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Modelling the flight of a soccer ball in a direct free kick
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T'his study involved a theoretcal and an experimental investigation of the direct free kick in soccer. Our aim was
to develop a mathematical model of the ball’s flight incorporaring aerodynamic lift and drag forces to explore
this important ‘set-play’. Trajectorics derived from the model have been compared with those obtained from
detailed video analysis of experimental kicks. Representative values for the drag and lift coefficients have been
obtained, rogether with the implied orientation of the ball’s spin axis in flighr. The drag coefficient varied from
0.25 to 0.30 and the lift coefficient from 0.23 to 0.29. These values, used with a simple model of a defensive
wall, have enabled free kicks to be simulated under realistic conditions, typical of match-play. The results reveal
how carefully artackers must engineer the dynamics of a successful kick. For a cenrral free kick some 18.3 m (20
yards) from goal with a conventional wall, and initial speed of 25 m-s ', the ball’s inital elevation must be
constrained between 16.5° and 17.5" and rhe ball kicked with almost perfect sidespin.

Keywords: aerodynamics, ball flight, defensive walls, model, soccer.

Introduction

Spin is an important determining facror in the trajectory
of a rapidly moving ball. It is usually deliberately
applied in the act of kicking, throwing or striking the
ball when the player intends to modify the resulting
flight. 'The intention may be to deceive an opponent by
swerving a free kick in soccer, pitching a curveball in
baseball, or simply to overcome an obstacle in golf by
deliberately hooking or slicing the ball around it.

The deflecting force due to the spin of a moving ball
is associated with the Magnus effect. The wake of a
moving but non-rotating ball is symmetrical about the
line of flight, the airflow separating at equivalent points
around the ball’s surface. With spin, separation occurs
earlier at points on the surface advancing into the flow
and later for those that are receding. This produces a
non-symmetrical wake and a resultant force whaose
directon is normal to the plane containing the velocity
vector and the spin axis of the ball. The deflecting force
due to the Magnus effect is frequently referred to as the
lift’ or sometimes the ‘sideways’ force, although it must
be remembered that for some orientations of the spin
axis, the force can be downward-pointing. The con-
vention ‘lift’ to describe the force and the associated
aerodynamic constant will be followed in this paper.
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General accounts of the physics and mathematics of
ball flight are contained in Daish (1972) and de Mestre
(1990). Mehta (1985) has also given a comprehensive
account of the aerodynamics of sports balls. This latter
work is important in emphasizing that not all anom-
alous aspects of ball flight are derived from Magnus
etfects alone. Raised seams, such as the pronounced
seam on a cricket ball, can also produce non-
symmetrical airflow and a differential force that tends
to swing the ball in flighr.

The first systematic study of spin in a sports context
was that of Tait (1896), who showed that backspin
would greatly extend the carry of a driven golf ball.
Most subsequent work has focused on baseball and
golf, where the intention has generally been to
determine the lift and drag coefficients so as to interpret
the flight characteristics of the ball (see, for example,
Davies, 1949; Briggs, 1959; Bearman and Harvey,
1976; Watts and Ferrer, 1987). Alaways and Hubbard
(2001) have extended the work for baseballs and have
shown that the lift coefficient is significantly affected by
the rotating seam, according to whether the ball is
pitched 1n a two-seam or four-seam orientation. This
effect is not the same as that seen in seam bowling in
cricket, however, where the bowler attempts to deliver
the ball with the seam inclined at a fixed angle relative
to the line of flight (Mehta, 1985).

‘The influence of spin on a soccer ball’s flight has
received little attention by comparison. Fuchs
(1991a,b) has produced a detailed theorerical treat-
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ment of the flight of a spinning ball, but restricts
application of the work in soccer to a limited
discussion of the trajectory of a corner kick. Lees
and Nolan (1998) have further rcported that while
kicking is the most widely studied football skill —
maximal velocity instep kicking in partcular — little
detailed scientific research has been committed to
spin as a determining factor in ball flight in soccer.
These authors referred to work by Levendusky et al.
(1988), who, in a study of impact characteristics of
soccer balls, commented on the difficulty of dropping
them with repeatable accuracy onto a force plate from
a height of 18.1 m. The vanability was artributed to
‘aerodynamic drag forces and [the] Magnus effect’,
although no quanuranove information was given to
support the statement. This lack of committed
research on spin effects in soccer is surprising, since
the technique is widely used by players in many
aspects of the game, especially when trying to beat
the defensive wall with a direct free kick.

