
Introduction to Fourier optics  

 

Textbook: Goodman (chapters 2-4) 

 

Overview: 

 

Linear and invariant systems 

The Fourier transform 

Scalar diffraction 

Fresnel and Fraunhoffer approximations. 



1. Linear systems and Fourier transform tutorial (reminder) 

 

A system connects an input g1 to an output g2 such that: 

 

    111222 ,, yxgSyxg   

 

It is said to be linear if it satisfies: 

 

          yxhSyxgSyxhyxgS ,,,,    

 

The response of a linear system can be expressed by its response to a (basis) set of 

elementary functions. In particular, since 

 

       ddyxgyxg   ,,, 1111  

 

and invoking linearity we find that: 

 

        ddyxSgyxg   111222 ,,,  

 

This defines the impulse response (or point spread function) of the linear system: 

 

      1122 ,,,, yxSyxh  

 

An important subset of linear systems are invariant systems, in which the impulse 

response is only dependent on the difference in coordinates: 

 

     2222 ,,,, yxhyxh  

 

In this case the system response is simply a convolution between the input and the 

transfer function: 

 

hgg  12  

 

This implies that in Frequency domain, the output of an invariant linear system is 

merely a multiplication of the input by the transfer function H 

 

HGG 12   

 

Where  

 

     

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 dydxyfxfiyxhH yx2exp,  

 

To further discuss this let us remember some of the properties of the Fourier 

transform: 

 

 



Definition of the 2D Fourier transform 

 

       
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 dydxyfxfiyxggF yx2exp,  

 

Similarly, the inverse transform is: 

 

       
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  yxyxyx dfdfyfxfiffGGF 2exp,1  

 

The conditions for this being definite are that the function is "regular", which applies 

for all physical realizations in the optical realm. 

 

The Fourier transform operation can be viewed as a decomposition of a function in a 

new basis of elementary functions of the form   yfxfi yx 2exp , which are tilted 

plane waves with angle  xy ffa tan  to the X-axis, and a spatial period 

  2122 
 yx ffL . 

 

Some important properties of the FT (quite evident from the definition) 

 

Are: 

 

Linearity: 

 

     hFgFhgF    

 

Similarity: 
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Shift theorem (linear shift transform to a phase shift): 

 

        yxgFbfafibyaxgF yx ,2exp,    

 

 

Parseval Theorem ("conservation of energy"): 
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Proof in 1D (2D proof follows directly the same procedure) 
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Convolution theorem: 
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Proof in 1D (2D proof follows directly the same procedure) 
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Autocorrelation theorem: 

 

      2
* ,,, yx ffGddyxggF 









 




  

 

Proof in 1D (2D proof follows directly the same procedure) 
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Fourier integral theorem: 

 

    ggFFgFF   11  

 

Fourier transform of separable functions: 

 

If 

 

     ygxgyxg yx,  

 



then 

 

        ygFxgFyxgF yyxx,  

 

It is useful to consider some FT 
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As well as to consider FT in cylindrical coordinates (especially for functions which 

are only dependent on r). 

 

 

 

 

 

 

 

 

 

 

Derivation of the Fresnel diffraction formula 

 

Lets start again from Maxwell's equations: 
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Since  is generally space invariant, and by using: 

 

    EEE 2  

 

We get: 
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From which we get, overall: 
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Again, for a homogeneous medium we get the scalar equation: 
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Which is valid anywhere except the boundaries  

 

If the scalar field is assumed to be of the form (monochromatic): 

 

      PtPAtPu   2cos,  

 

And the scalar Maxwell equation holds, we get for       PiPAPU exp  the 

Helmholtz equation: 
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with 
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This equation can be solved by means of the use of Green's theorem, relating the 

values of a function inside the volume to a surface integral. 

 

Briefly, this states that for any two "reasonable" functions U,G: 

 

      


















n

U
G

n

G
UdsUGGUdv 22  

 

I will not go through the details, but a long description can be found in Goodman. 

Intuitively, the Green's function chosen for the Helmholtz equation is a spherical 

wave: 
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For which: 



 

   RGk  22  

 

Where R is the distance from an arbitrary point P1 

 

Performing the integration on the left hand side we are left with the value of U at the 

origin (since the laplacian operator elsewhere is just k
2
 – from Helmholtz equation). 

Thus, the integration is done over a surface comprising a plane and a hemisphere 

stretching to infinity. Under some conditions, the value of the latter vanishes, leaving 

only the integration over the plane. 

 

This results in the Rayleigh-Sommerferld solution, which is really a mathematical 

formulation of the Huygens principle. 
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Where the cosaccounts for the exact choice of the Green's function, and in any case 

vanishes for small angles. 

 

Relating this to what we said previously, this can be interpreted as the impulse 

response of propagation from the aperture, where: 
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Now let us consider the small angle approximations for this. We get the integral: 
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The dependence on the integration coordinates appears both in the numerator (phase 

term) and in the denominator (amplitude term). For large z, obviously the amplitude 

contribution is small. The cosine term is also an amplitude term which has a small 

effect for large z. Phase terms can have, of course, a much higher effect, so we will 

keep them. We thus get: 
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Fresnel diffraction: 

 

Let us now consider two more restrictive solutions to the problem of diffraction from 

an aperture. The first is effectively a small angle solution, retaining only the first order 

(in x,y) terms of: 
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Since we want to nerglect the higher order terms, we require that 
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or: 
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Where R is a typical dimension of observation in both planes. 

