
Analog signal processing 

 

Textbook: Goodman (chapters 8,9) 

 

Overview: 

 

Spatial filtering: Abbe-Porter experiment, aberration compensation, phase contrast, 

Schlieren 

 

Holography: Basics, holographic filters, the Vanderlugt filter, the matched filter 

 

Thick holograms: Bragg conditions, acousto-optic deflectors 

 

Digital holography: Types of SLMs, the Gerchberg-Saxton algorithm. 

 



Spatial filtering 

 

Spatial filtering relates to the use of filters in Fourier space. This can be an extremely 

potent tool in manipulating real-space data. In the following we discuss some simple 

variations on spatial filters. In particular, this can be related to a variety of topics, 

including microscopy, digital holography and Fourier domain optical pulse shaping.  

 

The general optical; setup for this is a 4f correlator, where a phase and/or amplitude 

mask (possibly also polarization) is placed in the Fourier plane of a coherently 

illuminated object. 

 

A simple (historic) demonstration of this is the Abbe-Porter experiments, where an 

amplitude filter is applied at the Fourier plane of a 2D periodic object, such as a 

binary amplitude grating: 
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The FT of this is: 
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The latter terms are equal to: 
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Yielding eventually a periodic array of sinc functions in both x and y. 

 

Let us now filter only the central row of this in the Fourier plane. 

 

This, instead of having: 
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we only get: 
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Which, when FT, yields an image: 
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Keeping just vertical lines in the grating pattern. 

 

The first important application of such techniques are in imaging and microscopy. In 

these, there are two commonly used schemes – for conversion of weak phase objects 

to intensity modulations, and for image enhancement and restoration following 

aberrations. Let us discuss these first. 

 

Suppose we have an aberrated transfer function. In particular, these typically lead to a 

reduced response at high spatial frequencies. By inserting an amplitude filter (and 

possibly a phase filter) which is the inverse of the transfer function we can "flatten" 

the frequency response and enhance the high frequency components to their original 

level. 

 

A good example of this is the case of defocus, for which 
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In this case, the combination of an amplitude filter reducing the central lobe and a 

phase shifting filter to inverse the alternating signs of the jinc function generates a 

better contrast. The problem is that this cannot be rendered perfect because of 

practical limitations: 

1. The presence of noise  

2. The existence of zeros in the transfer function, where information is irreversible 

lost 

Note that this is coherent optical improvement of an incoherent image aberration.  

 

A somewhat more rigorous analysis therefore requires consideration of these two. It 

can be shown that an optimal filter in this case is the Wiener filter, which takes into 

account the effect of noise. For a transfer function H and a noise spectrum n, we get 

the following result: 
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Which converges to the trivial result wherever noise in no present. 

 

The second important application involves conversion of a weak phase object to an 

intensity image. 

 

Generally, phase objects are not visible in bright field, except for some diffraction of 

light outside the optical system. Let us consider a weak phase object of the form: 
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In this approximation, the phase object is, to first order, invisible, since it is in 

quadrature with the strong non-diffracted background, such that: 
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We can, however, by spatial filtering convert this phase object to an intensity 

modulation by inducing interference with the strong non-diffracted background. Two 

common techniques to do this are Zernike's phase contrast and Schlieren imaging. 

 

In the first, a phase shift is introduced between the non-diffracted components and the 

diffracted ones. This is done by putting a /2 phase plate (or /2 phase plate) on the 

undiffracted beam in Fourier plane. The resulting response is now an interference 

pattern between the two: 
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In the Schlieren technique, amplitude rather than phase filtering is used in the Fourier 

plane. Half of the Fourier plane is blocked by a knife edge, corresponding to an 

amplitude transmittance of the form: 
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with a corresponding Fourier transform of the form: 
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Thus, an object ta is converted, after filtering to a convolution with h: 
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or: 
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For     ,1,  ita  we get: 
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The unity in the integral vanishes, yielding finally a real term, linear in the phase shift 

from the integration. The total intensity is then to first order: 
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This gives an intensity dip and an intensity peak around the phase object, depending 

on location. 

 

Holographic filters 

 

In a holographic filter, the amplitude of the filter is due to the interference of a 

reference (plane wave) arm with an object of interest. Basically, this closely relates to 

the general field of holography, where phase information of an object can be stored by 

using the interference pattern with a known reference 

 

Let us assume a general object wave Uo, which interferes with a reference plane wave 

Ur. If the two are coherent, then the total intensity of the summed field is: 
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Let us now assume that this light illuminates a film, for which the amplitude 

transmittance drops linearly with the total illumination intensity. We have thus 

generated a spatial mask of the form: 
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Now lets illuminate this mask with a coherent plane wave similar to the incoming 

plane wave Ur. We then get that the multiplication of the excitation field by the mask 

gives: 
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Note that the last term is just the original object we had, undistorted. This means that 

a part of the diffraction from the recorded mask will be an identical reconstruction of 

the object. The only problem we are now faced with is how to differentiate the various 

contributions, so that the remaining readout beam and the conjugate component will 

not interfere with the restored image. 

 

This is done with an offset recording and readout beam (using a large angle between 

the object and the recording beam). Assuming this corresponds to a phase function  

which is linear in y. 

 

Writing then the previous expression we get: 
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Such that the first term propagates at an angle , the second is diffracted at 2, and 

the last (the one term we want to maintain) is on axis. 



 

How large should the angle  be? 

