
Geometrical optics 

 

Textbook: Born and Wolf (chapters 3-5) 

 

Overview: 

 

Electromagnetic plane waves (from maxwell's equations). 

The Eikonal equation and its derivation (optics at zero wavelength). 

Refraction ; Snell's law (reflection) ; Total internal reflection ; The prism ; Dispersion 

; The thin lens 

Imaging as a projective transformation. 

Optical systems and the ABCD matrix. 

The primary optical aberrations ; Chromatic aberration. 



1. From Maxwell's equation through the wave equation to the eikonal equation – up to 

the derivation of Snell's law. 

 

Start with Maxwell's equations in a dielectric medium (no currents, no charges) 
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Along with the material equations: 
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Substituting the equation for B into the second Maxwell's equation and taking a curl 

operation we get: 
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From which we get, by applying the second Maxwell equation: 
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multiplying by  and using UxVxVUxUV   we get: 
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and using the identity   2x  we get: 
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Since 0 D  (from Maxwell's equations), we get: 
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Finally, we can get the end result: 
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in non-magnetic media =1, and  varies between 1 and ~20 at optical frequencies, so 

the last term is generally slowly varying. For homogeneous media we get: 
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From which we get the speed of light in a medium (phase velocity) cv  , thus 

  is defined as the refractive index of the material 

 



Harmonic plane waves and the Eikonal approximation 

 

Clearly, a plane wave of the form: 
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is a solution of the wave equation if k=v. (similarly for H). This is a plane wave. 

We will consider other solutions to propagation in free space later. 

 

Let us now derive the wave equation assuming that the wavelength is small. This 

should provide a decent approximation as long as we are many wavelengths away 

from sources or boundaries. 

 

For this we can assume an Ansatz of the form: 
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where S is a scalar function, and write the wave equation keeping only the highest 

order terms in k (assuming  is small relative to all gradients of e,h,S). 

 

From this we get: 
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The highest order term in k leaves just the gradient of S, and the time harmonic term 

(applying the time derivative twice), gives: 
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From Maxwell’s equations it is simple to write the Poynting vector, which is 

proportional to ExH. Since from the above: 
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this can be shown to be equal to: 
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where <we> is the time averaged energy in the electric field. The poynting vector is 

thus oriented along grad(S). 

 

Defining a ray as a path r(s) propagating along the poynting vector we can write: 
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From which we can derive: 
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or 
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In particular, for constant n we get: 
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Corresponding to propagation in straight lines. 

 

Now consider the continuity conditions between media with different refractive 

indices. Since 
ds

dr
nrsn )(  (defining s(r) )is the gradient of S it follows that  
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or the tangential component of ns is constant across the surface. 

 

 

This amounts to 
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across an interface which is Snell's law of refraction. For the case of reflection we 

simply get the equality of the angles since the refractive index is identical. 

 

What also follows from this is Fermat's principle: light rays take the shortest (actually 

extremal) optical path available. This is since 0)(  drrsn , and on a ray, s is 

always parallel to dr. In fact, Snell's law can be easily derived from Fermat's principle. 

 

Example: 
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or 
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Note that: 

 

1. All this is scalar (no polarization) – light was considered to be a longitudinal wave 

like sound waves at the time this was developed. 

2. This predicts the phenomenon of total internal reflection (going from a high 

refractive index medium to a lower refractive index one). For example, this is widely 

used for high energy broadband mirrors (with right angle prisms). 



2. Refraction – the prism, the thin lens, perfect imaging and projective 

transformations, simple optical instruments. 

 

The simplest optical instrument which can be derived from Snell's law is the prism. 

 

 
The deviation angle of a prism satisfies: 
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Lets consider a prism-based optical instrument which deflects all rays emitted from a 

point into a different point – both along the same line. (For simplicity consider small 

angles). 

 

Then: 
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Lets assume for simplicity a plano-convex prism. Since h1  and we need that 

h2 , this requires h . Since 
h


1

 , we get: 
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Which is just the spherical thin lens. Clearly, this works just as well when adding the 

same radius of curvature to both sides. 
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A simple calculation yields for the thin lens that rays from infinity are focused at a 

distance f such that: 
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Where ri are the radii of curvature of both interfaces. 

 

Now let's turn to a somewhat more detailed description of imaging by a lens. The lens 

in the above description (at least for small angles) projected a point to a point, but 

how does it project more complex objects (for example other points, or a line)? 

