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A new method of stability investigation is presented for solutions of nonlinear equations integrable with the help of the 
inverse scattering transform (IST). The stability problem for periodic nonlinear waves in weakly dispersive media is solved 
with respect to transverse perturbations. It is shown that for positive dispersion media one-dimensional waves are unstable, 
and for negative dispersion such waves are stable. 

1. Introduction 

Recently, the progress in the investigation of 
nonlinear waves dynamics has been associated to 
considerable extent with the development of  a new 
method of  mathematical physics, the inverse scat- 
tering transform (see, e.g. [1]). This approach 
reduces the Cauchy problem for a #oven nonlinear 
equation to a set of  linear problems. Construc- 
tively, however, this method gives an answer to the 
question on the asymptotic behaviour for the #oven 
nonlinear system. In particular, with the help o f  
such a procedure the stability problem has been 
proved for the solitons, which are the most im- 
portant solutions from the physical point of  view. 

On the other hand it is more or less evident that 
the IST method should provide considerable ad- 
vantages in the case of direct study of  stability of 
an arbitrary solution. 

In the present paper we show that if the 
nonlinear equation u, = s(u) admits the 
Zakharov-Shabat representation [2] 

OL p 8A 
60 t ~-y + [L, A l = O, (1) 

where L and A are matrix differential operators 
depending on u(x, t) and its derivatives, then the 

problem of stability with respect to small per- 
turbations reduces to solution of  two joint equa- 
tions for the matrix function F(x, z, y, t), 

IJ oF - £ ( x ) F  + e L ( z )  = o ,  
oy 

 i(x)F + F / i (z )  = O. 
Ot 

(2) 

Here perturbation 6u(x, y, t) can be expressed in 
terms of F(x, z) and its derivatives on the charac- 
teristic x = z and the arrow shows the direction of  
differentiation. 

The system of equations (2) posseses an im- 
portant feature. In fact, eqs. (2) admit separation 
of variables, and as a result the resulting spectral 
problems are of  a lower order than the initial 
linearized equation. It is just the effective reduction 
of  the order of  differential operator that yields the 
advantage of the IST method application to the 
stability problem. 

We apply this method to the stability problem 
for stationary periodic waves in a weakly dis- 
persive medium described by the 
Kakomtsev-Petviashvili (KP) equation. Until now 
the stability problem of such waves has been 
examined in the limits of  small wave amplitudes 
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when the waves are supposed to be sinusoidal. In 
particular, it has been shown for the positive wave 
dispersion that small-amplitude waves are unstable 
with respect to decay into two other waves [3]. For 
negative dispersion waves (ion-sound waves in 
plasma, long surface gravitational waves) decay 
processes are forbidden and so instability con- 
nected with the higher order process should be 
expected. 

However, as it was shown recently in [4] within 
the Kadomtsev-Petviashvili approximation, the 
matrix element for four-wave interactions turns into 
zero on the resonant surface. Thus, the solution of 
the stability problem is not evident at all, even in 
the limit of small amplitudes. In this paper we 
show that the stationary waves with arbitrary 
amplitudes in the case of negative dispersion are 
stable with respect to transverse perturbations. For 
the positive wave dispersion we obtain an exact 
solution of the stability problem from which in 
both limits small amplitude waves and solitons-- 
well-known expressions for increments--follow 
[3, 5]. 

The order of this paper is the following. The first 
section is devoted to the consideration of our 
method. The cnoidal wave stability is considered 
in the next sections. 

2. Operator dressing method and stability problem 

Let us consider the stability problem relative to 
small perturbations for integrable nonlinear equa- 
tions for which representation (1) is valid. 

We show that the operator dressing method 
developed by Zakharov and Shabat [2] and the 
stability problem are closely connected. It should 
be noted that in fact the indication to such con- 
nection is contained in [6]. 

