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Preface

The book grew out of a one-semester course, initially intended as a parting
gift to those leaving physics for greener pastures and wondering what is worth
taking with them. Statistically, most of the former physicists use statistical
physics, because this discipline (and this book) answers the most frequent
question: How much can we say and do about something we do not know?
Of course, the art of bluffing without blushing was perfected by people in
many trades and walks of life. So when the course was taught in different
institutions and countries, it was attended by a motley mix of students, post-
docs and faculty from physics, mathematics, engineering, computer science,
economics and biology. Eventually, it evolved into a meeting place where
we learn from each other using the universal language of information theory,
which is a statistical physics in disguise, albeit transparent.

The simplest way to answer the above question is called thermodyna-
mics. It is a phenomenology that deals only with visible manifestations of
the hidden, using symmetries and conservation laws to restrict possible out-
comes and focusing on mean values ignoring fluctuations. More sophisticated
approach derives the statistical laws by explicitly averaging over the hidden
degrees of freedom. Those laws justify thermodynamics and describe the pro-
babilities of fluctuations. Two basic notions of this approach - Gibbs entropy
and free energy - turn out to be arguably the most important conceptual and
technical tools of the modern science and technology. The reason is that we
must find the right balance between trying to use what we do know (”the
truth”) and avoiding saying or using what we don’t (”nothing but the truth”)
— the free energy negotiates this balance.

The first Chapter recalls the basics of thermodynamics and statistical
physics and their double focus on what we have (energy) and what we don’t
(knowledge). When ignorance exceeds knowledge, the right strategy is to
measure ignorance. Entropy does that. We learn how irreversible entropy
change appears from reversible flows in phase space via dynamical chaos. We
understand that entropy is not a property of a system, but of our knowledge
of the system. It is then natural to use the language of the information
theory revealing the universality of the approach, which to a large extend
is based on the simple trick of adding many random numbers. Building on
that basis, one develops several versatile instruments, of which the mutual
information and its quantum sibling, entanglement entropy, are presently
most widely applied to the description of subjects ranging from bacteria and
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neurons to markets and quantum computers. We then discuss the so far most
sophisticated way to forget information - renormalization group. Forgetting
is a fascinating activity — one learns truly fundamental things this way. We
end with the stochastic thermodynamics, the generalizations of the second
law and quantum information.

Even though it is a graduate text which presumes some familiarity with
statistical physics and quantum mechanics, the book uses only elementary
mathematical tools, but from all three fields — geometry, algebra and analy-
sis — which correspond respectively to studying space, time and continuum
in the physical world. We employ two complementary ways of thinking:
continuous flows and discrete combinatorics (thus involving both brain he-
mispheres). Together, they produce a powerful and universal tool, applied
everywhere, from computer science and machine learning to biophysics and
economics. The book is panoramic, trying to combine into a reasonably
coherent whole the subjects that are taught in much details in different de-
partments: thermodynamics and statistical mechanics (as taught in physics
and engineering), dynamical chaos (as taught in physics and applied mat-
hematics), information and communication theories (as taught in computer
science and engineering). It reveals an essential unity between different fields
and disciplines.

At the end, recognizing the informational nature of physics and breaking
the barriers of specialization is also of value for physicists. People working on
quantum computers and the entropy of black holes use the same tools as those
designing self-driving cars and market strategies, studying molecular biology,
animal behavior and human languages, figuring out how the brain works and
trying to quantify conscience. Many go out and apply the tools of physics
to new domains. Maybe few can come back enriched by the knowledge how
the tools work in linguistics and brain research and look at physical theories
as an example of human language developed by human brain. It may open
new perspectives. Last, I felt compelled to tell the story worth telling: how
we discover the limits imposed by uncertainty on engines, communications,
computations and perception.

The amount of material exceeds that for a standard one-semester course,
so that lecturers can choose what is more appropriate for their audience.
About 30 problems with detailed solutions will be provided for the problem-
solving sessions and the exams. The book can also be used for independent
study by senior undergraduate and graduate students, postdocs and faculty
who want to see a bigger picture with connections between different discipli-
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nes and find new research opportunities. Physicists familiar with thermody-
namics and statistical physics can start from the second Chapter. Readers
who are also familiar with the basics of kinetics and dynamical chaos can
directly go to the third Chapter, consulting the material from the first two
when it is referred to. On the other hand, readers from computer science,
engineering or mathematics may benefit from reading the first two chapters
as they provide some unifying framework for the rest of the book. Bear in
mind that the book is written by a physicist focused more on ”how it works”
and ”what it is like” and less on the rigor of proofs and definitions.

For a book with such a wide scope, it is probably inevitable not only
that my limited expertise in engineering, computer science, biology, econo-
mics and linguistics caused some technical errors, but that the dilettante
perspective distorted essential elements in the culture of these disciplines.
I shall maintain the website where corrections will be gratefully received
and discussed. I wish to thank my friends and colleagues whose advices were
helpful in preparing the course: Yakov Sinai, Alexander Zamolodchikov, Eric
Siggia, Leonid Levitov, Massimo Vergassola, Alexei Kitaev, Jorge Kurchan,
Boris Shraiman, William Bialek and Krzysztof Gawedzki. I am grateful to
students, postdocs and faculty who attended the lectures at Weizmann, Har-
vard, Simons Center, University of Arizona, Skoltech and High School of
Economics, and whose feedback was invaluable in writing this text. Special
thanks to Michal Shavit at Weizmann and Saranesh Prembabu at Harvard
for helping with problems and solutions and for catching numerous errors
(the remaining ones are my responsibility alone).

Small-print parts can be omitted upon the first reading.
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1 Thermodynamics and statistical physics

Our knowledge is always partial. If we study macroscopic systems, some
degrees of freedom remain hidden. For small sets of atoms or sub-atomic
particles, their quantum nature prevents us from knowing precise values of
their momenta and coordinates simultaneously. We believe that we found the
way around the partial knowledge in mechanics, electricity and magnetism,
where we have closed sets of equations describing explicitly known degrees of
freedom. Even in those cases our knowledge is partial, but we restrict our
description only to things that can be considered independent of the unknown
within given accuracy. For example, planets are large complex bodies, and
yet the motion of their centers of mass in the limit of large distances satisfies
closed equations of celestial mechanics. Already the next natural problem —
how to describe a planet rotation — needs the account of many extra degrees
of freedom, such as, for instance, oceanic flows (which slow down rotation by
tidal forces).

Yet even when we have a closed set of equations, they need initial or
boundary conditions taken from measurements. Here again our knowledge is
only partial because of a finite precision of measurements. This has dramatic
consequences, when there is an instability, so that small variation of initial
data leads to large deviation in evolution. In a sense, every new decimal
in precision is a new degree of freedom for unstable systems (including our
Solar System).

In this Chapter we shall deal with observable manifestations of the hidden
degrees of freedom. While we do not know their state, we do know their
nature, whether those degrees of freedom are related to moving particles,
spins, bacteria or market traders. That means, in particular, that we know
the symmetries and conservation laws of the system.

The first two sections present a phenomenological approach called ther-
modynamics. The last two sections serve as a brief reminder of statistical
physics.

1.1 Basics of thermodynamics

One can teach monkey to differentiate, integration requires humans.
G Kotkin

People are burning things to propel objects for at least couple of thousand
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years. A regular scientific inquiry on general principles governing conversion
of heat into mechanical work was triggered by the practical needs to esti-
mate the engine efficiency during the industrial revolution. That led to the
development of the abstract concept of entropy.

Heat engine works by delivering heat from a reservoir with some higher T1

via some system to another reservoir with T2 doing some work in the process.
Look under the hood of your car to appreciate the level of abstraction achie-
ved in that definition. The work W is the difference between the heat given
by the hot reservoir Q1 and the heat absorbed by the cold one Q2. What
is the maximal fraction of heat we can use for work? Carnot in 1824 stated
that we cannot make Q2 arbitrarily small: in all processes, Q2/T2 ≥ Q1/T1,
so that the efficiency is bounded from above:

W

Q1

=
Q1 −Q2

Q1

≤ 1− T2

T1

. (1)

T

Q

W

T
2

1

1

2
Q

His elaborate arguments are of only historic interest now. Clausius in 1865
introduced the notion of entropy as a factor connecting temperature and heat,
so we now interpret the Carnot criterium, saying that the entropy decrease
of the hot reservoirs, ∆S1 = Q1/T1, must be less than the entropy increase
of the cold one, ∆S2 = Q2/T2. Maximal work is achieved for minimal (zero)
total entropy change, ∆S2 = ∆S1, which happens for reversible processes
— if, for instance, a gas works by moving a piston then the pressure of the
gas and the work are less for a fast-moving piston than in equilibrium. The
efficiency is larger when the temperatures differ more.

Just like the path from Carnot engine to a general thermodynamics, we
discover the laws of nature by induction: from data and particular cases to
a general law and from processes to state functions. The latter step requires
integration (to pass, for instance, from the Newton equations of mechanics
to the Hamiltonian or from thermodynamic equations of state to thermody-
namic potentials). It is much easier to differentiate than to integrate, and
so deduction (or postulation approach) is usually more pedagogical1. It also
provides a good vantage point for generalizations and appeals to our brain,
which likes to hypothesize before receiving any data, as we shall see later. In
such an approach, one starts from postulating a variational principle for some

1In science, we strive to get the whole truth at any price. Then in teaching we sell its
parts at affordable prices.
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function of the state of the system. Then one deduces from that principle
the laws that govern changes when one passes from state to state.

Here we present a deductive description of thermodynamics. Thermody-
namics studies restrictions on the possible macroscopic properties that follow
from the fundamental conservation laws. Therefore, thermodynamics does
not predict numerical values but rather sets inequalities and establishes re-
lations among different properties2.

You start building thermodynamics by identifying a conserved quantity,
which can be exchanged but not created. It could be matter, money, energy,
etc. For most physical systems, the basic symmetry is invariance of the fun-
damental laws with respect to time shifts3. Evolution of an isolated physical
system is usually governed by the Hamiltonian (the energy written in ca-
nonical variables), whose time-independence means energy conservation. In
what follows, the conserved quantity of thermodynamics is called energy and
denoted E. We wish to ascribe to the states of the system the values of
E. To start with, we focus on the states independent of the way they are
prepared; such equilibrium states are completely characterized by the static
values of observable variables.

Passing from state to state under external action involves the energy
change, which generally consists of two parts: the energy change of visible
degrees of freedom (which we shall call work) and the energy change of hidden
degrees of freedom (which we shall call heat). To be able to measure energy
changes in principle, we need adiabatic processes where there is no heat
exchange, that is all energy changes are visible. Ascribing to every state
its energy (up to an additive constant common for all states) hinges on our
ability to relate any two equilibrium states A and B by an adiabatic process
either A → B or B → A, which allows to measure the difference in the
energies by the work W done by the system. Now, if we encounter a process
where the energy change is not equal to the work done, we call the difference
the heat exchange δQ:

dE = δQ− δW . (2)

This statement is known as the first law of thermodynamics. It is nothing but

2For a more detailed yet still compact presentation in this spirit, see the book H. B.
Callen, Thermodynamics (1965).

3Be careful trying to build thermodynamics for biological or social-economic systems,
since generally the laws that govern them are not time-invariant. For example, the metabo-
lism of the living beings changes with age, and the number of market regulations generally
increases (as well as the total money mass, albeit not necessarily in our pockets).
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declaration of our belief in energy conservation: if the visible energy balance
does not hold then the energy of the hidden must change. The energy is
a function of state so we use differential, but we use δ for heat and work,
which aren’t differentials of any function. Heat exchange and work depend
on the path taken from A to B, that is they refer to particular forms of energy
transfer (not energy content). The first law was experimentally discovered by
Mayer in 1842; before that, heat was believed to be a separate fluid conserved
by itself.

The basic problem of thermodynamics is the determination of the equili-
brium state that eventually results after all internal constraints are removed
in a closed composite system. The problem is solved with the help of extre-
mum principle: there exists a quantity S called entropy which is a function
of the parameters of the system. The values assumed by the parameters in
the absence of an internal constraint maximize the entropy over the manifold
of available states (Clausius 1865).

Thermodynamic limit. Traditionally, thermodynamics have dealt with
extensive parameters whose value grows linearly with the number of degrees
of freedom. Additive quantities like number of particles N , electric charge
and magnetic moment are extensive. Energy generally is not additive, that
is the energy of a composite system is not generally the sum of the parts
because of an interaction energy: E(N1) + E(N2) 6= E(N1 + N2). To treat
energy as an additive variable we make two assumptions: i) assume that the
forces of interaction are short-range and act only along the boundary, ii) take
thermodynamic limit V →∞ where one can neglect surface terms that scale
as V 2/3 ∝ N2/3 in comparison with the bulk terms that scale as V ∝ N .

