel out. Example: 
 

 
 
You can now see why the magnetization in the 
plane decays: 
 

 
  
How fast does M decay – what determines T2? 
Quite simply: the rate of fluctuations. Fast 
fluctuations will result in lesser dephasing and 
hence slower decay.  

An analogy from physics might help you see 
this: think of diffusion. An ink is injected into two 
cups containing two fluids, one denser than the 
other. In which cup will the ink spread further? In 
the less dense fluid. The idea is that the additional 
collisions it undergoes per unit time in the dense 
fluid slow the ink down and minimize the distance 
it can diffuse to at a given amount of time. A 
similar process occurs when discussing T2: you can 
think of the spin’s phase as “diffusing” under the 
action of the fluctuating field – slower fluctuations 
mean “fewer collisions” and hence a “less dense” 
environment, leading to greater “diffusion” 
(dephasing, in our case). 

This directly relates to molecule sizes, because: 
 
 Large molecules  

 Tumble slowly 
   Slow fluctuations  

 Short T2 (fast  decay) 
 
 Small molecules  

 Tumble fast 
   Fast fluctuations  

 Long T2 (slow decay) 
 
Hence, large molecules such as proteins have short 
T2s, and as a result suffer from both broad 
linewidths (leading to a lack of spectral resolution) 
and smaller signal intensities (leading to lesser 
SNR). This is one of the reasons why the study of 
large proteins can be very challenging.  

We can draw this graph: 
 

The fluctuating z-field causes the spins to 
spread out (dephase), and hence add up 
destructively, leading to a decay of the 
macroscopic magnetization vector, M. 

Adding up slightly “out-of-phase” magnetization 
vectors leads to signal loss (smaller vector sum). 

When all vectors are in-phase there is no signal loss. 
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In tissue, water can be free (A) or in the vicinity of 
large macromolecules (B), which slow it down and 
lengthens its T2: 
 

 
 

In solids, where motion is greatly reduced, T2 can 
be extremely short. 

Microscopic Model for T2 

Let’s assume we have a spin in the xy plane 
subjected to a random fluctuating field in the z-
direction. We’ll take a simple model for the field:  
 Imagine the time axis divided into discrete 

steps of duration c. Each c, because of the 
particle’s rotational motion, the field will 
assume one of two possible values B with 
equal probability. Denote by Bj the field’s 
value at the jth time step between [jc, 
(j+1)c]. We can write Bj as Bj=Bj, where B 
is the field’s magnitude and j is a random 
variable which assumes the values 1 with 
equal probability. 

 As a result, the spin’s precession frequency will 
be a random function equal to  B with 
equal probability. Denote by j=Bj the spin’s 
angular frequency at the jth time step. 

 The spin will accumulate a phase j=jc 
during the jth time step. 

 The total phase accumulated by the spin after 
N steps (and a time Nc) will be 
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The average phase of the spin will be zero, of 
course, because on average it has equal probability 
at each step to precess in a right-hand or left-hand 
sense. This is also confirmed mathematically since 
the expectation value of each of the ’s is 0: 
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The standard deviation on the other hand is not 
zero. The standard deviation of each j is 
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The standard deviation of N of these variables 
added together adds up a N , which can be seen 
by noting that, for any two random variables X 
and Y: 
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In our case the variables are uncorrelated (the value 
of j and k have no relation if jk), so 0XY  . 
So: 
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which means that  
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and  
 

 
1

N

c j c
j

SD B SD B N     


 
  

 
 . 

 
We can slightly rewrite this by using ct N   , 
where t is the total time the spin spends in the xy 
plane: 
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Now, this standard deviation tells you how far the 
spin has come away (on average) from the x-axis. 
Do not confuse this with the average value of ! 
The average phase   is zero, which tells you 
that, if you were to repeat this experiment many 
times and measure , you’d get an equal spread of 
positive and negative phases; but these phases you 
measure in each experiment will not be zero in 
general. They will have a typical magnitude given 
by SD(). 