Let L0 and A0 be matrix differential operators, 

8"-k ~ O r~-* 

Lo(X)=k~ffioUkOx~-k, Ao(X) = k~=O - -  W k O x m - k  ' 
= 

corresponding to some solution u(x, t) of the given 

nonlinear equation u,=s(u).  Let us apply the 
dressing procedure to the operators #(OIOy)- Lo 
and S / S t -  Ao. For this purpose we consider ac- 
cording to [2] the reversible integral operator 

"#¢ = i F(x, z, y, t)¢(z) dz 

- oo  

which commutates with •(O/Oy) - Lo and 
O/St - A0: 

OF _ Lo(x)e + FLo(z)  = o, 
oy 

OF .4o(x )F + FAo(z ) = 0 
St 

and is expressed through two Volterra operators 
K + , 

1 + F = (1 + K+)(I + K - ) .  (3) 

Then the kernel K(x, z, y, t) of the integral oper- 
ator K + obeys two ajoint equations 

fl OK _ L(x)K + KLo(z) = 0 

OK ,4(x)K + KAo(z) = O, 
St 

(4) 

where the dressed operators L and A have the same 
structures as Lo and Ao, 

. ~ - k  m 0 m - k  

L(x )=  ~o~k Ox~_-- ~ ,  A (x )=  kfO2~ W* d--~=k" 

Here functions fik and wk are defined from the 
recurrent formulae (see [2]) 

~Uo=ao-uo=O,  

~Ul = zT1 - ul = [Uo, ¢o], 
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~u~=~2-u~ 

= ( n - 1 ) u 0 - ~ °  lfd¢°uo}+~-~, 

1 duo 
"]- 2 [U0, ¢1] "J[- [Ul, ~0] "31- ¢0 d x  . . . .  

where 

(5)  

As is known [7, 8] in this case the dressing 
procedure can be developed as well. For this 
purpose consider the matrix function $0(x, t) 
defined from equations 

¢o~ = / ~ ¢ o  - ¢'oG, 

¢o,  = Ao¢o - ¢oAo,  
(7) 

0 i 

Analogous formulae take place for 6wk. As result 
of the dressing procedure for the functions t~i we 
obtain the same equations as the previous ones. So 
the equation for ~ui describes propagation of finite 
perturbations on the background of the wave u 
(see, [6]). For the study of stability relative to small 
perturbations in accordance with (3) and (5) it is 
sufficient to take K with a norm much less than 1, 
i.e. to put 

K(x, z) = --F(x, z).  

Thus to solve the stability problem with respect to 
small perturbations one needs to seek a joint 
solution of system (2) for the kernel F while the 
perturbation 6u is constructed from F with the aid 
of formulae (5). It should be noted also that in 
contrast to (3) system (2) is local so there are no 
restrictions of F except for the requirement to 6u 
being bounded for all x. 

New let us consider the stability problem when 
nonlinear equations are given in the form of a 
commutator of two operator bundles L and A: 

OL OA 
+ [L, A] = 0. (6) 

0t 0x 

The bundles L and A are assumed to be the 
rational functions of spectral parameter 2, for 
example, 

" ~k~'  ~ 
k=o ~=l ('~ - 2)  k" 

being joint to (6) where Lo and Ao are designated 
as the values of L and A on some solution u(x, t) 
of the nonlinear equation (6). According to [7, 8] to 
dress bundles Lo and A0 let us introduce a new 
function ¢ connected with ~'0 by the singular 
integral equation 

" ¢(2' )  d2' 
¢ ( ~ )  = ¢o(,~) + J,~ _ - ~  ~-7o ¢o(,i) ,  

F 

(8) 

where contour r should be chosen from the so- 
lvability condition of (8). Then due to (7) the 
function ¢, is the solution of two joint equations: 

¢,  = A ¢  - CAo .  

Here the operators L and A are the results of 
operator dressing of L0 and A0 and have the same 
structure as the initial operators, for example, 

~ ,  N k i e i k  
L = ,~k , v - ~  + E E (~ - ~.,),. 

k=O i=l k=o 

where (see [8]) 

5UO=O, 

~Ul = - [-Io, Uo], 

~u2 = Jou~ - ~Jo - [uo, Jd  , 

• ° . ,  

,~P~, = I1 - I d P ~ , ( l  - I , , ) - '  - P ~ , ,  

,~P~,_, = (1 - I , ,)P,~,_,(1 - I , , ) - '  

+ (Pu,,I2,- I2,P~,)(1 -- Iu)-'  -- P~,-, . . . . .  
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Here 

F F 

Thus, as a result of the dressing procedure we 
obtain a new solution of the same equations (6). So 
while linearizing after solution u(x, t) we have to 
consider the functions ~ and ~0 as small values. 
According to (6) one should put 

=¢/0 

and keep only the linear terms in the expressions 
for perturbations 6u: 

6u,  - - [So, Uo], 

,~u2 = [-I0, ud  - [Uo, J d ,  

which generalizes a well-known RDV equation 
over a two-dimensional case. In this equation the 
condition ~2>< 0 corresponds to negative or posi- 
tive dispersion of sound waves. 