In that limit, thermodynamic entropy is also an extensive variable4, which
is a homogeneous first-order function of all the extensive parameters:

S(λE, λV, . . .) = λS(E, V, . . .) . (3)

This function S(E, V, . . .), called also fundamental relation, is everything one
needs to know to solve the basic problem (and others) in thermodynamics.

Of course, (3) does not mean that S(E) is a linear function when other
parameters fixed: S(λE, V, . . .) 6= λS(E, V, . . .). On the contrary, we shall
see in a moment that it is a convex function. Nor entropy is necessary

4We shall see later that non-extensive parts of entropy are also important for studying
interaction and correlations between subsystems.
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a monotonic function of energy — an example of the two-level system in
Section 1.4 shows that S(E) could be non-monotonic for systems with a
finite phase space. Yet for every interval of a definite derivative sign, say
(∂E/∂S)X > 0, we can solve S = S(E, V, . . .) uniquely for E(S, V, . . .) which
is an equivalent fundamental relation. We assume the functions S(E,X)
and E(S,X) to be continuous differentiable for any other parameter X. An
efficient way to treat partial derivatives is to use jacobians

∂(u, v)

∂(x, y)
≡ ∂u

∂x

∂v

∂y
− ∂v

∂x

∂u

∂y
,

(
∂u

∂x

)
y

=
∂(u, y)

∂(x, y)
.

Then(
∂S

∂X

)
E

= 0⇒
(
∂E

∂X

)
S

=
∂(ES)

∂(XS)

∂(EX)

∂(EX)
= −

(
∂S

∂X

)
E

(
∂E

∂S

)
X

= 0 .

That means that any entropy extremum is also an energy extremum. Dif-
ferentiating the last relation one more time we differentiate only the first
factor, since it turns into zero at equilibrium:

(∂2E/∂X2)S = −(∂2S/∂X2)E(∂E/∂S)X .

The equilibrium is an entropy maximum, that is −(∂2S/∂X2)E is negative.
Which type of extremum energy has at equilibrium depends on the sign of
(∂E/∂S)X , which is called temperature, see (4) below. When the tempera-
ture is positive, the equilibrium is the energy minimum. Relation between
entropy and energy at equilibrium is very much like circle can be defined as
the figure of either maximal area for a given perimeter or minimal perimeter
for a given area.

The figure shows the restriction imposed by thermodynamics on possible
states: unconstrained equilibrium ones are on the curve while all other states
lie below. It is important that the equilibrium curve S(E) is convex, which
guarantees stability of a homogeneous state. Indeed, if our system would
break spontaneously into two halves with a bit different energies, the entropy
must decrease: 2S(E) > S(E + ∆) + S(E − ∆) = 2S(E) + S ′′∆2, which
requires S ′′ < 0 (that argument does not work for systems with long-range
interaction where energy is non-additive). Convexity also guarantees that
one can reach the state A either maximizing entropy at a given energy or
minimizing energy at a given entropy:
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A

S

E

One can work either in energy or entropy representation but ought to be
careful not to mix the two.

Experimentally, one usually measures changes thus finding derivatives
(called equations of state). The partial derivatives of an extensive variable
with respect to its arguments (also extensive parameters) are intensive para-
meters. In thermodynamics we have only extensive and intensive variables,
because we take thermodynamic limit N →∞, V →∞ keeping N/V finite.
For example, for the energy one writes

∂E

∂S
≡ T (S, V,N) ,

∂E

∂V
≡ −P (S, V,N)

∂E

∂N
≡ µ(S, V,N) , . . . (4)

These relations are called the equations of state and they serve as definitions
for temperature T , pressure P and chemical potential µ, corresponding to
the respective extensive variables are S, V,N . We shall see later that en-
tropy is the missing information, so that temperature is the energetic price
of information. Our entropy is dimensionless, so that T is assumed to be
multiplied by the Boltzmann constant k = 1.3 ·10−23J/K and have the same
dimensionality as the energy. From (4) we write

dE = δQ− δW = TdS − PdV + µdN . (5)

Entropy is thus responsible for hidden degrees of freedom (i.e. heat) while
other extensive parameters describe macroscopic degrees of freedom. We see
that in equilibrium the missing information is maximal for hidden degrees of
freedom.

The derivatives (4) are taken at equilibrium, where definite relation exists
between variables, for instance, E and S. That means that (5) is true only
for quasi-static processes i.e such that the system is close to equilibrium at
every point of the process. A process can be considered quasi-static if its
typical time of change is larger than the relaxation times (which for pressure
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can be estimates as L/c, for temperature as L2/κ, where L is a system
size, c - sound velocity and κ thermal conductivity). Finite deviations from
equilibrium make dS > δQ/T because entropy can increase without heat
transfer. Only recently we have learnt how to measure equilibrium quantities
in fast non-equilibrium processes, as will be described in Section 5.3.

Let us see how the entropy maximum principle solves the basic problem.
Consider two simple systems separated by a rigid wall which is impermeable
for anything but heat. The whole composite system is closed that is E1 +
E2 =const.

The entropy change under the energy exchange,

dS =
∂S1

∂E1

dE1 +
∂S2

∂E2

dE2 =
dE1

T1

+
dE2

T2

=
(

1

T1

− 1

T2

)
dE1 , (6)

must be positive. For positive temperature, that means that energy flows
from the hot subsystem to the cold one (T1 > T2 ⇒ dE1 < 0). We see
that our definition (4) is in agreement with our intuitive notion of tempe-
rature. When equilibrium is reached, dS = 0 which requires T1 = T2. If
fundamental relation is known, then so is the function T (E, V ). Two equa-
tions, T (E1, V1) = T (E2, V2) and E1 + E2 =const completely determine E1

and E2. In the same way one can consider movable wall and get P1 = P2

in equilibrium. If the wall allows for particle penetration we get µ1 = µ2 in
equilibrium.

Both energy and entropy are homogeneous first-order functions of its
variables: S(λE, λV, λN) = λS(E, V,N) and E(λS, λV, λN) = λE(S, V,N)
(here V and N stand for the whole set of extensive macroscopic parameters).
Differentiating the second identity with respect to λ and taking it at λ = 1
one gets the Euler equation

E = TS − PV + µN . (7)

The equations of state are homogeneous of zero order, for instance,

T (λE, λV, λN) = T (E, V,N) .
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That confirms that the temperature, pressure and chemical potential are the
same for a portion of an equilibrium system as for the whole system.

Generally, thermodynamics can be developed for as many quantities as we
observe. But what is the minimal number of observables for a meaningful des-
cription? It may seem that a thermodynamic description of a one-component
mechanical system requires operating functions of three intensive variables.
Let us show that the homogeneity leaves only two independent parameters.
For example, the chemical potential µ can be found as a function of T and
P . Indeed, differentiating (7) and comparing with (5) one gets the so-called
Gibbs-Duhem relation (in the energy representation) Ndµ = −SdT + V dP
or for quantities per mole, s = S/N and v = V/N : dµ = −sdT + vdP . In
other words, one can choose λ = 1/N and use first-order homogeneity to get
rid of the variable N , for instance: E(S, V,N) = NE(s, v, 1) = Ne(s, v). In
the entropy representation,

S = E
1

T
+ V

P

T
−N µ

T
,

the Gibbs-Duhem relation is again states that because dS = (dE + PdV −
µdN)/T then the sum of products of the extensive parameters and the dif-
ferentials of the corresponding intensive parameters vanish:

Ed(1/T ) + V d(P/T )−Nd(µ/T ) = 0 . (8)

Summary of formal structure: The fundamental relation is equivalent
to the three equations of state (4). If only two equations of state are given
then Gibbs-Duhem relation may be integrated to obtain the third relation
up to an integration constant; alternatively one may integrate molar relation
de = Tds − Pdv to get e(s, v), again with an undetermined constant of
integration.

Example 1: Consider a system that is characterized solely by its energy,
which can change between zero and Emax. The equation of state is the energy-
temperature relation E/Emax = (1 + eε/T )−1, which tends to 1/2 at T � ε and is
exponentially small at T � ε. In Section 1.3, we shall identify this with a set of
elements with two energy levels, 0 and ε. To find the fundamental relation in the
entropy representation, we integrate the equation of state:

1

T
=
dS

dE
=

1

ε
ln
Emax − E

E
⇒ S(E) =

Emax
ε

ln
Emax

Emax − E
+
E

ε
ln
Emax − E

E
. (9)
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Example 2: Consider an ideal monatomic gas characterized by two equations
of state (found, say, experimentally with R ' 8.3 J/mole K ' 2 cal/mole K ):

PV = NRT , E = 3NRT/2 . (10)

The extensive parameters here are E, V,N so we want to find the fundamental
equation in the entropy representation, S(E, V,N). We write (7) in the form

S = E
1

T
+ V

P

T
−N µ

T
. (11)

Here we need to express intensive variables 1/T, P/T, µ/T via extensive variables.
The equations of state (10) give us two of them:

P

T
=
NR

V
=
R

v
,

1

T
=

3NR

2E
=

3R

e
. (12)

Now we need to find µ/T as a function of e, v using Gibbs-Duhem relation in
the entropy representation (8). Using the expression of intensive via extensive
variables in the equations of state (12), we compute d(1/T ) = −3Rde/2e2 and
d(P/T ) = −Rdv/v2, and substitute into (8):

d

(
µ

T

)
= −3

2

R

e
de− R

v
dv ,

µ

T
= C − 3R

2
ln e−R ln v ,

s =
1

T
e+

P

T
v − µ

T
= s0 +

3R

2
ln

e

e0
+R ln

v

v0
. (13)

Here we assumed that the system has the entropy s0 in the state with the para-

meters e0, v0.

1.2 Thermodynamic potentials

Let us emphasize that the fundamental relation always relates extensive
quantities. Therefore, even though it is always possible to eliminate, say,
S from E = E(S, V,N) and T = T (S, V,N) getting E = E(T, V,N), this
is not a fundamental relation and it does not contain all the information.
Indeed, E = E(T, V,N) is actually a partial differential equation (because
T = ∂E/∂S) and even if it can be integrated the result would contain unde-
termined function of V,N . Still, it is easier to measure, say, temperature than
entropy so it is convenient to have a complete formalism with an intensive
parameter as operationally independent variable and an extensive parameter
as a derived quantity. This is achieved by the Legendre transform: We want
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to pass from the relation Y = Y (X) to that in terms of P = ∂Y/∂X. Yet it is
not enough to eliminate X and consider the function Y = Y [X(P )] = Y (P ),
because such function determines the curve Y = Y (X) only up to a shift
along X, which changes neither Y nor P :

X

Y Y

X

For example, consider the whole family of functions Y = (X + C)2 for
arbitrary C. We express P = dY/dX = 2(X + C)2 and substitute Y =
(X + C)2 = P 2/4 — this single function corresponds to the whole family,
that is does not allow to pick a single function we need. In other words, the
family Y = (X + C)2 solves the differential equation Y = (dY/dX)2/4. To
fix the shift, nail the curve and pick a single function, for every P we specify
not Y but the position ψ(P ) where the straight line tangent to the curve
intercepts the Y -axis: ψ = Y − PX:

 

Y

XP

X

ψ

P

Y = Ψ + 

In this way we consider the curve Y (X) as the envelope of the family
of the tangent lines characterized by the slope P and the intercept ψ. The
function ψ(P ) = Y [X(P )] − PX(P ) completely defines the curve; here one
substitutes X(P ) found from P = dY (X)/dX. The function ψ(P ) is the
Legendre transform of Y (X). From dψ = −PdX − XdP + dY = −XdP
one gets −X = dψ/dP i.e. the inverse transform is the same up to a sign:
Y = ψ +XP .

The transform is possible when for every X there is one P , that is P (X)
is monotonic and Y (X) is convex, dP/dX = d2Y/dX2 6= 0. Sign-definite
second derivative means that the function is either concave or convex. This
is the second time we meet convexity, which can be also related to stability.
Indeed, for the function E(S), one-to-one correspondence between S and
T = ∂E/∂S guarantees uniformity of the temperature across the system.
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Convexity and concavity will play an important role in this course.

Different thermodynamics potentials suitable for different physical
situations are obtained replacing different extensive parameters by the re-
spective intensive parameters.

Free energy F = E − TS (also called Helmholtz potential) is that partial
Legendre transform of E which replaces the entropy by the temperature
as an independent variable: dF (T, V,N, . . .) = −SdT − PdV + µdN + . . ..
Counterpart to (∂E/∂S)V N = T is (∂F/∂T )V N = −S. The free energy is
particularly convenient for the description of a system in a thermal contact
with a heat reservoir because then the temperature is fixed and we have one
variable less to care about. The maximal work that can be done under a
constant temperature (equal to that of the reservoir) is minus the differential
of the free energy. Indeed, this is the work done by the system and the thermal
reservoir. Is that work generally larger or smaller than the work done by the
system alone? Let’s see. That work is equal to the change of the total energy:

d(E + Er) = dE + TrdSr = dE − TrdS = d(E − TrS) = d(E − TS) = dF .