The defensive wall was introduced very early in the
development of the game to counter the threat of a
direct shot at goal. Free kicks within the ‘D’, roughly
18 m from goal, are usually accepted as the most
threatening, although elite players continue to stretch
this boundary and goals beyond 25 m are not un-
common. Beyond the requirement that defenders must
stand 10 yards (9.14 m) from the kick, there are no
constraints on the configuration of the wall. Current
guidance (Hargreaves, 1990; Hughes, 1999) is that the
defenders in the wall should cover the far post of the
goal and extend only part of the way to the near post,
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Fig. 1. Geomertry of the defensive wall and free kick position.
C 13 the centre of the goal line and G is the goalkeeper’s
position.
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leaving a clear sight of the kick for the goalkeeper. This
arrangement is shown in Fig. 1. It is much frustrated by
the practice of members of the attacking side joining the
wall to unsight the goalkeeper and breaking away at the
instant of the kick.

The introduction of the modern ball with its non-
absorbent surface may well have accelerated devel-
opment of the skills necessary for the swerving free
kick. Earlier, untreated leather balls were prone to
significant water absorption (Armstrong er al., 1988),
making the ball less responsive to aerodynamic
forces. With the older ball, players would usually
shoot very hard ar the wall hoping that it would
break, leaving a gap, or that the ball would be
fortuitously deflected beyond the goalkeeper. Today,
coaches and players alike are well aware of the goal-
scoring potential of direct free kicks, as elite players
are able to swerve the ball over or around the wall in
a clean strike at goal. In the 1998 FIFA World Cup,
for example, of the 171 goals scored, 42 originated
from set-plays, 50% of which were from free kicks
(Grant er al., 1999). It is not surprising, therefore,
that most teams contain at least one free-kick
specialist and that the spectators’ expectation of
success from a direct free kick is approaching that
of the penalty kick.

Here, we describe mathematical models of both the
ball’s flight in a direct free kick and the associated
defensive wall. OQur objectives are two-fold: to obrtain
representanve values for the lift and drag coefficients
for a soccer ball and to use these in a realistic model of
the free kick to determine the constraints the defensive
wall places on the kicker in attempting a direct strike
at goal.

Methods

Mathematical models
Ball flight

Figure 2 shows the path of a ball, positon vector r,
kicked in the y direction from the origin of a Cartesian
frame (x, v, z). At some time 1, the velocity vector v is
inclined at angle iy to the (x, v) plane with resolute in
this plane at angle ¢ to the y axis. The unit vector
defines the direction of v.

Following the impulse of the kick, the ball is assumed
to spin about an axis parallel to the (x, 2) plane, inclined
at constant angle y to the x axis. This orientation is
assumed to remain fixed throughout the flight with no
diminution in the spin rate. Under these assumptions,
the unit vector a, which defines the direction of the spin
axis, will have two components, in x and z. This is not
unreasonable given the observed action of sidespin
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Fig. 2. Definition of coordinate system. The dotted line represents ball trajectory. (a) Velocity vector v inclined ar angle i to the (x,
y) plane. OP=»(x, y, 2) is the position vector of the ball. T is a unit vector parallel to v. (b) Resolute of v in the (x, y) plane inclined
at angle # to the y axis. (¢) The spin axis of the ball remains at fixed orientation y in the (x, ) plane. & 18 a unit vector parallel to the

spin axis.

kicking, where the resulting vertical and lateral deflec-
tions are closely dependent on the uprightness achieved
in the spin axis at the instant of the kick. A more general
treatment of the problem would involve all three
components (x, y and z) in &, but we have adopted
this simpler approach pending more detailed measure-
ment of the spin axis orientation.

Considering only Magnus, drag and gravity forces,
and with the subscripts d and / denoting drag and lift
respectively, the resultant force F on the ball is

F=mg+F;+ F,
where

Fy= —% pAv*Cy is the drag force

and

1 . ;
Fy = > pAwEC_:ﬂ x T 18 the Magnus (lift) force

In these equatons, m is the mass of the ball, A4 is its
cross-sectional area, p 1is the density of air and
v=|v] =\/ (-:.:f+w_,_.z+ﬂf), where v,, v, and v, are
the Cartesian velocity components. C; and C; are the
drag and lift coefficients.