If you have an ensemble of spins subjected to 
this random field, SD() tells you by how much 
the spins are spread out in the xy plane. When 
SD()t=T2~2,  
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the spins will have spread out completely in the xy-
plane and their vector sum should be about 0. This 
is exactly the mechanism of T2 decay. We can solve 
for T2 and obtain: 
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This result gives us some basic insight into T2: 
 Slower molecules with longer cs will have 

shorter T2s. Physically, think of the spins 
executing a diffusion-like process in the 
transverse plane under the effect of the 
fluctuating external field: the less “collisions” 
they experience the farther out they diffuse. 
The “collisions” experienced every c serve to 
impede their decoherence. 

 Obviously, the stronger the fluctuating field B 
is, the faster the signal decay (the shorter T2 
becomes). 

 Interestingly, the result does not depend on 
B0, which is in agreement with experimental 
observations that show very weak B0 
dependence on T2. In practice there is some 
dependence due to terms our model didn’t 
take into account. 

The Transverse Fluctuating Field Leads 
to T1 Relaxation 
Remember one of our earliest questions when 
discussing relaxation: how can it be that a tiny RF 
component compared to B0 can excite the spins? 
The answer we found is that the RF field can 
excite the spins if it is on resonance. We can 
reverse the reasoning and state the a transverse 
fluctuation will appreciately affect to z-component 
of the spins if it is resonant. 
 If we think of the transverse fluctuating field in 
terms of its frequency components, we might 
imagine that when c~1/(B0) – that is, when the 
fluctuations are on resonance – the longitudinal 
relaxation will be most effective, leading to the 
shortest possible T1. Conversely, as c becomes 
slower or faster than 1/(B0), we can predict that it 
will be less effective at inducing longitudinal 
relaxation, leading to longer T1s. 
 This general analysis turns out to be quite true, 
and we can draw a general curve relating the 
correlation time and T1 that ends up looking a bit 
like this: 
 

 
 
An important question now arises: on which “side” 
of this curve are we in biological tissue? A typical 
MRI magnet is ~ 3T and has a frequency of ~127 
MHz for protons, so (B0)-1~10-8 sec. The 
correlation time for free water is c~1 
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picosecond=10-12 sec, so we are well to the left of 
the “dip”. This means that larger molecules or 
molecules in more “crowded” environments have 
shorter T1s. 

T1 Increases With Increasing B0; T2 Is 
Largely Unaffected by B0 
Our T1 curve also shows us that T1 is expected to 
increase with B0. Increasing B0 will “push” the 
curve to the right and  increase T1 for a fixed c (I 
will not derive this here, though). This is indeed 
consistent with what we see in actual experiments. 
This is illustrated in the following schematic 
graph: 
 

 
 
T2 tends to slightly decrease with increasing field 
strength.  This seems not to be indicated by our 
diagram, which does not depend on B0. However, 
our theory was incomplete and omits more 
complicated effects (e.g. the transverse field can 
also contribute to T2 relaxation by transferring 
magnetization from longitudinal to transverse 
states). These corrections tend to be small to 
negligible in fluid tissue. In semi-fluid/solid tissue 
such as bone and cartilage this approximation is 
somewhat less valid. We will not treat these more 
complicated cases here. 
   
 

 

T1 and T2 Both Increase in Edema 

As an example of the usage of our theory so far, 
let’s take the relatively simple case of edema1.  In 
edema, water accumulates in the interstitium, 
which constitutes about 25% of the body’s total 
fluids (cells contain another two thirds, and the 
remainder is allocated to blood vessels and 
cerebrospinal fluid).  
 

 
 
When you think of edema, the additional water 
tends to reduce the viscosity in the interstitial 
space, leading to a shorter correlation time, which 
– looking at the graphs of T1 and T2 (and on our 
expression for T2) – leads to an increase in both. 
 
 

                                                        
1 In Hebrew: בצקת. 
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Note. T1 does not always become longer with 
increasing B0. One notable exception is 
phosphorous (31P) imaging, in which T1 
actually becomes shorter. This comes about 
because of additional, more complicated effects 
we have not discussed here, such as chemical 
shift anisotropy, which creates field fluctuations 
originating from the way electrons are 
distributed around the nucleus.  For protons 
(1H), however, the above discussion is fairly 
accurate. 