In other words, the free energy F = E − TS is that part of the internal
energy which is free to turn into work, the rest of the energy TS we must
keep to sustain a constant temperature. The equilibrium state minimizes F ,
not absolutely, but over the manifold of states with the temperature equal
to that of the reservoir. Consider, for instance, minimization of F (T, V ) =
E[S(T, V ), V ]− TS(T, V ) with respect to volume:(

∂F

∂V

)
T

=

(
∂E

∂V

)
S

+

(
∂E

∂S
− T

)
∂S

∂V
=

(
∂E

∂V

)
S

,

that is the derivatives turn into zero and E and F reach extrema simul-
taneously. Also, in the point of an extremum, one gets (∂2E/∂V 2)S =
(∂2F/∂V 2)T i.e. both E and F have the same type of extremum (mini-
mum in a positive-temperature equilibrium). Monatomic gas at fixed T,N
has F (V ) = E − TS(V ) = −NRT lnV+const. If a piston separates equal
amounts N , then the work done in changing the volume of a subsystem from
V1 to V2 is ∆F = NRT ln[V2(V − V2)/V1(V − V1)].

System can reach the minimum of the free energy minimizing energy
and maximizing entropy. The former often requires creating some order in
the system, for instance, orienting all spins parallel in a ferromagnetic or
anti-parallel in an anti-ferromagnetic. On the contrary, increasing entropy
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requires disorder. Which of these tendencies wins depends on temperature,
setting their relative importance. In later sections, we shall see over and over
again that looking for a minimum of some free energy is universal approach,
from finding an equilibrium state of a physical system to the most optimal
algorithm of information processing.

Enthalpy H = E+PV is that partial Legendre transform of E which replaces
the volume by the pressure dH(S, P,N, . . .) = TdS + V dP + µdN + . . .. It is
particularly convenient for situation in which the pressure is maintained constant
by a pressure reservoir (say, when the vessel is open into atmosphere). Just as
the energy acts as a potential at constant entropy and the free energy as potential
at constant temperature, so the enthalpy is a potential for the work done by the
system and the pressure reservoir at constant pressure. Indeed, now the reservoir
delivers pressure which can change the volume so that the differential of the total
energy is

d(E + Er) = dE − PrdVr = dE + PrdV = d(E + PrV ) = d(E + PV ) = dH .

Equilibrium minimizes H under the constant pressure. On the other hand, the
heat received by the system at constant pressure (and N) is the enthalpy change:
δQ = dQ = TdS = dH. Compare it with the fact that the heat received by the
system at constant volume (and N) is the energy change since the work is zero.

One can replace both entropy and volume obtaining (Gibbs) thermodynamics
potential G = E−TS+PV which has dG(T, P,N, . . .) = −SdT+V dP+µdN+. . .
and is minimal in equilibrium at constant temperature and pressure. From (7) we
get (remember, they all are functions of different variables):

F = −P (T, V )V + µ(T, V )N , H = TS + µN , G = µ(T, P )N . (14)

When there is a possibility of change in the number of particles (because our

system is in contact with some particle source having a fixed chemical potential)

then it is convenient to use the grand canonical potential Ω(T, V, µ) = E−TS−µN
which has dΩ = −SdT − PdV −Ndµ. The grand canonical potential reaches its

minimum under the constant temperature and chemical potential.

Since the Legendre transform is invertible, all potentials are equivalent
and contain the same information. The choice of the potential for a given
physical situation is that of convenience: we usually take what is fixed as a
variable to diminish the number of effective variables.

The next two sections present a brief reminder of classical Boltzmann-
Gibbs statistical mechanics. Here we introduce microscopic statistical des-
cription in the phase space and describe two principal ways (microcanonical
and canonical) to derive thermodynamics from statistical mechanics.
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1.3 Microcanonical distribution

Consider a closed system with the fixed number of particles N and the energy
E0. Boltzmann assumed that all microstates with the same energy have equal
probability (ergodic hypothesis) which gives the microcanonical distribution:

ρ(p, q) = Γ−1δ[E(p1 . . . pN , q1 . . . qN)− E0] , (15)

where Γ is the volume of the phase space occupied by the system

Γ(E, V,N,∆) =
∫
δ[E(p1 . . . pN , q1 . . . qN)− E0] d3Npd3Nq . (16)

For example, for N noninteracting particles (ideal gas) the states with the
energy E =

∑
p2/2m are in the p-space near the hyper-sphere with the

radius
√

2mE. Remind that the surface area of the hyper-sphere with the
radius R in 3N -dimensional space is 2π3N/2R3N−1/(3N/2− 1)! and we have

Γ(E, V,N,∆) ∝ E3N/2−1V N/(3N/2− 1)! ≈ (E/N)3N/2V N . (17)

To link statistical physics with thermodynamics one must define the fun-
damental relation i.e. a thermodynamic potential as a function of respective
variables. For microcanonical distribution, Boltzmann introduced the en-
tropy as

S(E, V,N) = ln Γ(E, V,N) . (18)

This is one of the most important formulas in physics5 (on a par with F =
ma ,E = mc2 and E = h̄ω).

Noninteracting subsystems are statistically independent. That means
that the statistical weight of the composite system is a product - indeed, for
every state of one subsystem we have all the states of another. If the weight
is a product then the entropy is a sum. For interacting subsystems, this is
true only for short-range forces in the thermodynamic limit N →∞.

Consider two subsystems, 1 and 2, that can exchange energy. Let’s see
how statistics solves the basic problem of thermodynamics (to define equili-
brium) that we treated above in (6). Assume that the indeterminacy in the
energy of any subsystem, ∆, is much less than the total energy E. Then

Γ(E) =
E/∆∑
i=1

Γ1(Ei)Γ2(E − Ei) . (19)

5It is inscribed on the Boltzmann’s gravestone.
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We denote Ē1, Ē2 = E− Ē1 the values that correspond to the maximal term
in the sum (19). To find this maximum, we compute the derivative of it,
which is proportional to (∂Γ1/∂Ei)Γ2+(∂Γ2/∂Ei)Γ1 = (Γ1Γ2)[(∂S1/∂E1)Ē1

−
(∂S2/∂E2)Ē2

]. Then the extremum condition is evidently (∂S1/∂E1)Ē1
=

(∂S2/∂E2)Ē2
, that is the extremum corresponds to the thermal equilibrium

where the temperatures of the subsystems are equal. The equilibrium is
thus where the maximum of probability is. It is obvious that Γ(Ē1)Γ(Ē2) ≤
Γ(E) ≤ Γ(Ē1)Γ(Ē2)E/∆. If the system consists of N particles and N1, N2 →
∞ then S(E) = S1(Ē1) +S2(Ē2) +O(logN) where the last term is negligible
in the thermodynamic limit.

Can we get the entropy of an ideal gas taking the logarithm of (17)? The

result contains non-extensive term N lnV . The resolution of this controversy is

that we need to treat the particles as indistinguishable, otherwise we need to

account for the entropy of mixing different species. Since we implicitly assume that

mixing different parts of the same gas is a reversible process, then the particles are

assumed identical. That requires dividing Γ (17) by the number of transmutations

N ! which makes the resulting entropy of the ideal gas extensive in agreement

with (13): S(E, V,N) = (3N/2) lnE/N + N ln eV/N+const. Note that quantum

particles (atoms and molecules) are indeed indistinguishable, which is expressed

by a proper symmetrization of the wave function. One can only wonder at the

genius of Gibbs who introduced N ! long before quantum mechanics. Defining

temperature in a usual way, T−1 = ∂S/∂E = 3N/2E, we get the correct expression

E = 3NT/2. We express here temperature in the energy units. To pass to Kelvin

degrees, one transforms T → kT and S → kS where the Boltzmann constant k =

1.38 · 1023 J/K. The value of classical entropy (18) depends on the units. Proper

quantitative definition comes from quantum physics with Γ being the number

of microstates that correspond to given macroscopic parameters. In the quasi-

classical limit the number of states is obtained by dividing the phase space into

units with ∆p∆q = 2πh̄.

The same definition (entropy as a logarithm of the number of states) is
true for any system with a discrete set of states. For example, consider the
set of N particles (spins, neurons), each with two energy levels 0 and ε. If
the energy of the set is E then there are L = E/ε upper levels occupied.
The statistical weight is determined by the number of ways one can choose L
out of N : Γ(N,L) = CL

N = N !/L!(N − L)!. We can now define entropy (i.e.
find the fundamental relation): S(E,N) = ln Γ. At the thermodynamic limit
N � 1 and L� 1, it gives S(E,N) ≈ N ln[N/(N − L)] + L ln[(N − L)/L],
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which coincides with (9). The entropy as a function of energy is drawn in
the Figure:

E

0

T=+0

ε

T=

T=−0

N

T=−

S

The entropy is symmetric about E = Nε/2 and is zero at E = 0, Nε when
all the particles are in the same state.. The equation of state (temperature-
energy relation) is T−1 = ∂S/∂E ≈ ε−1 ln[(N − L)/L]. We see that when
E > Nε/2 then the population of the higher level is larger than of the
lower one (inverse population as in a laser) and the temperature is negative.
Negative temperature may happen only in systems with the upper limit of
energy levels and simply means that by adding energy beyond some level
we actually decrease the entropy i.e. the number of accessible states. That
example with negative temperature is to help you to disengage from the
everyday notion of temperature and to get used to the physicist idea of
temperature as the derivative of energy with respect to entropy 6 .

Available (non-equilibrium) states lie below the S(E) plot. The entropy max-

imum corresponds to the energy minimum for positive temperatures and to the

energy maximum for the negative temperatures. Imagine now that the system

with a negative temperature is brought into contact with the thermostat (having

positive temperature). To equilibrate with the thermostat, the system needs to

acquire a positive temperature. A glance on the figure shows that our system

must give away energy (a laser generates and emits light). If this is done adia-

batically slow, that is along the equilibrium curve, the system first decreases the

temperature further until it passes through minus infinity right into plus infinity

and then down to positive values until it eventually reaches the temperature of the

thermostat. That is negative temperatures are actually ”hotter” than positive. If

you put your hand on a negative temperature system, you feel heat flowing into

you. By itself though the system is stable since ∂2S/∂E2 = −N/L(N − L)ε2 < 0

6And yet deep within the deductive approach it is worth remembering the unique role
in the inductive development of thermodynamics that was played by the particular notion
of temperature as a mean kinetic energy of the molecules of an ideal gas.

20



at any temperature. Stress that there is no volume in S(E,N) that is we consi-

der only subsystem or only part of the degrees of freedom. Indeed, real particles

have kinetic energy unbounded from above and can correspond only to positive

temperatures [negative temperature and infinite energy give infinite Gibbs factor

exp(−E/T )].

The derivation of thermodynamic fundamental relation S(E, . . .) in the
microcanonical ensemble is thus via the number of states or phase volume.

1.4 Canonical distribution and fluctuations

Let us now describe the statistical description, which corresponds to the
thermodynamic potential of free energy F (T, V ). Consider a system exchan-
ging energy with a thermostat, which can be thought of as consisting of
infinitely many copies of our system — this is so-called canonical ensem-
ble, characterized by N, V, T . Here our system can have any energy and
the question arises what is the probability to be in a given microstate a
with the energy E. We derive that probability distribution (called cano-
nical) from the microcanonical distribution of the whole system. Since all
the states of the thermostat are equally likely to occur, then the proba-
bility should be directly proportional to the statistical weight of the ther-
mostat Γ0(E0 − E). Here we assume E � E0, expand (in the exponent!)
Γ0(E0 − E) = exp[S0(E0 − E)] ≈ exp[S0(E0)− E/T )] and obtain

wa(E) = Z−1 exp(−E/T ) , (20)

Z =
∑
a

exp(−Ea/T ) . (21)

Note that there is no trace of the thermostat left except for the temperature.
The normalization factor Z(T, V,N) is a sum over all states accessible to the
system and is called the partition function.

Our subsystem is macroscopic itself, so it has many ways to re-distribute
the energy E among its degrees of freedom. In other words, it has many
microscopic states that correspond to the same total energy of the subsystem.
The probability for the subsystem to have a given energy is the probability
of the state (20) times the number of states i.e. the statistical weight of the
subsystem:

W (E) = Γ(E)wa(E) = Γ(E)Z−1 exp(−E/T ) . (22)

21



Here the weight Γ(E) grows with E very fast for large N . But as E → ∞
the exponent exp(−E/T ) decays faster than any power. As a result, W (E)
is concentrated in a very narrow peak and the energy fluctuations around Ē
are very small. For example, for an ideal gas W (E) ∝ E3N/2 exp(−E/T ).
Let us stress again that the Gibbs canonical distribution (20) tells that the
probability of a given microstate exponentially decays with the energy of the
state while (22) tells that the probability of a given energy has a peak.

