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1. Introducing k-Space 

 
1.1 Introducing k-Space 

 
In thermal equilibrium, the spins in the human 
body all point along the main B0-field. 
 
 
    B0 
 
 
 
 
 
 
 
 
In general, the equilibrium magnetization M0 is 
proportional to the number of water molecules per 
unit volume, which varies from tissue to tissue. 
Hence, in thermal equilibrium: 
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i.e., the magnetization points along the z-direction 
and its magnitude, M0, is a function of the spatial 
coordinate r=(x,y,z).  
 What happens to M(r) when we excite the 
spins with a /2 hard pulse? They get tilted onto 
the xy-plane: 
 
 
 
 
 
 
 
 
 
 
 
 

Consider the following experiment: 
1. The spins are excited w/ a hard /2 

pulse. 
2. A constant gradient G=(Gx,Gy,Gz) is 

turned on, while simultaneously 
acquiring. 

 
The signal we acquire will originate from all spins 
in the sample: it will simply be the sums of the 
signals from the individual spins. Remember that a 
single spin, precessing in the xy-plane with an 
angular velocity  (given by its offset), gives rise to 
a signal proportional to 
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In general, in our body, the density of water 
(which is basically proportional to the density of 
spins we observe) is not constant, so the thermal 
equilibrium bulk magnetization, M0, varies as a 
function of position M0(r). Hence, each position 
in the body, r, will give rise to a signal 
proportional to  
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The total signal from all spins in the body is given 
by summing over the entire body/object being 
imaged: 
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Now, what is   r  in the presence of a 
gradient? 
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Here I’ve assumed the water has no chemical shift, 
so 0   when the gradient is turned off. Now, 
I’m going to define 
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such that 
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Looking at this expression, with our definition of 
k, we see that the signal is somehow the (3D) 
Fourier transform of the spin density M0(r), which 
is precisely the image we’re after. In fact, we can 
think up a very crude imaging experiment right 
now; let’s confine ourselves to 2D (rather than 3D) 
imaging just to make things slightly simpler: 

1. Select a 2D grid (for 2D imaging), e.g. 
 

 ky 
 
 
 
            kx 
 
 
 
 
 

2. Excite the spins. 
3. Select a value of k0=(kx,ky) from the grid 

(one of the grey dots). For example, 
suppose we’ve picked the dot I’ve colored 
using red,  0 0 ,0xkk , also denoted 
using an arrow, for those of you without 
color printers: 

 
 
 
 
 
 
 
 
 
 

4. Apply the appropriate gradients 
G=(Gx,Gy) for enough time until 

( )t tk G  matches the chosen value, 

0k . In the above example, we’d set Gy=0, 
Gx = some value Gx0, and then t=kx0/Gx0.  

5. Record the value of the signal at that 
point. 

6. Wait until the spins return to thermal 
equilibrium. 

7. Repeat steps 2-6 enough times until all 
values of k on our grid are collected. 
When this is achieved, apply the inverse 
FT to the data the recover the image. 

 
That’s a very inefficient yet fundamentally correct 
way of getting an image. It’s extremely inefficient 
because you need a different experiment for each 
k-value you record. In reality, that’s not how it’s 
done. 
 
1.2 More about k-Space 

 
Let us formalize the notions introduced in the 
previous section. For, we redefine k(t) to be the 
area under the gradient: 
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so kx(t) is the area under the gradient Gx(t) up to 
time t, ky(t) is the area under Gy(t) up to time t, 
and kz(t) is the area under Gz(t) up to time t. In 
general, we can apply gradients along all three axes 
simultaneously, if we’d prefer to.  
 Let’s first see an example of how to calculate 
k(t). Suppose we were to apply the following 
gradients: 
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This would lead to the following k (as a function 
of time): 
 
      Gx0T 
  
 
 
 
 
 
 
 
 
 
      -Gz0T 
            time 
 
At each instant in time, we can think of k(t) as a 
point in the (kx, ky, kz) space, so by changing the 
gradient, we’re actually “taking a walk” in k-space. 
For the above example (I’ll omit ky because it is 0, 
and draw just the kx-kz plane): 
 
          kz  
 
 
 
             kx 
 
 
 
 
 

 
 
So far so good, but how does this relate to our 
signal? In the remainder of this section I’m going 
to prove to you that: 
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We got this result before for a constant gradient; 
now I’m going to show to you it holds even when 
you vary the gradient as a function of time. If you 
don’t feel like going through the proof, just skip 
ahead to section 3.3 that deals with the bottom 
line. 
 Let’s look at a single spin. Suppose we’ve 
excited it from its thermal equilibrium position 
onto the x axis. Following the pulse, 
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Neglecting relaxation for now, Mz will remain 0 
throughout acquisition, and the spin will merely 
precess in the xy-plane according to its offset , 
whatever it may be. We’ll switch to complex 
notation: 
 

0xyM M  

 
The offset of the spin is: 
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The offset varies from position to position because 
of the gradient. It also changes as a function of 
time, because the gradient itself is varied (we vary 
it). Suppose that at some time, the spins’ xy 
magnetization is 
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Start here (t=0) 

Take a “walk “ 
along the dotted 

End up here 
(kx=0, ky=0, 
kz=-Gz0T) 



If we look at a short enough time interval, t, we 
can say  is constant in time. During the time 
t, the spin will precess and change its phase: 
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(the minus sign is there because rotations are left-
handed).  
 