It is well known that IST in formulation (1) is 
valid for this equation: 

L = - - _ _ _  
6 2 

Ox 2 Uo(X, y, t ) , 

19 3 0 
A = - 4 ~-3x 3 - 6u0 ~x - 3u0~ + 3~w0, 

(10) 

where 

w~= uy. 

Thus, in stability investigation we can use the 
method outlined in section 2, accordingly the 
function F being determined from equations 

6P~,, = [Pm: 11], 

6e.,_, = [e.,_,, t,,] + [e . :  t2J, 

(9) 

and so on. 
Thus, as formerly, the stability problem reduces 

to a solution of the joint linear equations (7). In 
this case the perturbations are given with the help 
of formulae (9). 

[J -~y -- Lo(x ) + L~(z ) F(x ,  z, y, t)  -- O, 

[ ~  - Ao(x) + A~(z ) ]F(x ,  z, y, t) = O 

( l l )  

(here the dagger denotes a conjugative operator) 
and the perturbation 6u is given by formula 

au(x,y, t) = ~x + F(x, z ,y ,  t)l~.,. 02) 

3. Stability of cnoidai waves in weak dispersion 
media 

Let us apply our method to stability in- 
vestigation of cnoidal waves in weak dispersion 
media relative to small non-one-dimensional per- 
turbations. Allowance for the weak transverse 
modulation of such waves and for the weak non- 
linearity leads to the Kadomtsev-Petviashvili 
equation [9] 

The system of equations (11), (12) is equivalent to 
the linearized KP equation that in particular can be 
checked by direct calculations. For that is is neces- 
sary to apply the operator O/Ox + O/Oz to the first 
equation of system (11) and the operator 
O2/Ox 2 -  02/Oz 2 to the second one and then con- 
sider the results on characteristic x ffi z. 

Let us choose u0 in the form of a cnoidal wave 

Uo(X -- Vt)  = - 2~o(x + ko" - I t )  + V/6  , 

0 (u, + 6uux + u=x) 2 02u 
Ox = -3 ,8  ~-~y2, 

where ~o(z) is the Weierstrass elliptic function with 
the periods 2o and 2ioJ'. 
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Proceed now to the solution of equation system 
(11). These equations admit the separation of 
variables, so the partial solution of (11) has the 
following form: 

F(x, z ,y ,  t ) =  c(t)¢'a'Y~b(x)rp(z), 

where O(x) and rp(z) are determined from the 
Lam6 equations [9]: 

Ox 2 - 2go(x +ico') + iflk d/ (x ) = - E~ (x ) , 

[Oz-~22--2go(z + ico')]tp(z) = - E t p ( z ) .  
(14) 

(Here we put without any restrictions the velocity 
V to be equal to zero.) 

The solution of equations (14) can be expressed 
through the Weierstrass functions ~(x) and a(x) ,  

~b(x) = e -c(°)x a(x  + io9' + a) 
a(x  + ico') 

~p(z ) = e ¢°)~ a(z  + ico " - b) 
a(z+ico ' )  ' 

(15) 

where the parameters a and b give the "energy" of 
the Schrtdinger equations: 

and has the Bloch form with quasi-momentum 

p(a, b) = p ( a )  - p ( b ) ,  

where p(a )=i [~ (a ) - ( ( co )a / co]  is a quasi- 
momentum of the Schrfdinger equations (14). In 
the fundamental rectangle with sides co and ico' the 
function p(a)  has real values on two segments 
(co, co + ico') and (ico', 0) which correspond to two 
gaps. On the other two segments (0, co) and 
(ico', to + ico')p(a) is a purely imaginary function. 

On account of perturbations 6u being bounded 
for all x the quasi-momentum should be restricted 
by the following natural condition 

Imp(a, b) = 0. 

Thus the solution of the stability problem for 
cnoidal waves reduces to the analysis of the alge- 
braic expression 

F(a, b) = - 2[O'(a) - go'(b)], (16) 

with two additional conditions 

go(a) - go(b) = iflk, (17) 

and 

E = - go(a) + iflk = - go(b) 

or, equivalently, 

R e [ ~ ( a ) -  ~ ( b ) -  ~--~ ( a -  b ) ] - -  0. (18) 

go(a) -- ~a(b) = iflk. 