An alternative and straightforward way to derive the canonical distribution
is to use consistently the Gibbs idea of the canonical ensemble as a virtual set,
of which the single member is the system under consideration and the energy of
the total set is fixed. The probability to have our chosen system in the state a
with the energy Ea is then given by the average number of systems n̄a in this
state divided by the total number of systems N . Any set of occupation numbers
{na} = (n0, n1, n2 . . .) satisfies obvious conditions∑

a

na = N ,
∑
a

Eana = E = εN . (23)

Any given set is realized in W{na} = N !/n0!n1!n2! . . . number of ways and the
probability to realize the set is proportional to the respective W :

n̄a =

∑
naW{na}∑
W{na}

, (24)

where summation goes over all the sets that satisfy (23). We assume that in
the limit when N,na → ∞ the main contribution into (24) is given by the most
probable distribution that is maximum of W (we actually look at the maximum
of lnW which is the same yet technically simpler) under the constraints (23).
Using the method of Lagrangian multipliers we look for the extremum of lnW −
α
∑
a na − β

∑
aEana. Using the Stirling formula lnn! = n lnn − n we write

lnW = N lnN−
∑
a na lnna. We thus need to find the value n∗a which corresponds

to the extremum of
∑
a na lnna−α

∑
a na−β

∑
aEana. Differentiating we obtain:

lnn∗a = −α− 1− βEa which gives

n∗a
N

=
exp(−βEa)∑
a exp(−βEa)

. (25)

The parameter β is given implicitly by the relation

E

N
= ε =

∑
aEa exp(−βEa)∑
a exp(−βEa)

. (26)

Of course, physically ε(β) is usually more relevant than β(ε).
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To get thermodynamics from the Gibbs distribution one needs to define
the free energy because we are under a constant temperature. This is done
via the partition function Z (which is of central importance since macroscopic
quantities are generally expressed via the derivatives of it):

F (T, V,N) = −T lnZ(T, V,N) . (27)

To prove that, differentiate the identity Z = exp(−F/T ) =
∑
a exp(−Ea/T )

with respect to temperature, which gives

Z

(
F

T 2
− 1

T

∂F

∂T

)
= − 1

T 2

∑
a

Eae
−Ea/T ⇒ F = Ē + T

∂F

∂T
= E − TS ,

which we had in thermodynamics.
One can also relate statistics and thermodynamics by defining entropy.

Remind that for a closed system Boltzmann defined S = ln Γ while the pro-
bability of state was wa = 1/Γ. In other words, the entropy was minus
the log of probability, S = − lnwa. For a subsystem at fixed temperature,
different states have different probabilities, and both energy and entropy fluc-
tuate. What should be the thermodynamic entropy: mean entropy −〈lnwa〉
or entropy at a mean energy lnwa(E)? For a system that has a Gibbs dis-
tribution, lnwa is linear in Ea, so that the entropy at a mean energy is the
mean entropy, and we recover the standard thermodynamic relation. Indeed,
the mean entropy,

〈S〉 = − 〈lnwa〉 = −
∑

wa lnwa =
∑

wa(Ea/T + lnZ) (28)

= E/T + lnZ = (E − F )/T ,

is the same as the logarithm of the probability at the mean energy:

S(E) = − lnwa(E) = − ln
[
Z−1 exp(−E/T )

]
= E/T + lnZ = (E − F )/T .

(29)
Even though the Gibbs entropy, S = −∑wa lnwa is derived here for equi-
librium, this definition can be used for any set of probabilities wa, since it
provides a useful measure of our ignorance about the system, as we shall see
later.

Are canonical and microcanonical statistical descriptions equivalent? Of
course, not. The descriptions are equivalent only when fluctuations are neg-
lected and consideration is restricted to mean values. That takes place in
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thermodynamics, where the distributions just produce different fundamen-
tal relations between the mean values: S(E,N) for microcanonical, F (T,N)
for canonical, Ω(T, µ) for grand canonical. These relations are related by
the Legendre transforms. How operationally one checks, for instance, the
equivalence of canonical and microcanonical energies? One takes an isolated
system at a given energy E, measures the derivative ∂E/∂S, then puts it
into the thermostat with the temperature equal to that ∂E/∂S; the energy
now fluctuates but the mean energy must be equal to E (as long as system
is macroscopic and all the interactions are short-range).

As far as fluctuations are concerned, there is a natural hierarchy: microca-
nonical distribution neglects fluctuations in energy and number of particles,
canonical distribution neglects fluctuations in N but accounts for fluctuati-
ons in E. Eventually, grand canonical distribution accounts for fluctuations
both in E and N and describes a system which can excahnge both energy
and particles with the thermostat.

To describe fluctuations one needs to expand the respective thermodynamic
potential around the mean value, using the second derivatives, ∂2S/∂E2 and
∂2S/∂N2, which must be negative for stability. That will give Gaussian distri-
butions of E − Ē and N − N̄ . Of course, the probability distribution (22) is
generally non-Gaussian, but in the thermodynamic limit it can be approximated
by Gaussian not far from the (very sharp) maximum. A straightforward way to

find the energy variance (E − Ē)2 is to differentiate with respect to β the identity

E − Ē = 0. For this purpose one can use canonical distribution and get

∂

∂β

∑
a

(Ea − Ē)eβ(F−Ea) =
∑
a

(Ea − Ē)

(
F + β

∂F

∂β
− Ea

)
eβ(F−Ea) − ∂Ē

∂β
= 0 ,

(E − Ē)2 = −∂Ē
∂β

= T 2CV . (30)

Magnitude of fluctuations is determined by the second derivative of the respective
thermodynamic potential:

∂2S

∂E2
=

∂

∂E

1

T
= − 1

T 2

∂T

∂E
= − 1

T 2CV
.

This is natural: the sharper the extremum (the higher the second derivative)
the better system parameters are confined to the mean values. Since both Ē
and CV are proportional to N then the relative fluctuations are small indeed:
(E − Ē)2/Ē2 ∝ N−1. Note that any extensive quantity f =

∑N
i=1 fi which is a sum
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over independent subsystems (i.e. fifk = f̄if̄k) have a small relative fluctuation:

(f2 − f̄2)

f̄2
=

∑
(f2
i − f̄2

i )

(
∑
fi)2

∝ 1

N
.

Let us repeat this important distinction: all thermodynamic potentials
are equivalent for the description of mean values but respective statistical dis-
tributions are different. System that can exchange energy and particles with
a thermostat has its extensive parameters E and N fluctuating and the grand
canonical distribution describes those fluctuations. The choice of description
is dictated only by convenience in thermodynamics because it treats only
mean values. But if we want to describe the whole statistics of the system in
thermostat, we need to use canonical distribution, not the micro-canonical
one. That does not mean that one cannot learn everything about a weakly
fluctuating system in thermal equilibrium by considering it isolated (micro-
canonically). Indeed, we can determine CV (and other second derivatives)
for an isolated system and then will know the mean squared fluctuation of
energy when we bring the system into a contact with a thermostat.

1.5 Evolution in the phase space

So far we said precious little about how physical systems actually evolve. Let
us focus on a broad class of energy-conserving systems that can be described
by the Hamiltonian evolution. Every such system is characterized by its
momenta p and coordinates q, together comprising the phase space. We
define probability for a system to be in some ∆p∆q region of the phase
space as the fraction ∆t of the total observation time T it spends there:
w = ∆t/T . Assuming that the probability to find it within the volume dpdq
is proportional to this volume, we introduce the statistical distribution in the
phase space as density: dw = ρ(p, q)dpdq. By definition, the average with
the statistical distribution is equivalent to the time average:

f̄ =
∫
f(p, q)ρ(p, q)dpdq =

1

T

∫ T

0
f(t)dt . (31)

We can now consider the evolution of the density ρ(p, q) on timescales larger
than T used to define it. In a flow with the velocity v = (ṗ, q̇), the density
changes according to the continuity equation: ∂ρ/∂t+ div (ρv) = 0. For not
very long time, we can neglect interaction between subsystems, so that the
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motion can be described by the Hamiltonian dynamics of the momenta and
coordinates of the subsystem itself: q̇i = ∂H/∂pi and ṗi = −∂H/∂qi, so that

∂ρ

∂t
=
∑
i

∂H
∂pi

∂ρ

∂qi
− ∂H
∂qi

∂ρ

∂pi
≡ {ρ,H} .

Here the Hamiltonian generally depends on the momenta and coordinates
of the given subsystem and its neighbors. What is most important for us
now is that any Hamiltonian flow in the phase space is incompressible, it
conserves area in each plane pi, qi and the total volume: div v = ∂q̇i/∂qi +
∂ṗi/∂pi = 0. That gives the Liouville theorem: dρ/dt = ∂ρ/∂t + (v∇)ρ =
−ρdiv v = 0. The statistical distribution is thus conserved along the phase
trajectories of any subsystem. As a result, ρ is an integral of motion. At
equilibrium, it must be expressed solely via the integrals of motion. We define
statistical equilibrium as a state where macroscopic quantities are equal to
the mean values. Assuming short-range forces we conclude that different
macroscopic subsystems interact weakly and are statistically independent so
that the distribution for a composite system ρ12 is factorized: ρ12 = ρ1ρ2.
Since in equilibrium ln ρ is an additive quantity then it must be expressed
linearly via the additive integrals of motions which for a general mechanical
system are momentum P(p, q), the momentum of momentum M(p, q) and
energy E(p, q) (again, neglecting interaction energy of subsystems):

ln ρa = αa + βEa(p, q) + c ·Pa(p, q) + d ·M(p, q) . (32)

Here αa is the normalization constant for a given subsystem while the se-
ven constants β, c,d are the same for all subsystems (to ensure additivity
of integrals) and are determined by the values of the seven integrals of mo-
tion for the whole system. We thus conclude that the additive integrals of
motion is all we need to get the statistical distribution of a closed system
(and any subsystem), those integrals replace all the enormous microscopic
information. Considering subsystem which neither moves nor rotates we are
down to the single integral, energy, which corresponds to the Gibbs’ canonical
distribution:

ρ(p, q) = A exp[−βE(p, q)] . (33)

It was obtained for any macroscopic subsystem of a very large system, which
is the same as any system in the contact with thermostat. Note one subtlety:
On the one hand, we considered subsystems weakly interacting to have their
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energies additive and distributions independent. On the other hand, preci-
sely this weak interaction is expected to drive a complicated evolution of any
subsystem, which makes it visiting all regions of the phase space, thus ma-
king statistical description possible. Particular case of (33) is a distribution
constant over all the phase space (kind of microcanonical), which is evidently
invariant under the Hamiltonian evolution of an isolated system due to Li-
ouville theorem. That distribution formally corresponds to β = 1/T = 0 —
at infinite temperature canonical and microcanonical distributions coincide,
since energy differences between different regions of the phase space do not
matter.

Since the system spends largest time in equilibrium, it must be the most
probable state, that is realize the entropy maximum. In particular, the cano-
nical equilibrium distribution (33) corresponds to the maximum of the Gibbs
entropy, S = −

∫
ρ ln ρ dpdq, under the condition of the given mean energy

Ē =
∫
ρ(p, q)E(p, q) dpdq. Indeed, requiring zero variation δ(S + βĒ) = 0

we obtain (33). For an isolated system with a fixed energy, the entropy
maximum corresponds to a uniform micro-canonical distribution.

2 Appearance of irreversibility

Où sont les neiges d’antan?
François Villon

It is time for reflection. Most obvious contradiction we face is between
distribution preservation by Hamiltonian evolution and the growth of its en-
tropy. More generally, the puzzle here is how irreversible entropy growth
appears out of reversible laws of mechanics. If we screen the movie of any
evolution backwards, it will be a legitimate solution of the equations of mo-
tion. Will it have its entropy decreasing? Can we also decrease entropy
by employing the Maxwell demon who can distinguish fast molecules from
slow ones and selectively open a window between two boxes to increase the
temperature difference between the boxes and thus decrease entropy?

These conceptual questions have been already posed in the 19 century.
It took the better part of the 20 century to answer these questions, resolve
the puzzles and make statistical physics conceptually trivial (and technically
much more powerful). This required two things: i) better understanding
dynamics and revealing the mechanism of randomization called dynamical
chaos, ii) consistent use of the information theory which turned out to be
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just another form of statistical physics. This Chapter is devoted to the first
subject, the next Chapter — to the second one. Here we describe how ir-
reversibility and relaxation to equilibrium essentially follows from necessity
to consider ensembles (regions in phase space) due to incomplete knowledge.
Initially small regions spread over the whole phase space under reversible
Hamiltonian dynamics, very much like flows of an incompressible liquid are
mixing. Such spreading and mixing in phase space correspond to the appro-
ach to equilibrium. On the contrary, to deviate a system from equilibrium,
one adds external forcing and dissipation, which makes its phase flow com-
pressible and distribution non-uniform. Difference between equilibrium and
non-equilibrium distributions in phase space can then be expressed by the
difference between incompressible and compressible flows.