The differentdal equation for the flight is, there-
fore,

¥ =g — k"t | kv'e x 1 (1)

where ¥ =d*v/dr®, ky= pAC/2m and k;=pAC/2m.
From Fig. 2 it can be seen that
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T = cosysinfi + cosrcostly + sinyk (2)

and

g = cosyi — sinyk (3)

where i, j and k are unit vectors on (x, y, 2).
Furthermore, vcosysinf=v,=x (i.e. cosysinf = x/v).
Similarly, cosycosf = y/v and siny = 2/v.

These expressions can be substituted into equation
(2) and the vector product ¢ xt can be evaluated.
Substiruting the result into equation (1), and
collecting the components of Z, j and k, we find that

X = ﬂ{kdfﬁ: —kfﬁin}'j.*} (4)
V= —v{kyy + ki|cosy z + siny x|} (5)
7= —g — v{ksz — kjcosy v} (6)

These equations have no closed form solutions but
can be solved numerically using a Runge-Kurtta
routine, for example, given the imnal conditions for
¥, X, X, etc., and the constants m, A and p. The
parameters C; and C; present problems, however, in
view of the lack of quantitative information for soccer
balls. A value of C,;=0.2 has been suggested by de
Mestre (1990), with C; determinable from experimental
data for a smooth sphere, after Davies (1949). The
assumption of ‘smoothness’ for a soccer ball is
gquestionable and our approach has been to compare
the model predictions with a controlled series of
experimental kicks. Dertails of how C; and C; have been
obtained from this procedure are given in the ‘Data
analysis’ section. A fundamental assumputon is that Cy
and C; remain constant in equations (4)—(6). This is the
case provided post-critical Reynolds numbers prevail
throughout the flight and this is addressed for the
measured trajectories under ‘Experimental findings’.

Defensive wall

The assumed position of the wall relative to the kick is
shown in Fig. 1. With the geometry of the figure it can
be shown that

w = dsina|[p/(R — pcosa) + ¢/(R + gcosat)]  (7)

Here, 2p 1s the width of the goal, w 158 the required
width of the wall, d is the compulsory 10 yard
(9.14 m) distance and R and o are the distance and
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angle of the free kick, respectively. 'The parameter ¢
represents the implied coverage of the goal line by the
wall, ranging from complete cover (¢g=p) to a portion
of the line left open for the goalkeeper’s view of the
shot (0 <g¢ <p). There are no explicit recommenda-
tions for this parameter in practice (Hargreaves, 1990;
Hughes, 1999) and so ¢=p/2 has been chosen as a
reasonable compromise. The number of defenders in
the wall for wvarious distances and angles can be
calculated from equation (7) by dividing w by the
average player’s width. This number is of interest in
practical coaching but not exphcitly required in the
analysis that follows.

The wall height (h) has not so far been considered,
but can be taken as the average player height. The wall,
therefore, is modelled by a rectangle of dimensions
w x h and can be used in conjunction with solutions of
equations (4)-(6) to determine the constraints the
defensive wall imposes on a free kick from some defined
position.

Deterrmination of aerodynamic parameters Cy
and C;

Free kick tnals

A male player who had provided written informed
consent performed a series of tmal kicks. He was
skilled in striking a ball with spin and launch velocity
representative of a realistic free kick. A large indoor
sports hall was used for the tnals to ensure that the
ball’s flight could be monitored in stll air, free from
any external disturbances. Other than requiring the
player to simulate the action of a free kick some 20
yards (18.3 m) from goal, with an imagined wall of
the regulation height and distance, no special
constraints were imposed. We monitored a series of
10 sidespin kicks, for which the player was asked to
strike the ball from the ground with as nearly a
vertical spin axis as possible. Sidespin is the most
commonly used technique by elite players in seeking
to swerve a ball beyond the goalkeeper’s reach. Our
player was left-footed and with conventional instep
kicking would be expected to spin the ball clockwise
when viewed from above and to swerve it from left to

right.