The dependence c(t) is found after substitution 
(23) into the second equation (1 1), 

c(t)  = c(O) exp{ - 2[go'(a) -- go'(b)]t }. 

The perturbation 6u is defined from (12), (13), 

d 
¢Su(x, t ) =  c(t)  dJ" -~x [~'(x)~k(x)] 

= c ( t ) ~ k Y e ~ a , b ) x z ( X )  

4. Analysis of the dispersion equation 

Conditions (17), (18) impose the restrictions on 
two complex parameters a and b, these conditions 
yield in the a-(b-) plane the curve on which the 
increment F is determined. Due to periodic de- 
pendence of the functions of (17), (18) one need 
seek the curve only in the fundamental period 
rectangle with sides 2co and 2ico'. 

First, let us consider the case of negative dis- 
persion medium Im fl = 0. Notice that the elliptic 
function go(a) in the fundamental period rectangle 
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takes up  to same value at  two symmetr ic  points  a 
and - a .  I t  means  tha t  eq. (17) relative to p a r a m -  
eter a has only two solutions. Besides we should 
remind the following proper t ies  of  the elliptic 

Weierstrass functions: 

close to a: b = a + E. So expanding (16)-(18) on E 
we obta in  in the first order  o f  pe r tu rba t ion  theory  

~ a ( a 0 )  = - -  ~ (09____)) , - -  k r = go"(a0)I lk. 
co ' go'(a0)' go'(a0) 

ga'*(a*) = go'(a) = -- g o ' ( - - a ) ,  

go*(a*) = go(a) = g o ( - - a ) ,  

~ * ( a * ) = ~ ( a ) =  - - ~ ( - - a ) .  

Then it is evident  tha t  eq. (18) is solvable for  
a = b*. This  solut ion satisfies also eq. (17), 

2 Im go(a) = / ~ k .  

This relat ionship gives the curve in the plane o f  
pa rame te r  a. The  increment  in this case appears  to 

be purely imaginary,  

F = - 2i I m  go'(a) .  

I t  should be added tha t  due to enumera ted  proper -  
ties o f  elliptic funct ions the given solut ion is 

unique. 
Thus,  the periodic s ta t ionary  waves  in media  

with negative dispersion turn out  to be stable 

against  t ransverse per turbat ions .  
Ano the r  s i tuat ion takes place for  waves with 

positive dispersion. Here  the per turba t ions  being 
neutrally stable in the one-dimensional  case arise at  
the presence o f  t ransverse modula t ions .  I f  k = 0 
the per turba t ions  are neutrally stable for  a = b. 
Fo r  this case F(a, b ) =  0 and  the per tu rba t ion  

d 
6u(x) ~ ~ [¢o(x)¢_o(x)] 

d 1 duo 
= d--x go(x + i t o ' ) =  2 dx 

F r o m  these expressions it can be easily shown 
tha t  a0 lines on the line I m  a = to' ,  on this line 
Im ~ ' ( a )  = I m  go"(a) = 0 and,  therefore,  F is real. 

Since the equat ions  are satisfied after  the change 
a o ~ - a o  the increment  changes its sign. F > 0  

cor responds  to instability o f  the initial wave. 
Evident  dependence F on k can be found only in 

t h e  two limiting cases to '  >> to and to >> to'. In  the 

intermediate  case this dependence can be deter- 
mined with the help o f  a computer .  The  curves on 
which the increment  is defined for  Re/~ = 0 and 
to '  = 2o9 = 2~ are presented in fig. 1. Fo r  small ][3Ik 

(fig. 1, I lk < ~( to  ÷ i to ')  - go(ito')) these curves 
cross the line Re a = o9 at  two points  symmetr ic  

with respect  to the line I m a  = t o ' .  W h e n  
IBik > go(to + i t o ' ) -  go(ito')(fig, l c ) the  curves rep- 
resent loops. As I/~lk is growing, loops are nar row-  

ing and for lP Ik = go(to) - ~(ito ')  the loops  degener-  
ate into two points  a = to and b = ito'. Fo r  this 
value o f  pa rame te r  ]ill k the increment  F turns into 
zero. When  IBIk > go(ito'), the solut ion o f  
such type is absent ,  but  ano ther  stable solutions 

with F 2 < 0 do exist for  which Re(a,  b)  = nto '  (n is 

2.~" 2, f '  

",4 
corresponds  to a small shift. 