2.1 Kinetic equation and H-theorem

How the system comes to the equilibrium and reaches the entropy maximum?
What often causes confusion here is that the dynamics (classical and quan-
tum) of any given system is time reversible. The Hamiltonian evolution des-
cribed above is an incompressible flow in the phase space, div v = 0, so it con-
serves the total Gibbs entropy: dS/dt = −

∫
dx ln ρ∂ρ

∂t
=
∫
dx ln ρ div ρv =

−
∫
dx (v∇)ρ =

∫
dx ρ div v = 0. How then the entropy can grow? Or to

put the question differently: entropy of which distribution can grow? Boltz-
mann answered this question by deriving the equation on the one-particle
momentum probability distribution. Such equation must follow from inte-
grating the N -particle Liouville equation over all N coordinates and N − 1
momenta. Consider the phase-space probability density ρ(x, t) in the space
x = (P,Q), where P = {p1 . . .pN} and Q = {q1 . . .qN}. For the system

with the Hamiltonian H =
∑
i
p2i
2m

+
∑
i<j U(qi − qj), the evolution of the

density is described by the following Liouville equation:

∂ρ(P,Q, t)

∂t
= {ρ(P,Q, t),H} =

− N∑
i

pi
m

∂

∂qi
+
∑
i<j

θij

 ρ(P,Q, t) , (34)

where

θij = θ(qi,pi,qj,pj) =
∂U(qi − qj)

∂qi

(
∂

∂pi
− ∂

∂pj

)
has a meaning of an inverse typical time of the momentum change due to
interaction. For a reduced description of the single-particle distribution over
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momenta ρ(p, t) =
∫
ρ(P,Q, t)δ(p1−p) dp1 . . . dpNdq1 . . . dqN , we integrate

(34). The terms with ∂/∂qi do not contribute, and we get:

∂ρ(p, t)

∂t
=
∫
δ(p1 − p)θ(q1,p1; q2,p2)ρ(q1,p1; q2,p2) dq1dp1dq2dp2 . (35)

This equation is apparently not closed since the rhs contains two-particle
probability distribution. If we write respective equation on that two-particle
distribution integrating the Liouville equation over N − 2 coordinates and
momenta, the interaction θ-term brings three-particle distribution, etc. Con-
sistent procedure is to assume a short-range interaction and a low density,
so that the mean distance between particles much exceeds the radius of inte-
raction. In this case we may assume for every binary collision that particles
come from large distances and their momenta are not correlated. Statistical
independence then allows one to replace the two-particle momenta distribu-
tion by the product of one-particle distributions.

Such derivation is cumbersome,7 but it is easy to write the general form
that such a closed equation must have. For a dilute gas, only two-particle
collisions need to be taken into account in describing the evolution of the
single-particle distribution over moments ρ(p, t). Consider the collision of
two particles having momenta p,p1: p

p
1 1p

p

For that, they must come to the same place, yet we shall assume that the
particle velocity is independent of the position and that the momenta of two
particles are statistically independent, that is the probability is the product
of single-particle probabilities: ρ(p,p1) = ρ(p)ρ(p1). These very strong as-
sumptions constitute what is called the hypothesis of molecular chaos. Under
such assumptions, the number of such collisions (per unit time per unit vo-
lume) must be proportional to probabilities ρ(p)ρ(p1) and depend both on
initial momenta p, p1 and the final ones p′, p′1:

w(p,p1; p′,p′1)ρ(p)ρ(p1) dpdp1dp
′dp′1 . (36)

One may believe that (36) must work well when the distribution function
evolves on a time scale much longer than that of a single collision.

7see e.g. http://www.damtp.cam.ac.uk/user/tong/kintheory/kt.pdf
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We can now write the rate of the probability change as the difference
between the number of particles coming and leaving the given region of phase
space around p by integrating over all p1p

′p′1:

∂ρ

∂t
=

∫
(w′ρ′ρ′1 − wρρ1) dp1dp

′dp′1 . (37)

The scattering probabilities w ≡ w(p,p1; p′,p′1) and w′ ≡ w(p′,p′1; p,p1)
are nonzero only for quartets satisfying the conservation of energy and mo-
mentum. We assume that the scattering probabilities are invariant under
time reversal which changes p → −p and interchange incoming and out-
going particles:

w(p,p1; p′,p′1) = w(−p′,−p′1;−p,−p1) . (38)

We also assume that the medium is invariant with respect to inversion r,p→
−r,−p, which gives w(p,p1; p′,p′1) = w(−p,−p1;−p′,−p′1). Translation
invariance makes scattering the same at r and −r. All three symmetries
combined give the detailed balance:

w ≡ w(p,p1; p′,p′1) = w(p′,p′1; p,p1) ≡ w′ . (39)

Using (39) we transform the second term in (37) and obtain the famous
Boltzmann kinetic equation (1872):

∂ρ

∂t
=
∫
w′(ρ′ρ′1 − ρρ1) dp1dp

′dp′1 ≡ I , (40)

H-theorem. Let us look at the evolution of the entropy

dS

dt
= −

∫ ∂ρ

∂t
ln ρ dp = −

∫
I ln ρ dp , (41)

The integral (41) contains the integrations over all momenta so we may ex-
ploit two interchanges, p1 ↔ p and p,p1 ↔ p′,p′1:

dS

dt
=
∫
w′(ρρ1 − ρ′ρ′1) ln ρ dpdp1dp

′dp′1

=
1

2

∫
w′(ρρ1 − ρ′ρ′1) ln(ρρ1) dpdp1dp

′dp′1

=
1

2

∫
w′ρρ1 ln

ρρ1

ρ′ρ′1
dpdp1dp

′dp′1 ≥ 0 , (42)
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Here we may add the integral
∫
w′(ρρ1 − ρ′ρ′1) dpdp1dp

′dp1/2 = 0 and then
use the inequality x lnx− x+ 1 ≥ 0 with x = ρρ1/ρ

′ρ′1.
Even though we use scattering probabilities obtained from mechanics re-

versible in time, w(−p,−p1;−p′,−p′1) = w(p′,p′1; p,p1), our use of mole-
cular chaos hypothesis made the kinetic equation irreversible. Equilibrium
realizes the entropy maximum and so the distribution must be a steady solu-
tion of the Boltzmann equation. Indeed, the collision integral turns into zero
by virtue of ρ0(p)ρ0(p1) = ρ0(p′)ρ0(p′1), since ln ρ0 is the linear function of
the integrals of motion as was explained in Sect. 1.5. All this is true also for
the inhomogeneous equilibrium in the presence of an external force.

One can look at the transition from (34) to (40) from a temporal view-
point. N -particle distribution changes during every collision when particles
exchange momenta. On the other hand, the single-particle distribution is the
average over N − 1 particles, so changing it requires many collisions. Even
though some of these collisions occur in parallel, in a dilute system with
short-range interaction, the time between collisions is much longer than the
collision time, so the single-particle distribution changes on a much longer
scale. In other words, the transition from (34) to (40) is from a fast-changing
function to a slow-changing one.

Let us summarize the present state of confusion. The full entropy of the
N -particle distribution is conserved. Yet the one-particle entropy grows. Is
there a contradiction here? Is not the full entropy a sum of one-particle en-
tropies? The answer (”no” to both questions) requires introduction of the
central notion of this course - mutual information - and will be given in
Section 3.6 below. For now, a brief statement will suffice: We broke time re-
versibility and set the arrow of time when we assumed particles uncorrelated
before the collision and not after. If one starts from a set of uncorrelated par-
ticles and let them interact, then the interaction will build correlations and
the total distribution will change, but the total entropy will not. Entropy
lowering by correlations is compensated by the growth of the single-particle
entropy, described by the Boltzmann equation, which is valid for an uncorre-
lated initial state (and for some time after). Motivation for choosing such an
initial state for computing one-particle evolution is that it is most likely in
any generic ensemble. Yet that would make no sense to run the Boltzmann
equation backwards from a correlated state, which is statistically a very un-
likely initial state, since it requires momenta to be correlated in such a way
that a definite state is produced after time t. In other words, Boltzmann
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equation describes at a macroscopic level (of one-particle distribution) not
all but most of the microscopic (N -particle) evolutions.

Going a bit ahead of ourselves, we can say that neglecting inter-particles corre-
lations by factorizing the two-particle distribution ρ12 = ρ(q1,p1;q2,p2) = ρ1ρ2

means using incomplete information. This naturally leads to a further increase of
uncertainty, that is of entropy. For dilute gases, such a factorization is just the
first term of an expansion:

ρ12 = ρ1ρ2 +

∫
dq3dp3J123ρ1ρ2ρ3 + . . . .

Is this a regular expansions? It turns out that such (so-called cluster) expansion

is well-defined only for equilibrium distributions. For non-equilibrium distributi-

ons, starting from some term (depending on the space dimensionality), all higher

terms diverge. The same divergencies take place if one tries to apply the ex-

pansion to kinetic coefficients like diffusivity, conductivity or viscosity, which are

non-equilibrium properties by their nature. These divergencies can be related to

the fact that non-equilibrium distributions do not fill the phase space, as described

below in Section 2.4. Obtaining finite results requires re-summation and brings

logarithmic terms. As a result, kinetic coefficients and other non-equilibrium pro-

perties are non-analytic functions of density. Boltzmann equation looks nice, but

corrections to it are ugly, when one deviates from equilibrium. The corrections

also violate H-theorem — indeed, dropping all the terms is a part of passing from

the Liouville equation to the Boltzmann equation is what leads to the loss of

information and entropy growth.

2.2 Phase-space mixing and entropy growth

We have seen that one-particle entropy can grow even when the full N -
particle entropy is conserved. But thermodynamics requires the full entropy
to grow. To accomplish that, let us return to the full N -particle distribution
and recall that we have an incomplete knowledge of the system. That means
that we always measure coordinates and momenta within some intervals, i.e.
characterize the system not by a point in phase space but by a finite region
there. We shall see that quite general dynamics stretches this finite domain
into a very thin convoluted strip whose parts can be found everywhere in
the available phase space, say on a fixed-energy surface. The dynamics thus
provides a stochastic-like element of mixing in phase space that is responsible
for the approach to equilibrium, say to uniform microcanonical distribution.
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Yet by itself this stretching and mixing does not change the phase volume
and entropy. Another ingredient needed is the necessity to continually treat
our system with finite precision, which follows from the insufficiency of in-
formation. Such consideration is called coarse graining and, together with
mixing, it is responsible for the irreversibility of statistical laws and for the
entropy growth.

The dynamical mechanism of the entropy growth is the separation of tra-
jectories in phase space: trajectories started from a small neighborhood are
found farther and farther away as time proceeds. Denote again by x = (P,Q)
the 6N -dimensional vector of the position and by v = (Ṗ, Q̇) the velocity
in the phase space. The relative motion of two points, separated by r, is
determined by their velocity difference: δvi = rj∂vi/∂xj = rjσij. We can de-
compose the tensor of velocity derivatives into an antisymmetric part (which
describes rotation) and a symmetric part Sij = (∂vi/∂xj+∂vj/∂xi)/2 (which
describes deformation). We are interested here in deformation because it is
the mechanism of the entropy growth. The vector initially parallel to the axis
j turns towards the axis i with the angular speed ∂vi/∂xj, so that 2Sij is the
rate of variation of the angle between two initially mutually perpendicular
small vectors along i and j axes. In other words, 2Sij is the rate with which
rectangle deforms into parallelograms: S

Sδ
yx

yx
y

δy

δx

δx

Arrows in the Figure show the velocities of the endpoints. The symmetric
tensor Sij can be always transformed into a diagonal form by an orthogonal
transformation (i.e. by the rotation of the axes), so that Sij = Siδij. Accor-
ding to the Liouville theorem, a Hamiltonian dynamics is an incompressible
flow in the phase space, so that the trace of the tensor, which is the rate of
the volume change, must be zero: Trσij =

∑
i Si = div v = 0. That me-

ans that some components are positive, some are negative. Positive diagonal
components are the rates of stretching and negative components are the rates
of contraction in respective directions. Indeed, the equation for the distance
between two points along a principal direction has a form: ṙi = δvi = riSi .
The solution is as follows:

ri(t) = ri(0) exp
[∫ t

0
Si(t

′) dt′
]
. (43)
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Figure 1: Deformation of a phase-space element by a permanent strain.