 
 
 
 
 
 
 
 
 
For a finite amount of time t, we’ll need to sum 
these contributions up. The phase of the spin after 
a time t will therefore be: 
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As t becomes smaller and smaller, this turns into 
an integration: 
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Substituting  t  G r  explicitly, we get: 
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where I took r out of the integration because it is a 
constant (the integration is over time, not space). 
Hence, the spin’s magnetization will be: 
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 For a sample where the magnetization M0(r) 
varies as a function of position, so will Mxy: 
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As pointed out in the  The above discussion, true 
for a single spin at a particular location r, can be 
repeated for an arbitrary sample with an arbitrary 
initial distribution of spins, M0(r).  
 The (complex) signal is,   
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Note that the time, t, enters only through k, so we 
should really think of our signal as being a 
function of k, which is a function of t: 
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If the above looks familiar, it’s because you’ve 
encountered it in lecture 5: it is the Fourier 
transform of M0(r), which is proportional to the 
density of spins at each position, which is the 
“image” we’re after. Thus: 
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The signal s(k) can be thought of as being acquired 
in “k-space” (or, in the 2D case, in the “k-plane”).  
 
 
2. Echo Planar Imaging 

(EPI) 

 
2.1 The Pulse Sequence 

 
Let’s give an example of an acquisition method 
which will help make the above discussion clearer. 
This protocol is known as 2D EPI (Echo Planar 
Imaging), first demonstrated by Peter Mansfield, 
who got the 2003 Nobel prize from Medicine for 
his contributions to MRI alongside Paul 
Lauterbur. For simplicity we’re going to confine 
ourselves to the 2D case (the object is two 
dimensional, M0(r)=M0(x,y), and the “k-space” is 
two-dimensional, kx-ky).  
 Below is the “pulse sequence” of EPI. A pulse 
sequence is simply a shorthand notation for the RF 

The spin, 
initially

After a 
time t 

t     



pulses, gradients and acquisition periods used 
throughout an experiment: 
 
      Nrep 
     
 
Rec. 
 
 
RF. 
 
 
Gx 
 
 
Gy 
 
 
 
 
 
 
Here is a rundown of the sequence: 
 
A The spins are all excited onto the xy-plane. 

Don’t forget we’re assuming a 2D object.  
B Negative x & y gradients are applied. This has 

the effect of moving k from its initial position, 

   
0

0
0 ' ' 0t dt k G , at the center of k-

plane, to the point (B) in the diagram below. 
C Here is the “meat” of the sequence. The block 

(C) is repeated Nrep times. Each block 
corresponds to a “right-up-left-up” trajectory 
in the k-plane (as shown in the schematic 
illustration below). The short, strong y-
gradients are said to be “blipped”. One 
acquires when then x-gradient is on. Because 
the hardware isn’t perfect, you can only acquire 
a point every so-and-so microseconds (usually 
on the order of 1 microseconds).  The acquired 
points are represented by red dots along the 
trajectory in the schematic drawing below. 

 
 
 
 
 
 
 

The trajectory traced out by k(t) is illustrated in 
the kx-ky plane below: 
 
 
 
 
 
 
 

 

 

 

 

 
As an example, consider the following imaged 
(2D) object: 
 

 
 
Its Fourier transform (the log magnitude of it, 
actually) was said to look like this (in chapter 
5): 
 

 
 
What EPI does is sample this in a rectangular 
grid: 
 

Acq Acq.

A B  C 

(A) Start here, after 
the RF pulse  (t=0)

(B) The negative 
gradients being you 
here. 

One repetition 
of the (C) 
block brings 
you here. 



 
 
Having sampled the FT on this discrete grid, 
“all you need to do” is perform an inverse 
Fourier transform to retrieve your image (the 
woman with the hat1). There are, however, a 
few catches: 

1. Technically, you’re only measuring 
the FT on a discrete grid (the red 
dots), having a finite number of 
points. Ideally, you’d like to know it 
at each and every point. This 
discreteness will lead to artifacts when 
doing the inverse FT. 

2. The signal decays as you measure, 
according to T2*. This also distorts 
the restored image. 

3. EPI has other disadvantages, as 
detailed below. 

We’ll deal with those “catches” in subsequent 
chapters. 
 
2.2 EPI Variants 

 
EPI has many variants, some of which we’ll 
get to explore later on in the course, 
hopefully. In general, the rectilinear trajectory 
shown above is not the only way of doing 
EPI. In fact, the short, strong “blipped” y-
gradients are often hard to achieve in practice 
due to hardware limitations. Other trajectories 
in k-space have been proposed and are 
routinely used. For example, spiral EPI: 
 

                                                           
1 “The woman with the hat” is actually Lena Soderberg, a 
Swedish Playboy model. This cover picture of her from 1972 
“somehow” became the de-facto standard in computer science 
when comparing image processing algorithms. 