Experimental design and data caprure

Two digital video camcorders (Sony CCD-TRV900E,
Japan) were located at the corners of the sports hall
(Fig. 3) approximately 32 m apart, 1.50 m above the
ground and at a distance of 33 m from the centre of
the line of intended ball flight. Video recordings were
made while a single pole (height 3.20 m, containing
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Fig. 3. Camera, LED synchronization unit and calibration pole positions in the sports hall for kicking trial data collecrion.

four 0.10 m diameter spherical markers located at
heights of 0.101, 1.187, 2.137 and 3.145 m) was
moved in sequence around 10 carefully measured
locations encompassing a volume of 20 x 3 x 3.145 m.
Recordings were also made with the calibraton pole
located at the initial ball position and at two points
along a diagonal in the (x, y) plane at 7 and 16 m
from the origin to enable positional accuracy within
the calibrated volume to be determined indepen-
dently.

Each camera was operated at 50 Hz with shutter
exposure times of 1/1000 s. The focal length of the
lens on each camera was adjusted until the whole of
the calibrated volume was within the field of view.
Each camera’s pan, tilt and roll angles and the focal
length of the lens were locked throughout the darta
collection. Dates and times were recorded onto each
tape, enabling the corresponding video sequences to
be paired. A synchronization unit, as used by Kerwin
and Trewartha (2000), comprising 20 light-emitting
diodes (LLEDs) was placed between each camera and
the cabbrated volume. A radio-controlled rtrigger
simultaneously initiated the illumination of 20 LEDs

at 1 ms intervals for each kicking trial. All digitizing
was completed by the same skilled operator using the
“Target’ system (Kerwin, 1995). The four spherical
markers in 10 calibranon and three checking locations
were digitized six times. The position of the ball in
each of the kicking sequences was digitized from
when the ball was clearly in free flight (approximately
0.1 s after initial foot contact) to when the ball passed
out of the calibration volume. Camera calibration was
carmed out using a 12-parameter direct linear
transformation (DLT) procedure (Karara, 1980).
'The three-dimensional coordinates of the ball location
were reconstructed by finding a least-squares solutdon
to four planes defined by the DLT equations. An
estimate of the reconstruction error was calculated as
an unbiased root mean square distance from the four
planes.

Synchronization of each pair of digitized data was
determined using the time offset in milliseconds
between the video images containing the initdal LED
displays. An interpolating quintic spline (Wood and
Jennings, 1979) was used to generate matching data
points for the time-shifted data set.
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Data analysis

The experimental results for each of the kicks were
analysed in the following way. Positional information
for the ball was stored in individual data arrays for x, y
and z as functions of time, ¢, in seconds. Polynomials
were firted to the positional data for x, ¥ and 2 in the
form

X=4ap+at+ ﬂ212 t ﬂ}!li = ﬂ4£4 (H)

The coefficients a, to a4 were determined from the
Levenberg-Marquardt algorithm (Press et al., 1992).
The velocity components z,, v, and v, were then
obtained by numerical differentiation of these new
positional data. The initial values for x, v,, etc., to be
used in the Runge-Kutta solutions of equations (4)-(6)
were obtained from the new positional and velocity data
arrays at r=0.1 s. Visual inspection of the raw data
indicated that an elapsed time of 0.9 s was sufficient to
cover a 20 m flight, adequate for representing a realistic
kick.

The parameters y, C; and C; were determined for
each kick as follows. Inirial values were chosen and the
differential equations solved to produce the appropriate
predicted trajectory. A parameter &£ was determined for
the complete trajectory by examining the root mean
square error in the quantty r,-r,, where r, and r,,
represent the position vectors of the model (predicted)
and experimental (measured) data. Irerations were
repeated until a minimum value of ¢ was obtained.
The process was found to be stable and convergent with
an average value of £=0.052 m for the 10 kicks.

Results and discussion
Error analysis
Reconsmruction errors

Reconstruction crrors from the DLT analysis based on
six repeat digitizations of four markers on the calibra-
ton pole in 10 locations were 0.011, 0.007 and 0.005 m
in the x, v and z directions, respectively, with a resulting
overall root mean square error of 0.008 m.