For a time-independent strain, the growth/decay is exponential in time. One
recognizes that a purely straining motion converts a spherical element into an
ellipsoid with the principal diameters that grow (or decay) in time. Indeed,
consider a two-dimensional projection of the initial spherical element i.e. a

circle of the radius R at t = 0. The point that starts at x0, y0 =
√
R2 − x2

0

goes into

x(t) = eS11tx0 ,

y(t) = eS22ty0 = eS22t
√
R2 − x2

0 = eS22t
√
R2 − x2(t)e−2S11t ,

x2(t)e−2S11t + y2(t)e−2S22t = R2 . (44)

The equation (44) describes how the initial circle turns into the ellipse whose
eccentricity increases exponentially with the rate |S11 − S22|. In a multi-
dimensional space, any sphere of initial conditions turns into the ellipsoid
defined by

∑6N
i=1 x

2
i (t)e

−2Sit =const.
If our uncertainty about the initial state was confined within a sphere,

then the uncertainty about the evolved state is within the ellipsoid. Of
course, as the system moves in the phase space, both the strain values and
the orientation of the principal directions change, so that expanding direction
may turn into a contracting one and vice versa. Since we do not want to go
into details of dynamics, then we consider such evolution as a kind of random
process. The question is whether averaging over all values and orientations
gives a zero net separation of trajectories. It may seem counter-intuitive at
first, but in a general case an exponential stretching persists on average and
the majority of trajectories separate. Physicists think in two ways: one in
space and another in time (unless they are relativistic and live in a space-
time)8.

Let us first look at separation of trajectories from a temporal perspective,
going with the flow: even when the average rate of separation along a given

8”Time and space are modes by which we think and not conditions in which we live”
A. Einstein
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direction, Λi(t) =
∫ t

0 Si(t
′)dt′/t, is zero, the average exponent of it is larger

than unity (and generally growing with time):

lim
t→∞

∫ t

0
Si(t

′)dt′ = 0 ,

〈
ri(t)

ri(0)

〉
= lim

T→∞

1

T

∫ T

0
dt exp

[∫ t

0
Si(t

′)dt′
]
≥ 1 .

(45)
This is because the intervals of time with positive Λ(t) give more contribution
into the exponent than the intervals with negative Λ(t). That follows from
the concavity of the exponential function. In the simplest case, when Λ is
uniformly distributed over the interval −a < Λ < a, the average Λ is zero,
while the average exponent is (1/2a)

∫−a
a eΛdΛ = (ea − e−a)/2a > 1.

Looking from a spatial perspective, consider the simplest flow field: two-
dimensional9 pure strain, which corresponds to an incompressible saddle-
point flow: vx = λx, vy = −λy. Here we have one expanding direction and
one contracting direction, their rates being equal. The vector r = (x, y)
(the distance between two close trajectories) can look initially at any di-
rection. The evolution of the vector components satisfies the equations
ẋ = vx and ẏ = vy. Whether the vector is stretched or contracted after
some time T depends on its orientation and on T . Since x(t) = x0 exp(λt)
and y(t) = y0 exp(−λt) = x0y0/x(t) then every trajectory is a hyperbole. A
unit vector initially forming an angle ϕ with the x axis will have its length
[cos2 ϕ exp(2λT )+sin2 ϕ exp(−2λT )]1/2 after time T . The vector is stretched
if cosϕ ≥ [1 + exp(2λT )]−1/2 < 1/

√
2, i.e. the fraction of stretched directi-

ons is larger than half. When along the motion all orientations are equally
probable, the net effect is stretching, increasing with the persistence time T .

The net stretching and separation of trajectories is formally proved in mat-
hematics by considering a random strain matrix σ̂(t) and the transfer matrix Ŵ
defined by r(t) = Ŵ (t, t1)r(t1). It satisfies the equation dŴ/dt = σ̂Ŵ . The Liou-
ville theorem tr σ̂ = 0 means that det Ŵ = 1. The modulus r(t) of the separation
vector may be expressed via the positive symmetric matrix Ŵ T Ŵ . The main re-
sult (Furstenberg and Kesten 1960; Oseledec, 1968) states that in almost every
realization σ̂(t), the matrix 1

t ln Ŵ T (t, 0)Ŵ (t, 0) tends to a finite limit as t→∞.
In particular, its eigenvectors tend to d fixed orthonormal eigenvectors fi. Geo-
metrically, that precisely means than an initial sphere evolves into an elongated

9Two-dimensional phase space corresponds to the trivial case of one particle moving
along a line, yet it is of great illustrative value. Also, remember that the Liouville theorem
is true in every pi − qi plane projection.
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Figure 2: Left panel: streamlines of the saddle-point flow. Right panel:
motion down a streamline. For ϕ = ϕ0 the initial and final points are
symmetric relative to the diagonal: x(0) = y(T ) and y(0) = x(T ). If
ϕ < ϕ0 = arccos[1 + exp(2λT )]−1/2 > π/4, the distance from the origin
increases.

ellipsoid at later times. The limiting eigenvalues

λi = lim
t→∞

t−1 ln |Ŵ fi| (46)

define the so-called Lyapunov exponents, which can be thought of as the mean

stretching rates. The sum of the exponents is the mean volume growth rate, which

is zero due to the Liouville theorem. As long as there is no special degeneracy ,

which makes all the exponents identically zero, there exists at least one positive

exponent which gives stretching. Therefore, as time increases, the ellipsoid is more

and more elongated and it is less and less likely that the hierarchy of the ellip-

soid axes will change. Mathematical lesson to learn is that multiplying N random

matrices with unit determinant (recall that determinant is the product of eigenva-

lues), one generally gets some eigenvalues growing and some decreasing exponen-

tially with N . It is also worth remembering that in a random flow there is always

a probability for two trajectories to come closer. That probability decreases with

time but it is finite for any finite time. In other words, majority of trajectories se-

parate but some approach. The separating ones provide for the exponential growth

of positive moments of the distance: E(a) = limt→∞ t
−1 ln [〈ra(t)/ra(0)〉] > 0 for

a > 0. However, approaching trajectories have r(t) decreasing, which guarantees

that the moments with sufficiently negative a also grow. Mention without proof

that E(a) is a concave function, which evidently passes through zero, E(0) = 0.

It must then have another zero which for isotropic random flow in d-dimensional

space can be shown to be a = −d.
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The probability to find a ball turning into an exponentially stretching
ellipse thus goes to unity as time increases. The physical reason for it is that
substantial deformation appears sooner or later. To reverse it, one needs to
contract the long axis of the ellipse, that is the direction of contraction must
be inside the narrow angle defined by the ellipse eccentricity, which is less
likely than being outside the angle:

 contracting direction 

 must be within the angle

To transform ellipse to circle,

This is similar to the argument about the irreversibility of the Boltz-
mann equation in the previous subsection. Randomly oriented deformations
on average continue to increase the eccentricity. Drop ink into a glass of
water, gently stir (not shake) and enjoy the visualization of Furstenberg and
Oseledets theorems.

Armed with the understanding of the exponential stretching, we now
return to the dynamical foundation of the second law of thermodynamics.
We assume that our finite resolution does not allow us to distinguish between
the states within some square in the phase space. That square is our ”grain”
in coarse-graining. In the figure below, one can see how such black square of
initial conditions (at the central box) is stretched in one (unstable) direction
and contracted in another (stable) direction so that it turns into a long narrow
strip (left and right boxes). Later in time, our resolution is still restricted
- rectangles in the right box show finite resolution (this is coarse-graining).
Viewed with such resolution, our set of points occupies larger phase volume
at t = ±T than at t = 0. Larger phase volume corresponds to larger entropy.
Time reversibility of any trajectory in the phase space does not contradict the
time-irreversible filling of the phase space by the set of trajectories considered
with a finite resolution. By reversing time we exchange stable and unstable
directions (i.e. those of contraction and expansion), but the fact of space
filling persists. We see from the figure that the volume and entropy increase
both forward and backward in time. And yet our consideration does provide
for time arrow: If we already observed an evolution that produces a narrow
strip then its time reversal is the contraction into a ball; but if we consider
a narrow strip as an initial condition, it is unlikely to observe a contraction
because of the narrow angle mentioned above. Therefore, being shown two
movies, one with stretching, another with contraction we conclude that with
probability close (but not exactly equal!) to unity the first movie shows the
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Figure 3: Increase of the phase volume upon stretching-contraction and
coarse-graining. Central panel shows the initial state and the velocity field.

true sequence of events, from the past to the future.
When the density spreads, entropy grows (as the logarithm of the volume

occupied). If initially our system was within the phase-space volume ε6N ,
then its density was ρ0 = ε−6N inside and zero outside. After stretching to
some larger volume eλtε6N the entropy S = −

∫
ρ ln ρdx has increased by λt.

The positive Lyapunov exponent λ determines the rate of the entropy growth.
If in a d-dimensional space there are k stretching and d − k contracting
directions, then contractions eventually stabilize at the resolution scale, while
expansions continue. Therefore, the volume growth rate is determined by the
sum of the positive Lyapunov exponents

∑k
i=1 λi.

We shall formally define information later, here we use everyday intuition
about it (as diminishing uncertainty) to briefly discuss our flow from this
perspective. Consider an ensemble of systems having close initial positions
within our finite resolution. In a flow with positive Lyapunov exponents, with
time we loose our ability to predict where it goes. This loss of information
is determined by the growth of the available phase volume, that is of the
entropy. But we can look backwards in time and ask where the points come
from. If we consider two points along a stretching direction, we can with
confidence predict that they were closer before. During some time in the
past, they were hidden inside the resolution circle, but they separate with
time beyond the resolution and can now be distinguished:

Moreover, as time proceeds, we learn more and more about the initial
locations of the points. The acquisition rate of such information about the
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past is again the sum of the positive Lyapunov exponents and is called the
Kolmogorov-Sinai entropy. As time lag from the present moment increases,
we can say less and less where we shall be and more and more where we came
from. It illustrates the Kierkegaard’s remark that the irony of life is that it
is lived forward but understood backwards.

After the strip length reaches the scale of the velocity change (when one
already cannot approximate the phase-space flow by a linear profile σ̂r),
strip starts to fold because rotation (which we can neglect for a ball but not
for a long strip) is different at different parts of the strip. Still, however
long, the strip continues locally the exponential stretching. Eventually, one
can find the points from the initial ball everywhere which means that the
flow is mixing, also called ergodic. Formal definition is that the flow is
called ergodic in the domain if the trajectory of almost every point (except
possibly a set of zero volume) passes arbitrarily close to every other point. An
equivalent definition is that there are no finite-volume subsets of the domain
invariant with respect to the flow except the domain itself. Ergodic flow on an
energy surface in the phase space provides for a micro-canonical distribution
(i.e. constant), since time averages are equivalent to the average over the
surface. While we can prove ergodicity only for relatively simple systems,
like the gas of hard spheres, we believe that it holds for most systems of
sufficiently general nature (that vague notion can be make more precise by
saying that the qualitative systems behavior is insensitive to small variations
of its microscopic parameters).

At even larger time scales than the time of the velocity change for a trajec-
tory, one can consider the motion as a series of uncorrelated random steps. That
produces random walk considered in detail in Sect 5.1 below, where we will show
that the spread of the probability density ρ(r, t) is described by a simple diffu-
sion: ∂ρ/∂t = κ∆ρ. The total probability

∫
ρ(r, t) dr is conserved but the entropy

increases monotonically under diffusion:

dS

dt
= − d

dt

∫
ρ(r, t) ln ρ(r, t) dr = −κ

∫
∆ρ ln ρ dr = κ

∫
(∇ρ)2

ρ
dr ≥ 0 . (47)

Asymptotically in time the solution of the diffusion equation takes the universal

form ρ(r, t) = (4πκt)−d/2exp
(
−r2/4κt

)
, see (124) below; substituting it into (47)

we obtain a universal entropy production rate, dS/dt = 1/2t, independent of κ

(which is clear from dimensional reasoning).

Two concluding remarks are in order. First, the notion of an exponential
separation of trajectories put an end to the old dream of Laplace to be able
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to predict the future if only all coordinates and momenta are given. Even
if we were able to measure all relevant phase-space initial data, we can do
it only with a finite precision ε. However small is the indeterminacy in the
data, it is amplified exponentially with time so that eventually ε exp(λT ) is
large and we cannot predict the outcome. Mathematically speaking, limits
ε→ 0 and T → ∞ do not commute. Second, the above arguments did not
use the usual mantra of thermodynamic limit, which means that even the
systems with a small number of degrees of freedom need statistics for their
description at long times if their dynamics has a positive Lyapunov exponent
(which is generic) - this is sometimes called dynamical chaos.10

2.3 Baker map

One can think of any Hamiltonian dynamics as a map of phase space into
itself. We consider a toy model of such a map, which is of great illustrative
value for the applications of chaos theory to statistical mechanics. Take
the phase-space to be a unit square in the (x, y)-plane, with 0 < x, y < 1.
The measure-preserving transformation is an expansion in the x-direction
and a contraction in the y-direction, arranged in such a way that the unit
square is mapped onto itself at each step. The transformation consists of two
steps: First, the unit square is contracted in the y-direction and stretched
in the x-direction by a factor of 2. This doesn’t change the volume of any
initial region. The unit square becomes a rectangle occupying the region
0 < x < 2; 0 < y < 1/2. Next, the rectangle is cut in the middle and the
right half is put on top of the left half to recover a square. This doesn’t
change volume either. That way bakers prepare long thin strips of pasta.
This transformation is reversible except on the lines where the area was cut
in two and glued back.