Supposing /~k < 1 let us find the b o u n d a r y  o f  
gap defined f rom the condi t ion p(a,  b) = 0. I t  is 
clear that  in this case an appropr ia t e  poin t  b is 

Fig. 1. The curves for parameters a and b, on which the 
increment is defined, in the fundamental rectangle with the s ides  
m = n,a~' = 2n.  F ig .  la :  I/Ilk = 5 x 10 -3  < O(¢a + i m ' )  - p ( i m ' ) ;  
fig. lb: ~a(a~ + ira') - 9(ira') < ]~lk = 0,01 < ~(¢o) - ~(o + ion'); 
fig. lc: ~(co) - ~(a~ + ioJ') < I~lk =0.25 < ~(oJ) - ~o0o~'). 
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an integer). Thus, for positive dispersion the wave 
number k~r, 

= (19) 

gives the exact boundary of  cnoidal wave stability. 
In case of  co'>> co corresponding to small wave 

amplitude limit the cnoidal wave reduces to the 
solution of  linearized KP equation 

u--,4 e -~°'/°') cos -- x + t 
co ~-~ • 

The small value b = 4(n/co)5 e-'~°"/°') plays here the 
role of  the wave amplitude. The perturbations 
6u (x , y ,  t) within this limit can be represented in 
the following form (in the system of  reference 
moving with the initial wave): 

6u(x )  = {p d w~ + h(p - q)(2 - e - ~  - e ~b) c #¢p- q)~ 

+ h(p + q ) ( 2 - ~ - e - ~ ) ~  ~+q~} : y ,  

where q = n/co is the wave number of  the initial 
wave, h = e -'~°'/°'). These perturbations describe 
the processes of  decay and coupling. When the 
third term in this expression is small and two first 
ones have the same order of  value system (16)-(18) 
describes the increment of  decay instability of  the 
stationary wave (see, e.g. [3]). The relationship (19) 
in this limit gives the boundary of  decay instability. 

The limit co--*ov corresponds to transition to 
soliton solution: 

2 v  2 

u 0 = c h 2 v ( x  - -  4 v 2 t )  ' 

where v = ~t/2co'. In this case the perturbations can 
be represented as 

d 
6u(x)lim,_.oo ~ [~,(x)~p (x)] 

= ~ e -  ix -  q~, + th vx - th vx . (20)  

Here we designate x = v cth va, tl ffi v cth vb. These 
eigenfunctions coincide with the solutions of  the 
KP equation linearized on the background of  
soliton [5]. In this limit conditions (16), (17) are 
rewritten as 

~2 - -  172 = iflk , 

F = - -  172 -~- x 3 -~- p2(~ _ x ) .  

(21) 

(22) 

The spectrum definition requires of  6u finiteness 
for Ixl- o . When ~ and v condition (18) 
corresponding to this requirement has the form 

I m p = 0 ,  p = i ( u  - r/). 

It is not difficult to show that eqs. (21) and (22) 
independently of  the sign of  t2 possess the imag- 
inary value of  F, 

• [-3f12k2 1 
r = l p L - - T - p 2 - 4 v  ~ , 

that for v2= 0 transits to the dispersion law for 
small amplitude wave of  KP equation. 

For  Inl = ~ (or Ixl = v) solution (20) vanishes at 
infinity when IRe x I < v. From (21) for real fl 
corresponding to the negative dispersion we have 
the following inequality 

(Re  x )  2 = v 2 + ( Im x )  2 > V 2 , 

which is incompatible with the condition 
[Rex[ < v. Thus, for negative dispersion neutral 
stable solutions takes place only. Note  that this 
conclusion does not agree with the statement of  
papers [5, 9] about  existance of  decreasing per- 
turbations for f12> 0 but  completely agrees with 
the result on the neutral stability of  periodic wave• 

If  p is pure imaginary ( i t  --]fl]) the condition of  
finiteness [Re x J < v  does not contradict re- 
lationship (21). In this case we obtain the well- 
known expression for the increment of  a soliton 
[1, 6]: 

r = 41Plk(v -IPlk)' , 
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which is posi t ive  for  [Elk < v 2 and  tha t  agrees wi th  

the genera l  c r i te r ion  (19). Rea l ly  go(co) - go(leo') 

(~/2co')2 = v 2 when  c o ~ o o .  
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