 

For this we should consider the angular spectrum of all the components. The first term 

contains two contributions: the constant one (Ar squared and t0) has, in fact, no 

angular spread. The second one is an absolute value of a, and thus from the 

autocorrelation theorem has a bandwidth of twice the bandwidth of a. The second 

term, as well as the third term have a bandwidth of a. Since we need to separate the 

first from the third, the general condition is that: 
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Where B is the bandwidth of a, corresponding to: 
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If this is hard to fulfill, we can use a weak object illumination, such that the a squared 

term can be neglected. In this case we only require: 
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The Vanderlugt filter 

 

Now let us then first consider what happens when we take a pattern corresponding to 

the Fourier transform of some desired transfer function, and record the interference of 

this with an oblique plane wave (this corresponds to the recording conditions of the 

Vanderlugt filter). 

 

 

 
 

Thus we have an interference pattern between an amplitude distribution (which has 

the form of some desired impulse response): 
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and a plane wave: 
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Where: 
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The total intensity distribution at the mask plane is therefore: 
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Similarly to the above description, we record a filter with this amplitude 

transmittance, and insert it at the Fourier plane of a 4f system. 

 

Now consider what happens when we coherently illuminate an object g whose Fourier 

transform fulfills: 
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Similarly to the previous case of the hologram, we get several contributions  to the 

Fourier plane field: 
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Which we can now Fourier transform back to real space by the final lens. We see 

three contributions propagating in different directions, corresponding to three shifted 

images on the observation screen. The first two terms simply correspond to a replica 

of g and one convolved with h and h*: 
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And do not contain significant interesting information. The other two terms are: 
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Corresponding to the convolution of g with h and the cross-correlation of g with h. 

 

Similarly, if the angles  is chosen to be large enough, the three images are 

completely separated in space. 

 

One very important application of this is the matched filter. Suppose we are not 

interested in looking at the frequency response of the object or at its image, but are 

rather interested whether it is close or identical to some known object s (as in 

character recognition). In this case, we want to get the optimal SNR for this yes/no 

question. This is optically achieved by choosing, for the Vanderlugt function h: 
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In this case, the output of the convolution term in Fourier space is just SS* for the 

"correct" object, corresponding to a real function. This represents a plane wave after 

the filter, which would focus down to a diffraction limited spot. For other inputs, the 

outgoing correlation will generally be a complex function, resulting in a broad spatial 

distribution at the screen. The diffraction limited spot is optimal in the SNR sense, as 

noise is accumulated over a small area. 

 

Holographic filters are also very useful in mode conversion of laser beams, since both 

the diffraction efficiency (corresponding to intensity) and the phase of the diffracted 

wave can be directly controlled in the recording process. 

 

A brief description of thick phase holograms (volume gratings, also relevant for 

acousto-optic modulators) – coupled mode theory 

 

For simplicity we can consider the case where the thick hologram contains reflective 

centers after development, but this is in fact equally relevant to a thick phase object, 

such as we get in an acousto-optic modulator. 

 

Since the object is thick, we need to consider multiple reflections (or multiple 

coupling with the grating lines). We then get that the coupling of two spatial 

frequencies is greatly enhanced when they satisfy the Bragg condition (i.e. that 

reflections from various planes in the thick hologram are in phase). Mathematically, 

this corresponds to: 
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where  is the grating period. This corresponds, in practice, to the angle between the 

two beams used to write the holographic grating.  

 

To simplify the analysis under these conditions, let us assume a phase only grating 

with no absorption, such that 
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and the two Bragg coupled waves: 
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We can now try to solve the Helmholtz equation inside the thick grating: 
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We then get: 
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The second derivative can be assumed small (slowly varying envelope 

approximation). The "standard" k2 terms for R cancel each other by definition, so we 

are left only with a mismatch for the scattered wave S, and from the last term we may 

keep only the coupling terms between R and S (which are strongly coupled under near 

Bragg conditions). Equating all terms with  in the exponential to zero, as well as all 

terms with , we are left with two coupled equations: 
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If the Bragg mismatch is zero (i.e. the incident wave is exactly the same wavelength 

and the same angle as the writing wave used in writing the grating) it can be easily 

seen that full conversion fro R to S and back occurs. 

 

This can be realized either by holographic recording or in an acousto-optic device. 

 

 

Digital holography 

 

One big limitation of holographic applications such as the ones described above is in 

the tedious process of recording the holograms. The existence of reconfigurable SLMs 

opens a way to generate the "hologram" or the Fourier plane mask completely without 

the need for a film (or, for that matter, for resorting to intensity only masks). Most 

SLMs available today are 2D phase-only arrays, based on either LCD technology or 



on MEMS (micromirror arrays). Usually, both operate in the reflection mode (which 

doubles the dynamic range also for LCD masks, and facilitates manufacture). These 

devices suffer, however, from two main drawbacks: 

 

1. artifacts due to the pixellation of the device. 

2. A limit on the angular frequency of the diffracted wave due to the pixel size (and 

the sampling limit).- typically 10-20 microns for both. 

 

Perhaps the most commonly used application of digital holography is in the 

generation of particular intensity patterns by phase modulation in the Fourier plane. 

This correspond to the solution of a very simple yet fundamental problem. On the 

SLM, we have a specific field amplitude pattern A(fx,fy) which cannot be 

manipulated. We have to find the spatial phase function which would generate the 

"optimal" (in some sense) intensity pattern I(x,y). This mathematical problem 

generally does not have a solution, so an approximate solution has to be found by 

some optimization algorithm. The most commonly used is the Gerchberg-Saxton one: 

 

Take a random phase pattern, and IFT to the image plane. 

Throw away all the intensity information, and multiply the phase pattern by the 

required image, 

FT back to the Fourier plane. 

Throw away all the intensity information, and multiply the phase pattern by the 

excitation source amplitude. 

 

Repeat until convergence. 

 

 

 

 

 

 

 