10As a student, I’ve participated (mostly as a messenger) in the discussion on irrever-
sibility between Zeldovich and Sinai. I remember Zeldovich asking why coarse-graining
alone (already introduced by Boltzmann) is not enough to explain irreversibility. Why
one needs dynamical chaos to justify what one gets by molecular chaos? I believe that
Sinai was right promoting separation of trajectories. It replaces arbitrary assumptions by
clear demonstration from first principles, which is conceptually important, even though
possible in idealized cases only.
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If we consider two initially closed points, then after n such steps the
distance along x and y will be multiplied respectively by 2n = en ln 2 and
2−n = e−n ln 2. It is then easy to see, without a lot of formalities, that there are
two Lyapunov exponents corresponding to the discrete time n. One of them
is connected to the expanding direction and has the value λ+ = ln 2. The
other Lyapunov exponent is connected to the contracting direction and has
the value λ− = − ln 2. For the forward time operation of the baker’s trans-
formation, the expanding direction is along the x-axis, and the contracting
direction is along the y-axis. If one considers the time-reversed motion, the
expanding and contracting directions change places. Therefore, for the for-
ward motion nearby points separated only in the y-direction approach each
other exponentially rapidly with the rate λ− = − ln 2. In the x-direction,
points separate exponentially with λ+ = ln 2. The sum of the Lyapunov
exponents is zero, which reflects the fact that the baker’s transformation is
area-preserving.

Let us argue now that the baker transformation is mixing, that is sprea-
ding the measure uniformly over the whole phase space. Indeed, if a measure
is initially concentrated in any domain, as in the grey area in the left panel
of the Figure 4, after sufficiently long time the domain is transformed into a
large number of very thin horizontal strips of length unity, distributed more
and more uniformly in the vertical direction. Eventually any set in the unit
square will have the same fraction of its area occupied by these little strips
of pasta as any other set. This is the indicator of a mixing system. If we add
to that however small coarse-graining, at sufficiently long time it blurs our
measure to to a constant one. We conclude that a sufficiently smooth ini-
tial distribution function defined on the unit square will approach a uniform
(microcanonical) distribution on the square.

To avoid impression that cutting and gluing of the baker map are ne-
cessary for mixing, consider a smooth model which has similar behavior.
Namely, consider a unit two-dimensional torus, that is unit square with peri-
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Figure 4: Left panel: iterations of the baker map. Right panel: toral map.

odic boundary conditions, so that all distances are measured modulo 1 in the
x- and y-direction. The transformation matrix T (an analog of the transfer
matrix Ŵ from the previous section) maps unit torus into itself if a, b, c, d
are all integers. The action of such map is shown in the right panel of the

Figure 4. The eigenvalues λ1,2 = (a+ d)/2±
√

(a− d)2/4 + bc are real when

(a − d)2/4 + bc ≥ 0, in particular, when the matrix is symmetric. For the
transform to be area-preserving, the determinant of the matrix T , that is
the product of the eigenvalues must be unity: λ1λ2 = ad − bc = 1. In a
general case, one eigenvalue is larger than unity and one is smaller, which
corresponds respectively to positive and negative Lyapunov exponents lnλ1

and lnλ2.
Baker map is area-preserving and does not change entropy, yet when

we allow for repeating coarse-graining along with the evolution, then the
entropy grows and eventually reaches the maximum, which is the logarithm
of the phase volume, which corresponds to the equilibrium microcanonical
distribution.
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2.4 Entropy decrease and non-equilibrium fractal me-
asures

As we have seen in the previous two sections, if we have indeterminacy in
the data or consider an ensemble of systems, then Hamiltonian dynamics (an
incompressible flow) effectively mixes and makes distribution uniform in the
phase space. Since we have considered isolated systems, they conserve their
integrals of motion, so that the distribution is uniform over the respective
surface. In particular, dynamical chaos justifies micro-canonical distribution,
uniform over the energy surface.

But what if the dynamics is non-Hamiltonian, that is Liouville theorem
is not valid? The flow in the phase space is then generally compressible.
The simplest non-conservative effect is dissipation of kinetic energy, which
shrinks all momenta and thus decreases the phase volume. We are interested,
however, in a non-equilibrium steady state where we keep the energy non-
decreasing. For example, to compensate for the loss of the momentum of the
particles with the dissipation rates γi, we act on them by external forces fi
and, so that the equations of motion take the form: ṗi = fi− γipi− ∂H/∂qi,
q̇i = ∂H/∂pi, which gives generally div v =

∑
i(∂fi/∂pi−γi) 6= 0. Let us show

that such flows create quite different distribution. Since div v 6= 0, then the
probability density generally changes along a flow: dρ/dt = −ρdiv v. That
produces entropy,

dS

dt
=
∫
ρ(r, t)div v(r, t) dr = 〈div v〉 . (48)

with the rate equal to the Lagrangian mean of the phase-volume local ex-
pansion rate. If the system does not on average heats or cools (expands or
contracts), then the whole phase volume does not change. That means that
the volume integral of the local expansion rate is zero:

∫
div v dr = 0. Yet for

a non-uniform density, the entropy is not the log of the phase volume but the
minus mean log of the phase density, S(t) = −〈ln ρ〉 = −

∫
ρ(r, t) ln ρ(r, t) dr,

whose derivative (48) is non-zero because of correlations between ρ and div v.
Since ρ is always smaller in the expanding regions where div v > 0, then the
entropy production rate (48) is non-positive. We conclude that the mean loga-
rithm of the density (i.e. entropy) decreases. Since the uniform distribution
has a maximal entropy under the condition of fixed normalization, then the
entropy decrease means that the distribution is getting more non-uniform.

What happens then to the density? Of course, if we integrate density
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over all the phase space we obtain unity at any time:
∫
ρ(r, t) dr = 1. Let us

now switch focus from space to time and consider the density of an arbitrary
fluid element, which evolves as follows:

ρ(t)/ρ(0) = exp
[
−
∫ t

0
div v(t′) dt′

]
= eC(t) . (49)

As we have seen in (45), if a mean is zero, the mean exponent generally
exceeds unity because of concavity of the exponential function. Now the
contraction factor averaged over the whole flow is zero at any time, 〈C〉 = 0,
and its average exponent is larger than unity:

〈ρ(t)/ρ(0)〉 = lim
T→∞

1

T

∫ T

0
dt exp

[
−
∫ t

0
div v(t′) dt′

]
= 〈eC〉 > 1 .

That concavity simply means that the parts of the flow with positive C give
more contribution into the exponent than the parts with negative C. More-
over, for a generic random flow the density of most fluid elements must grow
non-stop as they move. Indeed, if the Lagrangian quantity (taken in the flow
reference frame) div v(r, t) is random function with a finite correlation time,
then at longer times its integral

∫ t
0 div v(t′) dt′ is Gaussian with zero mean

and variance linearly growing with time (see section 8.1). Since the total me-
asure is conserved, growth of density at some places must be compensated
by its decrease in other places, so that the distribution is getting more and
more non-uniform, which decreases the entropy. Looking at the phase space
one sees it more and more emptied with the density concentrated asymptoti-
cally in time on a fractal set. That is opposite to the mixing by Hamiltonian
incompressible flow.

If the density of any fluid element on average grows, then its volume
decreases. In particular, for spatially smooth flow, the long-time Lagrangian
average (along the flow) of the volume change rate,〈

dS

dt

〉
= 〈div v〉 = lim

t→∞

1

t

∫ t

0
div v(t′) dt′ =

∑
i

λi ,

is a sum of the Lyapunov exponents, which is then non-positive (in dis-
tinction from an instantaneous average over space, which is zero at any time:∫
div v dr = 0). It is important that we allowed for a compressibility of a

phase-space flow v(r, t) but did not require its irreversibility. Indeed, even
if the system is invariant with respect to t → −t, v → −v, the entropy
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production rate is generally non-negative and the sum of the Lyapunov ex-
ponents is non-positive for the same simple reason that contracting regions
have more measure and give higher contributions. Backwards in time the
measure also concentrates, only on a different set.

This can be illustrated by a slight generalization of the baker map, ex-
panding one region and contracting another, keeping the whole volume of
the phase space unity:

The transformation has the form

x′ =
{
x/l for 0 < x < l
(x− l)/r for l < x < 1 ,

y′ =
{
ry for 0 < x < l
r + ly for l < x < 1

, (50)

where r + l = 1. The Jacobian of the transformation is not identically equal
to unity when r 6= l:

J =

∣∣∣∣∣∂(x′, y′)

∂(x, y)

∣∣∣∣∣ =
{
r/l for 0 < x < l
l/r for l < x < 1 ,

. (51)

If l > 1/2, then r = 1 − l < l, so that J < 1 in the shadowed region
where x < L, and J > 1 in the white region where x > L. Of course,
the mean Jacobian J = r + l is unity, since we always occupy the same
unit square. Like in the treatment of the incompressible baker map in the
previous section, consider two initially closed points. If during n steps the
points find themselves n1 times in the region 0 < x < l and n2 = n − n1

times inside l < x < 1 then the distances along x and y will be multiplied
respectively by l−n1r−n2 and rn1ln2 . Taking the log and the limit we obtain
the Lyapunov exponents:

λ+ = lim
n→∞

1
n

ln δx(n)
δx(0)

= limn→∞
[
n1

n
ln 1

l
+ n2

n
ln 1

r

]
= −l ln l − r ln r , (52)

λ− = lim
n→∞

1
n

ln δy(n)
δy(0)

= limn→∞
[
n1

n
ln r + n2

n
ln l
]

= r ln l + l ln r . (53)
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The sum of the Lyapunov exponents, λ+ +λ− = (l−r) ln(r/l) = ln J , is non-
positive and is zero only for l = r = 1/2. Again, convexity of the logarithmic
function means that ln J ≤ ln J = 0. The volume contraction means that
the expansion in the λ+-direction proceeds slower than the contraction in
the λ−-direction. Asymptotically our strips of pasta concentrate on a fractal
set, that is one having non-integer dimensionality. Indeed, define the (box-
counting) dimension of a set as follows

df = lim
ε→0

lnN(ε)

ln(L/ε)
, (54)

where N(ε) is the number of boxes of length ε on a side needed to cover the
set of the size L. After n iterations of the map, a square having initial side
δ � L will be stretched into a long thin rectangle of length δ exp(nλ+) and
width δ exp(nλ−). To cover contracting direction, we choose ε = δ exp(nλ−),
then N(ε) = exp[n(λ+ − λ−)], so that the dimension is

df = 1 +
λ+

|λ−|
, (55)

Since |λ−| ≥ λ+, then the dimension is between 1 and 2. The set is smooth
in the x-direction and fractal in the y-direction, which respectively gives two
terms in (55).

General (Kaplan-Yorke) conjecture is that df = j +
∑j
i=1 λi/λj+1, where j is

the largest number for which
∑j
i=1 λi ≥ 0 and

∑j+1
i=1 λi < 0. For incompressible

flows, j = d.

Fractalization of the measure proceeds until the coarse-graining stops it.
In distinction from the incompressible flow, coarse-graining at a small scale
ε does not make the distribution uniform, but it makes the entropy finite:
S = lnN(ε). An equilibrium uniform (microcanonical) distribution in d-
dimensional phase space has the entropy S0 = d ln(L/ε); the non-equilibrium
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steady state (NESS) generally has a lower dimensionality df < d with a lower
entropy, S0 ' df ln(L/ε).

Thus for dynamical systems, both temporal and spatial properties of the
entropy are determined by the Lyapunov exponents. Entropy dependence
on time (both forward and backward) is governed by the Kolmogorov-Sinai
entropy, which is the sum of the positive Lyapunov exponents. Entropy
dependence on spatial resolution is determined by the dimensionality.

We see the dramatic difference between equilibrium equipartition and
non-equilibrium fractal distribution. Relation between compressibility and
non-equilibrium is natural: to make system non-Hamiltonian one needs to
act by some external forces, which pump energy into some degrees of free-
dom and, to keep a steady state, absorb it from other degrees of freedom —
expansion and contraction of the momentum part of the phase-space volume.
Long-time average volume contraction of a fluid element and respective en-
tropy decays is the analog of the second law of thermodynamics: do deviate
a system from equilibrium, one needs to constantly lower its entropy until
the resolution limit is reached.

The non-equilibrium distribution is singular in the limit ε→ 0, that is occupies

a zero-measure subset of the phase space. The singularity of the non-equilibrium

measure is probably related to non-analyticity of kinetic coefficients mentioned at

the end of the Section 2.1. In reality, approach to NESS is asymptotic; not much

is known what distribution changes provide for a permanent entropy decrease in

the limit ε → 0. Most likely, lower-order cumulants stabilize first, while farther

and farther tails of the distribution continue to evolve.