A perfect imaging system is one in which every curve is geometrically similar to its 

image. In particular, lines are imaged onto lines. Thus, a perfect imaging system is a 

projective transformation. For  zyx ,,  in the object plane and  zyx  ,,  in the image 

plane we should get: 
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We can also write an inverse transform for x,y,z using the primes. Clearly points lying 

in the plane F0=0 will be imaged onto infinity, and an object from infinity will be 

imaged onto F'0=0. These are called the focal planes of the imaging system. 

 

For the special case of an axially symmetric system we can assume x=x'=0, as well as 

symmetry for y->-y, y'->-y'. The equations then reduce to: 
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which contains 4 independent variables (up to ratios). The focal planes are given by: 

0300 ; cczcdz  , that is planes perpendicular to the optic axis. 

Measuring distances from the respective focal planes: 
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this transforms to: 
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Setting: 
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we easily get: 
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which gives the magnification and newton's equation: ffZZ   

 

One important implication of the concept of perfect imaging as a projective 

transformation is that an optical system containing more than one surface of 

revolution can be mathematically modeled as cascaded projective transformations, 

which is by itself a projective transformation. As such, it is clear that a set of spherical 

optical elements (in the paraxial limit) can be modeled by a single effective element. 

The simplest example is, indeed, the thin lens, which is composed of two back-to-

back spherical elements, and for which we get the previous result. However, in the 

paraxial limit, a thick lens or a set of thin lenses can also be mathematically 

formulated as a projective transformation. The simplest example here is of two thin 

lenses with a spacing l between them, for which we can derive: 
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For l=f0+f1 this gives f-> infinity, as expected. This is, in fact a telescope. For l=0 we 

get the additivity of lenses. We will now present a simple way of calculating (or 

proving) this formula using raytracing. 

 

3. Ray-tracing 

 

Imaging systems are generally, of course, not as perfect as described by a projective 

transformation. For a full analysis of more complicated optical systems we have to 

take into account higher order corrections beyond the projective transformation. In the 

following I start by describing one of the commonly used numerical methods (in a 

simplified form) to evaluate optical aberrations, ray-tracing, and follow by a formal 

treatment of the types of aberrations in optical systems. 

 

Ray tracing basically follows the solution of the eikonal equation for "pencils" of rays 

emanating from one point to different directions. I present here a simplified form of it 

which is applicable to paraxial meridional rays (those which are in a plane with the 

optic axis) called "ABCD" matrix. 

 

For these rays, the output ray (characterized by its distance from the optic axis and its 

angle) can be described by a simple 2x2 matrix as a function of the input. Deviations 

from paraxiality can be described numerically by introducing a nonlinear dependence 

into the 2x2 matrices. 

 

In the simplest form, we can write: 
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For any optical system. 

 

Some elementary matrices are: 

 

Propagation through free space of index n: 
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Refraction through a planar interface between materials with n1 and n2: 
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and refraction through a thin lens in a medium of index n: 
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We can use these to derive one of the most important properties of paraxial imaging: 

 

Since for propagation in free space and imaging all matrices have a determinant of 

unity, any imaging setup must also have a determinant of unity. When we have 

imaging, the y output is dependent only on y at the input and not on the angle. In this 

case, the most general ABCD matrix is: 
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The generalization of this is known as the sine condition (or the Smith-Helmholtz 

invariant): 

 

constyn sin  

 

Let us now consider a few examples.  

 

Staring with finding the imaging conditions for a lens of focal length f and an object 

placed at 2f. Up to the lens we get the matrix: 
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To get imaging we then require free space propagation of d=2f. 

The final result is then: 
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Corresponding to inversion with M=1. 

 

Let's try now with the object positioned at 3f. Up to the lens we get the matrix: 
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To get imaging we then require free space propagation of d=3/2 f. 

The final result is then: 
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Corresponding to inversion with M=1/2. 

 

Let's consider now a set of two lenses spaced by a total distance l as described above. 

 

Using the ABCD matrix formalism, the equivalent system, upon propagation from the 

the back aperture of the first lens to the front aperture of the second lens is just the 

multiplication of three matrices: l2*d*l1 
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The focal length is in practice defined by out(yin) at in=0, from which we get: 
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For the case of a telescope (l=f1+f2) we get: 
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corresponding to inversion and magnification. 