 
 
The different trajectories have different 
advantages. For example, the spiral trajectory 
above is easier on the gradients. It is also less 
susceptible to inhomogeneity artifacts (see 2.3 
below). It is, however, more tricky to 
reconstruct the original image because of the 
irregular sampling (which isn’t on a rectilinear 
grid anymore). 

The ideas behind all EPI-based methods 
are the same:  

1. Excite the spins. 
2. Start moving around in k-space by 

varying the gradients, and acquire. 
 
2.3 Advantages/Disadvantages of 

EPI 

 
Advantages: 

 Fast: just about the fastest scan 
technique there is. You can acquire an 
entire 2D image in a few tens of 
milliseconds. An entire 3D image of 
the brain can be had in a few seconds. 

 Low RF power deposition: The use of 
a single 90 pulse to excite the spins 
means the patients don’t get 
irradiated a lot. Irradiation can be 
problematic since it can cause the 
tissues in the body to heat up. 

 Because the technique is fast, it is also 
pretty robust with respect to motion. 
You don’t see a lot of motion artifacts 
(originating from breathing, heart 
beats, etc). 

 
Disadvantages: 

 Puts high demands on the gradients. 
This isn’t just a technical problem. 



The rapidly varying gradients can 
cause biophysical effects in patients, 
such as electrical currents in tissues. 

 Sensitive to gradient imperfections 
(and there are imperfections. Lots). 

 Resolution is just so-so compared to 
other scan techniques. 

 Signal decays as T2*. Other scan 
techniques can make the signal decay 
slower, according to T2. This decay 
also means that ... 

 ... EPI is particularly susceptible to 
magnetic field inhomogeneities. In 
particular, in the brain, there are a 
few notorious areas which are hard-
to-impossible  to observe with EPI: 
the area near the frontal and temporal 
lobes: 

 

 
 
 
3. Resolution 

 
The fact that the FT of the image is sampled 
at only a discrete number of points means the 
reconstruction of the image will not be 
perfect: 
 

 
 
 
 

 

We will now argue two things: 
1. The discreteness of the grid will lead 

to the main image being duplicated 
infinitely in all directions. The 

“original”, “main” image and its 
duplicates will be spaced apart in 
inverse proportion to the spacing in 
k-space: the denser the grid, the more 
spaced-apart the duplicates. If the 
points in k-space will be too far apart, 
the duplicates will end up 
overlapping with the “main” image 
and botch it up. This is called 
aliasing. 

2. The finite extent of the grid will cause 
a basic blurring in the image, which 
will be greater the smaller the grid. 

 
3.1 Blurring 

 
We now turn to hand-wave our way through 
these two arguments. To make things easier to 
visualize, we’ll deal with the 1D case, and 
finally remark something about the 2D case. 
The Fourier transform of the function cos(t) 
is a very sharp peak (a “delta function”, to be 
mathematically precise, but never mind the 
exact name): 
 
  cos(0t) 
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              0 
             
We’ve seen, however, that: 
 
        
 
 
          ~sinc(/2T) 
 
i.e., by “cutting off” the constant function 
cos(0t)=1 at the edges, effectively turning it 
into a “box” of width T, we end up widening 
the sharp peak and turning it into a sinc 
function. Thus: 
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Truncating the sampled function at a 
width T, causes sharp features to widen 
(“blur”) to a width 1/T. 

 
In terms of images, a sharp point in the image 
at f(x,y) will get blurred by an amount 
proportional to kmax,x in the x-direction and 
kmax,y in the y-direction: 
 
 
 
 
 
 
 
 
 
 
3.2 Aliasing 

 
s 
 

4. The End? 

 
A naive assumption at this point would be that this 
is it: we’re done. If it’s an image we’re after, we 
have all the machinery in place. We know (i.) how 
to sample different points in k-space, by acquiring 
while varying and gradients, and (ii.) how to 
Fourier transform backwards and obtain the 
image, M0(r). Why not stop here? There are two 
answers to that: 

1. Practical: in reality, human patients are 
not ideal imaging subjects. They get 
impatient after 30-40 minutes in an MRI 
scanner. They breath. They move. They 
have blood flowing through them. They 
have susceptibility artifacts. In short: a 
real MRI experiment poses many 
difficulties which still need to be 
addressed. How can we get the highest 
resolution, in the least amount of time, 
with the fewest artifacts? This comprises a 
large portion of MRI research. 

2. Fundamental: who said it’s M0(r) (the 
water density) we’re after? There are lots 
of things you can see with MRI which we 

haven’t seen yet.  For example, I haven’t 
said anything about how we can we get 
T1 and T2 maps. There are also plenty of 
other sources of contrast left to be 
explored in MRI. Examples: blood flow, 
brain metabolites, random motion 
(diffusion) and much more. This above 
reasoning only reveals how to uncover 
M0(r). We still have a ways to go before 
we can get to those. It’s not time to kick 
and back relax just yet! 

FT FT 

Left: initial object to be imaged is sharp. Middle: sampled 
k-space (schematic drawing). Right: Fourier-transforming 
the sampled k-space data points results in widenied peak.
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