Digitizing ervors

The accuracy with which well-defined stationary points
could be located within the calibrated volume was
determined by comparing the known locations of the
four spheres mounted on the moveable pole at three
positions within the calibration volume (Fig. 3). Six
repeat digitizations of the 12 known locations resulred
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Table 1. Summary of experimental results (v; and v, are the
velocites at 0.1 s and 0.9 s, respectvely)

Velocity (m-s ') Spin
angle y(") Cy Ci
v, 2 +4 £0.03  +0.05

23.0 17.9 71 0.27 .29
26.3 19.8 05 0.29 0.29
26.8 20.1 96 0.30 0.28
24.8 19.6 83 0.25 0.23
24.2 10.1 71 0.28 0.27
25.7 18.4 66 0.28 0.25
25.1 19.4 17 0.27 0.29
24.9 18.6 61 0.28 0.23
24.4 19.1 83 0.28 0.24
28.3 20.4 80 0.27 0.26

in root mean square errors in x, y and z of 0.021, 0.015
and 0.007 m, respectively, with an overall root mean
square error of 0.026 m.

Implicit errors in y, C; and C;

The differential equations (4)-(6) do nor vield closed
form solutions containing y, C; and C; explicitly and so
it was not possible to undertake a conventional error
analysis for these quantities. A simulation approach was
used instead. For each kick, the x, v and 2 wvalues
obtained from the polynomials defined by equation (8)
were compared with the raw data values for each point
on the trajectory. This enabled the standard deviadons
in the experimental coordinates to be determined using
the fitted polynomial values as the basis. Averaged over
all 10 kicks, the standard deviations were found to be:

$, = 0.017 m
sy = 0.008 m
s = 0.010 m

It was then possible to define a modified experimental
trajectory by perturbing the measured coordinates using
a random normal deviate (rnd) in the form

x — x+rnd(1.96:s,)
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Fig. 4. Comparison of predicted and measured trajectories.

with similar expressions for y and z. New values of y, C;
and C, were then obtained for the modified experi-
mental trajectory by re-solving the differential equations
(4)-(6). From 50 replicadons of this process, the
implicit errors in the guantities were estimated to be
v+ 47, Cy440.03 and C,1+0.05.

Experimental findings

Table 1 summarizes the results and includes the initial
and final ball speeds for each kick. The lowest speed
recorded, 17.9 m's ', gives a Reynolds number (Re) of
2.5x 10°. Transition to post-critical conditions is
usually taken to occur at Re > 2.1 x 10°, and so post-
critical conditions can be assumed for all of our
measured trajectories.

The values of C; exceed those generally quoted of
around 0.2 for soccer balls (Daish, 1972; de Mestre,
1990), although, as already noted, there is little
published information on experimental values in this
area. As we were unable to obrain the spin rate
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explicitly, no general conclusions can be drawn about
the C; values in Table 1. All that can be said is that the
parameters are more representative of ‘rough’ spheres
within the range of conditions prevailing in soccer (cf.
Bearman and Harvey, 1976), although more work is
needed to corroborate this.

Figure 4 shows comparisons between a measured
and predicted trajectory for one of the kicks in our series
where the parameters were determined to be y =837,
C4=0.25 and C,;=0.23. Agreement between the mea-
sured and predicted trajectory for the ndividual
coordinates 18 good (a root mean square error of
£=0.045 m was obtained for this case). Figure 4 also
gives some indication of the amount of swerve that can
be imparted to the ball in practice. Sidespin can easily
be achieved with conventional instep kicking and very
nearly pure sidespin (y=83") was produced by our
player in this case.

Simulated free kicks unth defensive wall

T'o assess the constraints imposed on the kicker by the
defensive wall, representative values from the trials of
C;=0.28 and C;=0.26 were chosen. Taking «=90"
and R =20 yards (18.28 m) in Fig. 1 would represent a
central free kick symmertrically within the ‘D’. A
defensive wall of height 1.83 m with geometry defined
by equartion (7) is assumed. The goalkeeper (G) is
assumed to take the position indicated in Fig. 1, with
the wall blocking 75% of the goal line (¢=1.83 m).
Figure 5 shows a scale diagram of the free kick position
with respect to the pitch markings.

