
Guided wave optics 

 

The slab waveguide from a geometrical optics point of view – modes 

 

The slab waveguide from a wave optics point of view 

 

Single-mode waveguides ; Multimode waveguides ; Dispersion curves 

 

The step index optical fiber – 1D waveguide in cylindrical coordinates 

 

Mode dispersion ; material dispersion ; polarization in optical fibers 

 

Guided wave devices – couplers, junctions, mach-zender, ring resonator 



The slab waveguide from a geometrical optics point of view. 

 

Lets consider the simplest case of a waveguide – A layer of material with refractive 

index n1 sandwiched between two layers of material of refractive index n2, where 

n1>n2. 

 

The total internal reflection angle is given by: 
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Since applying Snell's law upon entrance to the waveguide relates  the angle on the 

outside to  by: 
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we get: 
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Defining  as the index contrast n/n. Typically, angles are small so that sin=. 

 

 
 

In considering the mode structure of waveguides we must solve for a self-consistent 

(phase matched) solution for a plane wave propagating at an angle to the waveguide. 

In doing this we have to take into account the phase shift following total internal 

reflection (remember polarization, beginning of semester). 

 

This condition gives: 
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Since: 
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from which we get the condition: 
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for allowed (discrete) angles.  

 

The mode for which m=0 is called the fundamental mode and other solutions are 

higher order modes. These do not necessarily exist. To determine the cutoff for their 

existence we can rewrite the above equation in normalized coordinates. 

 

Defining  
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we can rewrite the phase matching equation as: 
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The normalized frequency v depends only on the wavelength and the waveguide 

parameters. 

 

Since for =1 the arcos term is zero, there is always a bound m=0 solution for any 

finite value of v. The existence of the m=1 solution requires v>/2. Thus the cutoff 

wavelength for single mode operation of a waveguide is: 
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The slab waveguide from a wave optics point of view. 

 

Formally, we need to solve Maxwell's  equations again, for the case of a slab 

waveguide. Unlike our discussion of Fresnel propagation we now have to deal with 

the different indices of refraction in the various parts. Let us assume now a waveguide 

with a core refractive index of n1 and thickness 2a, embedded in a cladding material 

with a refractive index n0. 

 

Maxwell's equations are: 
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and we assume a solution of the form: 
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This gives two independent solutions of the general form: 
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with Hx,Hz components derived from Ey and the other three components are zero 

(these are called TE modes) 

 

and: 
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with Ex,Ez components derived from Hy and the other three components are zero 

(these are called TM modes). 

 

Let us now solve in more details for the TE case. 

 

We assume a solution of the form: 
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With: 
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From the continuity conditions of Ey and its derivative at +-a, we get: 
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or: 
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where u=a and w=a. Overall we get: 
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These equations can be easily generalized for the case of an asymmetric waveguide 

(upper and lower cladding having different refractive index). 

 

It is important to note that the other restriction on the values of u and w is that: 
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Thus, we can geometrically determine the dispersion relation and the mode structure 

of the waveguide, plotting w vs. u, and finding the crossing points with a circle whose 

diameter is v. For each point, by knowing u and w, we can also determine the 

propagation constant . 

 

Clearly, single-mode operation is only achieved for v<vc=/2. 

 

Considering the power distribution in the waveguide we get the following: Since f 

jumps by p/2 for each additional mode, the distribution of intensity in the waveguide 

has an antinode (node) for odd (even) mode numbers. The fraction of the power 

contained in the core vs the cladding can also be calculated. 

 

2D confined waveguides 

 

The solution for a 2D rectangular waveguide closely follows that of the 1D one, 

separating the solution to two separate dependencies on x and y. 

 

Rib waveguides are a very common type of waveguide which cannot be easily solved 

in this approximation. The utility of Rib waveguides is due to the ease of fabrication 

by lithographic techniques. In this case, the usual way of handling the solution is by 

the effective index method. Since we need to solve the equation: 
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which is difficult, we make the Ansatz of separation of variables: 
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This leads to the following equation: 
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We now introduce an effective index neff(x), such that we get: 
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From which we can derive both the effective index and the full solution as piecewise 

constant functions. 

 

Briefly go over types of fibers: 

 

Step index 

Polarization maintaining 

Gradient index 

Omniguides 

Hollow core 

PCFs (air guiding, index guiding). 

 

 

Full analysis of the step-index optical fibers 

 

Basically, in this case we need to solve Maxwell's equations in cylindrical 

coordinates. 
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We therefore get two sets of equations: 
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From which we can derive all other quantities: 
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There are "simple" TE and TM solutions for these (Ez=0 or Hz=0) as well as hybrid 

solutions, where both Ez and Hz are nonzero. 

 

Lets start by looking at the TE solution: 

 

Hz has the form: 
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and the radial equation gives: 
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Continuity conditions give: 
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Since the first term is not similar, for this to hold for all values of theta we need to 

have m=0. Hence, Er=H=0. 

 

We finally get, then: 
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Defining: 
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The equation for Hz becomes: 
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The solutions of the first are zeroth order Bessel and Neumann functions, of which 

only the Bessel function is finite at r=0. 

The solutions for the second are Bessel functions of the first kind, of which only one 

does not diverge at infinity. The solution is thus: 
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The continuity conditions can now be expressed using the normalized variables u=a 

and w=a as: 
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A similar analysis can be performed for the TM modes. 

 

Notably, linearly polarized propagation is NOT strictly a mode in an optical fiber. 

However, under the approximation n<<n, there are groups of TE, TM and hybrid 

modes which have the same dispersion relation. Thus, for each of these groups an 

alternate basis can be found. In this approximation, therefore, LP modes are also 

approximate solutions of the above equations. 

 

Dispersion in optical fibers: 

 

The signal delay in an optical fiber follows: 

 

  L
d

d

d

d

v

L
t

g















00

2

2

0

 







 

 

There are a variety of sources of dispersion: 

 

1. Material dispersion 

2. Waveguide dispersion 

 

also, for non-single-mode case: 



3. Polarization mode dispersion 

4. Multimode dispersion 

 

Typical parameters for step-index fibers – the zero-dispersion wavelength is about 1.3 

microns. Typical values for the visible range are 100s ps/nm*km. Talk a bit about 

dispersion shifted fibers, dispersion compensating fibers and dispersion flattened 

fibers (core/clad/2
nd

 region of intermediate refractive index) for canceling the effects 

of waveguide and material dispersion. 

 

A few words about devices: 

 

Y junction (splitter) 

Beamsplitter 

Mach-Zehnder interferometer 

MMI device (coupling from one mode to another in waveguides) 

Ring resonator 

Fiber Bragg grating 

 

 

 

 

 

 