 



4. Aberrations 

 

Seidel aberrations: 

 

To lowest order we can evaluate aberrations as small deviations from a projective 

transformation. Lets consider an imaging system which projects a point (x0,y0) to a 

point (x',y'), where the Gaussian image (the projective transformation) of the point is 

(x*,y*). The ray aberration can be defined as the distance between (x',y') and (x*,y*).  

 

Let us define a useful quantity, the wavefront aberration D, from which the image 

aberration can be derived – as the pathlength difference between the actual wavefront 

and a spherical wavefront converging at the Gaussian image as a function of the exit 

pupil plane position (x,y). It can be easily shown that the image aberration is just the 

derivative of the wavefront aberration (a simple example is a spherical wavefront 

impinging on a nearby point, where the pathlength difference is just a linear function). 

 

In a cylindrically symmetric system, D is only a function of r at the object plane,  at 

the exit pupil plane, and the angle (or the scalar product ) of the two. Since the 

lowest order terms can be 4
th

 order and cannot contain an explicit dependence on r 

only (this violates the assumption that the image is indeed a Gaussian image), the 

general form of this is: 
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The most general form or the image aberration can thus be expressed as (without loss 

of generality assume x'=0 and replace y' with y0), simply taking the derivative of the 

previous expression: 
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These coefficients relate to the following: 

 

B is spherical aberration – occurs also on axis – focal length is dependent on ray 

direction 

 

 
 

F is coma – smearing according to angle of incidence 



 

 
 

D is astigmatism – different focal length for tangential and saggital rays 

 

 
 

C is Field curvature – the image lies on a spherical front 

 

E is distortion – magnification is dependent on position 

 

 
 

 

 

The elimination of aberrations is a science by itself. Let us just give a very simple 

example – considering the scaling of the longitudinal spherical aberration of a thin 

lens, simply to envision the complexity. 

 

Let us consider a thin lens with radii of curvature r1 and r2, and an object positioned 

at a distance S from the lens, whose image is at S'. The longitudinal spherical 

aberration in this case is defined as: 

 

phs SSL  11  

 

where p is the paraxial value and h the value for a ray at height h in the lens. 



 

Expanding to third order for the angle of incidence on the lens we can write: 
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or to third order 
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The deviation angle from the paraxial value 
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A similar expression can be written for S' and r2. 

 

Expanding for a total angular deviation 
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Since: 
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We get (the last term neglecting higher order terms in h): 

 

311
hhL

SSS
h S 













 

 

The full expansion of this expression (containing r1, r2, S, and S', all related through 

f) can be simplified to the form: 
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which for a given p can be minimized choosing r1 and r2 such that: 
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A condition called "best form" lens. 

 

 

Origin the frequency dependent refracticve index (Lorentz-Lorenz formula) 

 

For an electromagnetic wave in a medium we can treat the electron motion in a 

material as a damped harmonic oscillator, and the electromagnetic field as the driving 

force. 

 

Thus (neglecting the magnetic force on the electron, assuming its velocity is small): 

 

Eeqrrm   

 

which, for a harmonic driving field gives the solution: 
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The contribution of the electrons to the polarization in the medium is much larger than 

that of the heavier nuclei, so they dominate, to give approximately: 
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Since from Maxwell's equations P=NE', we can identify , and by a simple 

transformation also the polarizability  (which is the coefficient of proportionality 

with the external field): 
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and  41 : 
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Or reversing this relation: 
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Which for n~1 can be approximated as: 
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Since for most optical materials electronic resonances occur only in the UV and MIR 

vibrational resonnces are strongly detuned from the visible region, this means that the 

index of refraction in the visible range is a monotonically decrteasing function of the 

wavelength, usually given by a phenomenological equation of the above form, termed 

Sellmeier equation. 

 

Chromatic aberrations 

 

Another type of aberration is chromatic aberration: Due to the variation of the 

refractive index with color, different colors have different focal lengths. This is 

corrected for using Doublet achromats of two glasses with different dispersion: 
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For a combination of two cemented lenses we can have a solution for the two 

equations: 
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In fact, there are three radii of curvature and only two equations, so that the extra 

degree of freedom can be used to reduce spherical aberrations. 

 

This idea can be extended to more components such that additional derivatives of the 

focal length are zero, resulting in apochromats (2
nd

 derivative also zero) and 

suprachromats (3
rd

 derivative). 

 