Although 1t would be possible to analyse this
position exhaustively using various angles, distances
and widrths of the wall, the main fearures can be
revealed by taking some illustranve values of the
parameters. Sidespin kicks with a right-footed kicker
will be assumed, taking an initial kicking speed of
25 m-s '. While the ball could be swerved around the
wall below the height of the defenders, most attackers
choose to play the ball over the wall, towards the far
post and beyond the goalkeeper’s reach. This has the
added advantage of obscuring the ball during the
early portion of its flight, further reducing the
goalkeeper’s reaction time,

Figure 6a shows the path of a ball kicked at a speed of
25 m-s ' with an elevation of 16.5°. Pure sidespin
(y=90") has been assumed. The initial direction of the
kick is taken to be down the cenrtre line to goal. This ball
would just clear the wall and would cross the goal line,
under the bar, approximately 4 m from the goalkeeper’s
position. Kicking at an inclination of 3.5° to the centre
hine, towards the far post, with the same inital
conditions, would result in the ball entering the net
just inside the far post.
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Figure 6b differs from Fig. 6a only in the assumption
of the ininal elevation of the kick, If this were increased
by as little as 1° to 17.5%, the ball would clear the wall
but would only just pass under the bar for both
directions of kick.

Similar constraints apply to the initial velocity of the
kick. As Fig. 7a shows, a ball kicked with an inital
elevation of 16.5° but with an initial velocity of
26 m-s ' would only just pass under the bar. Control
of the orientation of the spin axis is also important.
Figure 7b represents an iminal elevation of 16.5" and a
kicking speed of 25 m:ss ', but with the spin axis
reduced by 7" from the vertical to 83", The outcome is
virtually identical to that in Fig. 7a, with the backspin
introduced by tilting the spin axis slightly being as
detrimental to the kick as increased kicking velocity.

The above results illustrate how closely the striker
must control the parameters of the kick to achieve a
successful outcome. By the same token, little can be
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done by the goalkeeper in attempting a save when
the ball is struck correctly. A further consmraint is
placed on the goalkeeper if the ball is not seen at
the instant it 1s played, but only when it first clears
the defensive wall. The time of flight to goal from
this point, using the parameters in the above
examples, would typically be 0.45 s, leaving virtually
no margin for indecision, even for a shot with very
little swerve.

Conclusions

The objectives of this study were to obtain representa-
tive values for the drag and lift coefficients for soccer
balls and to use these in a realistic model of a free kick
with associated defensive wall. Video analysis of ball
flight for a series of free kicks enabled successive ball
positions to be accurately determined and hence
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facilitated the estimation of the required aerodynamics
parameters. Lack of published experimental data for
soccer balls has not enabled us to compare our findings
with data derived from wind tunnel tests, for example.
The values determined do, however, produce deflec-
tions, which, when used in conjunction with other
parameters typical of free kicks in soccer, are in line
with those observed in match-play. This lends con-
fidence to use of the flight model, in conjunction with a
simple model of the defensive wall, to explore the
constraints posed by the wall in a direct free kick. A
particular style of free kick has been used to illustrate
the models, but this could readily be extended by
varianion of a few parameters to more complex
geomerries and to a systematic study of the optimal
strategies for attackers and defenders in this important
set-play.

We have restricted the present study to the
sidespin free kick, although there is ample evidence
that elite players are able to strike a ball from the
ground with topspin, producing a free kick thar
descends (dips) much more rapidly than its sidespin
counterpart. The more rapid descent is associated
with the downward-pointing component of the
Magnus force for this case. With this type of kick,
the ball can be struck relatively harder with a
corresponding increase in velocity and a reduction
in the flight time to goal. Examination of Table 1
reveals that our player achieved a small component of
topspin in two kicks where the orientation of the spin
axis exceeded 90", This type of kick, although more
demanding in terms of the precision with which the
ball must be struck, can be very easily modelled with
appropriate adjustment of the terms in the differential
equations for the flight and is the subject of ongoing
work.

As noted, we have to date been unable to
determine spin rate for the ball explicitly and have
represented this quantity mmplicitly wvia the lift
coefficient, C; in the equatons of motion. Work in
progress will enable spin rate to be measured at the
instant of the kick, together with the implied
onientation of the ball’s spin axis, as both affect the
resultant trajectory significantly.
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