 

For R=1cm and =1m, this amounts to: 

 

cmzcmz 2010 343   

 

In this case, free space propagation can be described by: 
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Fraunhoffer diffraction: 

 

This is a more restrictive approximation. Let us first expand the Fresnel formula. We 

get: 
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If z is so large that: 
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Than the quadratic phase terms on  and  can be neglected and we are left with: 
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Which is just a (scaled) Fourier transform of the aperture field 

 

For R=1cm and =1m, this amounts to: 

 

mzcmz 100104   

 

 

 



Simple Fraunhoffer diffraction patterns: 

 

Rectangular and circular apertures 

 

For transmission through a rectangular aperture we get: 
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This being a separable function, the Fourier transform is just a multiplication of the 

two individual Fourier transforms, giving: 
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and for the intensity 
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The width of the central lobe in each direction is: 
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For transmission through a circular aperture we get: 
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For which the Fourier transform is a Jinc function 
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With the corresponding intensity distribution: 
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This is called an Airy pattern. The width of the central lobe in this case is 
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Amplitude grating 

 

Consider a rectangular containing an amplitude grating: 
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In the y direction this leads to the "standard" sinc dependence. In the x direction, we 

can apply the convolution theorem to get the response, using the Fourier transform of 

the grating: 
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To get: 
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If 10 fwx , corresponding to many grating lines in the aperture, the peaks are well 

separated, and the intensity distribution is approximately the sum of the squared 

amplitudes: 
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Thus, the forward transmission is 1/4, and each of the sidelobes (termed +1 and -1 

orders) have a maximal efficiency of m
2
/16, or a maximum of ~6%. 

 

To become more efficient either phase gratings or reflectance gratings have to be 

used. These will be discussed more elaborately in the next tutorial. 

 

Angular spectrum of Waves 

 

An alternative solution to the problem of diffraction is presented by considering free-

space propagation as a linear transformation of the solutions of the free-space 

Helmholtz equation: 
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The solutions of which are plane waves. 

 

Let us consider the field distribution at z=0 as a summation of gratings of different 

spatial frequencies (a Fourier transform in real space): 

 

Then: 
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where the inverse transform is: 
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Physically we can interpret this as a sum of plane waves, since a plane wave of the 

form: 
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has an intensity pattern which is periodic in the plane, with the period which increases 

as 221    becomes smaller. 

 

Thus, using: 
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we see that the Fourier transform is just a decomposition to plane waves. 

 

Let us now consider the propagation of these in space. 

 

Since: 
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Taking the Laplacian of U, we get: 
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which, using the Helmholtz equation becomes: 
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Since this integral equation is fulfilled for any distribution over the integration 

variables, the equation must also hold for the integrand, not just the integral, leaving: 
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Whose solution is: 
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Physically this means that free space propagation just introduces a relative phase shift 

between interferences of various plane wave components. 

 

The Fresnel approximation corresponds to the approximation  

 

       
22

11

22

22 yx

yx

ff
ff


   

or to lowest order small angle diffraction. 

 

Evanescent waves 

 

Clearly, something is wrong with this picture when the spatial frequency is greater 

than 2/. In this case 122   , which means that  is imaginary. The solution in 

that case is not of a propagating wave, but rather of an exponentially decaying wave: 
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These waves do not propagate, and decay over a length scale of the inverse spatial 

frequency. All the information on these, which represents the fine detail of the 

aperture, is lost in the far field. 

 

In fact, free space propagation in the far-field can be considered as a circular filter in 

spatial frequency space. 
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The effect of a diffracting aperture on the ASPW 

 

For a diffracting aperture, the transmitted signal is: 
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Since multiplication is real space is convolution in Fourier space, then: 
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For an incoming plane wave, the outgoing angular spectrum is just the Fourier 

transform of the aperture. Thus, the smaller the aperture, the broader the angular 

distribution (wider angle diffraction). 

 

Fresnel diffraction of an amplitude grating (Talbot images). 

 

Let us consider again an amplitude grating, but now only in the Fresnel 

approximation, and using the ASPW approach. For simplicity lets consider an infinite 

grating in 1D. 

 

We start with 
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The transfer function for any given component of the ASPW is: 
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Such that for L=1/2f0 we get: 
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Since at z=0 the Fourier transform is: 
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The at any z we get: 
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Which is simplified to: 
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To yield the intensity distribution: 
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Now there are three special cases, where this expression get further simplified. 
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Which is an exact image of the one at z=0. 
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Which is an inverted image of the one at z=0. 
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Which is an amplitude grating at the doubled frequency. 

 

This phenomenon is related to any revival in a periodic system. For the case of a 

general periodic system it holds only in the Fresnel approximation, since then the 

various frequency components propagate in integer multiples of the same phase 

factor. 

 

 

 