To conclude this Chapter, let us stress the difference between the entropy
growth described in the Sections 2.2-2.3 and the entropy decay described in
the present Section. In the former, phase-space flows were area-preserving
and the volume growth of an element was due to a finite resolution which
stabilized the size in the contracting direction, so that the mean rate of
the volume growth was solely due to stretching directions and thus equal
to the sum of the positive Lyapunov exponents, as described in Section 2.2.
On the contrary, the present section deals with compressible flows which
decrease entropy by creating more inhomogeneous distributions, so that the
mean rate of the entropy decay is the sum of all the Lyapunov exponents,
which is non-positive since contracting regions contain more trajectories and
contribute the mean rate more than expanding regions.

Looking back at the previous Chapters, it is a good time to appreci-
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ate the complementarity of determinism and randomness expressed in terms
”statistical mechanics” (19th century) and ”dynamical chaos” (20th cen-
tury). What shall we have in the 21st century: predictable uncertainty,
multi-version reality?

3 Physics of information

This Chapter presents an elementary introduction into the information the-
ory from the viewpoint of a natural scientist. It re-tells the story of statistical
physics using a different language, which lets us to see the Boltzmann and
Gibbs entropies in a new light. Here we switch from continuous thinking in
terms of phase-space flows to discrete combinatoric manipulations. What I
personally like about the information viewpoint is that it erases paradoxes
and makes the second law of thermodynamics trivial. It also allows us to see
generality and commonality in the approaches (to partially known systems)
of physicists, engineers, computer scientists, biologists, brain researchers, so-
cial scientists, market speculators, spies and flies. We shall see how the same
tools used in setting limits on thermal engines are used in setting limits on
communications, measurements and learning (which are essentially the same
phenomena). The main mathematical tool exploits universality appearing
upon summing many independent random numbers.

The central idea exploited in this Chapter is that information lowers
uncertainty. A convenient way to quantify it is by the number of questions
whose answers together eliminate the uncertainty. If we are uncertain about
the events with a priori equal probabilities, the number of such questions is
a logarithm of the number n of possible outcomes, which is the Boltmann
entropy. One needs log2 n of yes-no questions to locate one out of n equally
probable objects. If we know the probabilities pi of the events, we find the
information rate per answer on average to be equal to the Gibbs entropy,
S = −∑i pi log2 pi bits. That follows from the fact (shown in the next
section) that the number of typical N -sequences of outcomes grows with N
as 2NS, so that any such sequence brings log2 2NS = NS bits, that is S bits
per outcome on average.

But what if the answers are not completely reliable? In other words, we
have an imperfect channel whose output A specifies the event (input) Bj not
completely, but with some remaining uncertainty, which is characterized by
the conditional entropy S(B|A). The information received is then equal to
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I(A,B) = S(B)−S(B|A) called the mutual information. Next Chapter will
describe how fast widens the region of applications of the universal notions
of entropy and mutual information: from physics, communications and com-
putations to brain research, artificial intelligence and quantum computing.

3.1 Information as a choice

”Information is the resolution of uncertainty.”
C Shannon 1948

We want to know in which of n boxes a candy is hidden, that is we
are faced with a choice among n equal possibilities. How much informa-
tion we need to get the candy? Let us denote the missing information by
I(n). Clearly, I(1) = 0, and we want the information to be a monotonically
increasing11 function of n. If we have several independent problems then
information must be additive. For example, consider each box to have m
compartments. To know in which from mn compartments is the candy, we
need to know first in which box and then in which compartment inside the
box: I(nm) = I(n) + I(m). Now, we can write (Fisher 1925, Hartley 1927,
Shannon 1948)

I(n) = I(e) lnn = k lnn (56)

That information must be a logarithm is clear also from obtaining the missing
information by asking the sequence of questions in which half we find the box
with the candy, one then needs log2 n of such questions and respective one-bit
answers. If we measure information in binary choices or bits (abbreviation
of ”binary digits”), then I(n) = log2 n, that is k−1 = ln(2). To arrive at
destination via the road with N forks one needs N bits, while via a street
with M intersections M log2 3 bits, since there are three possible way at an
intersection.

We can easily generalize the definition (56) for non-integer rational num-
bers by I(n/l) = I(n)− I(l) and for all positive real numbers by considering
limits of the series and using monotonicity. So the message carrying the
single number of the lucky box with the candy brings the information k lnn.

We used to think of information received through words and symbols.
Essentially, it is always about in which box the candy is. Indeed, if we

11The messages ”in box 1 out of 2” and ”in box 1 out of 22” bring the same candy but
not the same amount of information.
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have an alphabet with n symbols then every symbol we receive is a choice
out of n and brings the information k lnn. That is n symbols are like n
boxes. If symbols come independently then the message of the length N
can potentially be one of nN possibilities so that it brings the information
kN lnn. To convey the same information by smaller alphabet, one needs
longer message. If all the 26 letters of the English alphabet were used with
the same frequency then the word ”love” would bring the information equal
to 4 log2 26 ≈ 4 ·4.7 = 18.8 bits. Here and below we assume that the receiver
has no other prior knowledge on subjects like correlations between letters (for
instance, everyone who knows English, can infer that there is only one four-
letter word which starts with “lov...” so the last letter brings zero information
for such people).

A

A

A

A

B

E

B

B

B

Z

Z

Z

Z

L

O

V

...

...

...

...

...

...

...

...

...

n

N

In reality, every letter brings on average even less information than log2 26
since we know that letters are used with different frequencies. Indeed, con-
sider the situation when there is a probability pi assigned to each letter (or
box) i = 1, . . . , n. It is then clear that different letters bring different in-
formation. Let us evaluate the average information per symbol in a long
message. To average, we consider the limit N →∞, then we know that the
i-th letter appears Npi times in a typical sequence, that is we know that we
receive the first alphabet symbol Np1 times, the second symbol Np2 times,
etc. What we didn’t know and what any message of the length N brings
is the order in which different symbols appear. Total number of orders (the
number of different typical sequences) is equal to N !/Πi(Npi)!, and the in-
formation that we obtained from a string of N symbols is the logarithm of
that number:

IN = k ln
N !

Πi(Npi)
≈ k

(
N lnN −

∑
i

Npi lnNpi
)

= −Nk
∑
i

pi ln pi . (57)
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The mean information per symbol coincides with the Gibbs entropy (28):

S(p1 . . . pn) = lim
N→∞

IN/N = −k
n∑
i=1

pi ln pi . (58)

Alternatively, one can derive (58) without any mention of randomness.
Consider again n boxes and define pi = mi/

∑n
i=1mi = mi/M , where mi is

the number of compartments in the box number i. When each compartment
can be chosen independently of the box it is in, the i-th box is chosen with
the frequency pi, that is a given box is chosen more frequently if it has more
compartments . The information on a specific compartment is a choice out
of M and brings information k lnM . That information must be a sum of the
information about the box In plus the information about the compartment,
lnmi, summed over the boxes: k

∑n
i=1 pi lnmi. That gives the information

In about the box (letter) as the difference:

In = k lnM−k
n∑
i=1

pi lnmi = k
n∑
i=1

pi lnM−k
n∑
i=1

pi lnmi = −k
n∑
i=1

pi ln pi = S .

A little more formally, one can prove that (58) is the only measure of
uncertainty that is a continuous function of pi, symmetric with respect to
their transmutations, and satisfies the inductive relation:

S(p1, p2, p3 . . . pn) = S(p1 + p2, p3 . . . pn) + (p1 + p2)S

(
p1

p1 + p2

,
p2

p1 + p2

)
.

That relation comes from considering a subdivision: first, receive the infor-
mation whether one of the first two possibilities appeared, second, distinguish
between 1 and 2.

Asymptotic equipartition. What if we look at the given sequence of sym-
bols y1, . . . , yN and ask: how probable it is? Can we answer this blatantly
self-referential question without seeing other sequences? Yes, we can, if the
sequence is long enough and we know that the symbols are independently cho-
sen. We use the law of large numbers which states that the sum of N random
numbers fast approaches N times the mean value as N grows. To use the law
we need to find numbers to sum. Since the symbols are independent, then the
probability of any sequence is the product of probabilities and the logarithm
of the probability is the sum: N−1 lnP (y1, . . . , yN) = −N−1∑N

i=1 ln p(yi).
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For large N , it is the mean logarithm of the distribution, that is the entropy.
Of which distribution? The probabilities of independent symbols depend not
on the position i, but on which symbol from our alphabet, y1, y2, . . . , yn is
there: N−1∑N

i=1 ln p(yi) =
∑n
j=1 p(y

j) ln p(yj). But how to find p(y)? For a
sufficiently long sequence, we assume that the frequencies of different sym-
bols in our sequence give the true probabilities of these symbols. In other
words, we assume that the sequence is typical. Then its probability

1

N
lnP (y1, . . . , yN)→ −

n∑
j=1

p(yj) ln p(yj) = −〈ln p(y)〉 = S(Y ) . (59)

We see that the log of probability converges to N times the entropy of y.
We then state that the probability of the typical sequence decreases with
N exponentially: P (y1, . . . , yN) = exp[−NS(y)]. That probability is inde-
pendent of the values y1, . . . , yN , that is the same for all typical sequences
— we found the best uniform (microcanonical!) distribution approximating
P (y1, . . . , yN). Equivalently, we can state that the number of typical sequen-
ces grows with N exponentially, and the entropy sets the rate of growths.
That focus on typical sequences, which all have the same (maximal) proba-
bility, is known as asymptotic equipartition and formulated as ”almost all
events are almost equally probable”.

In physics, asymptotic equipartition is used, for instance, when we claim that
the Boltzmann entropy is equivalent to the Gibbs entropy for systems whose energy
is separable into independent parts in the thermodynamic limit (number of parti-
cles is an analog of a string length N). Like we argued for equivalence of energies in
Section 1.4, we consider the microcanonical distribution taken at the energy equal
to the mean energy of the canonical distribution (the typical set of the canonical
ensemble). Then the Boltzmann entropy of such microcanonical distribution is
equal to the entropy of the canonical distribution in the thermodynamic limit.

Now we recognize in (58) the asymptotic equipartition: N -string brings the

information, which is the log of the number of typical strings: I = NS. Note that
when n→∞ then (56) diverges while (58) may well be finite.

The mean information (58) is zero for delta-distribution pi = δij; it is
generally less than the information (56) and coincides with it only for equal
probabilities, pi = 1/n, when the entropy is maximum. Indeed, equal pro-
babilities we ascribe when there is no extra information, i.e. in a state of
maximum ignorance. In this state, a message brings maximum information
per symbol; any prior knowledge can reduce the information. Mathemati-
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cally, the property
S(1/n, . . . , 1/n) ≥ S(p1 . . . pn) (60)

is called convexity. It follows from the fact that the function of a single
variable s(p) = −p ln p is strictly concave since its second derivative, −1/p,
is everywhere negative for positive p. For any concave function, the average
over the set of points pi is less or equal to the function at the average value
(so-called Jensen inequality):

1

n

n∑
i=1

s (pi) ≤ s

(
1

n

n∑
i=1

pi

)
. (61)

−Wln W

A (A+B)/2 B

S[(A+B)/2]>[S(A)+S(B)]/2

W

From here one gets the entropy inequality:

S(p1 . . . pn) =
n∑
i=1

s (pi) ≤ ns

(
1

n

n∑
i=1

pi

)
= ns

(
1

n

)
= S

(
1

n
, . . . ,

1

n

)
. (62)

The relations (61-62) can be proven for any concave function. Indeed, the
concavity condition states that the linear interpolation between two points
a, b lies everywhere below the function graph: s(λa+ b− λb) ≥ λs(a) + (1−
λ)s(b) for any λ ∈ [0, 1], see the Figure. For λ = 1/2 it corresponds to (61)
for n = 2. To get from n = 2 to arbitrary n we use induction. For that end,
we choose λ = (n− 1)/n, a = (n− 1)−1∑n−1

i=1 pi and b = pn to see that
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s (pi) . (63)
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In the last line we used the truth of (61) for n− 1 to prove it for n.

You probably noticed that (56) corresponds to the microcanonical Boltz-
mann entropy (18) giving information/entropy as a logarithm of the number
of states, while (58) corresponds to the canonical Gibbs entropy (28) giving
it as an average. An advantage of Gibbs-Shannon entropy (58) is that is
defined for arbitrary distributions, not necessarily equilibrium.

3.2 Communication Theory

Here we start learning how to treat everything as a message. After we learnt,
what information messages bring on average, we are ready to discuss the best
ways to transmit them. That brings us to the Communication Theory, which
is interested in two key issues, speed and reliability:

i) How much can a message be compressed; i.e., how redundant is the
information? In other words, what is the maximal rate of transmission in
bits per symbol?

ii) At what rate can we communicate reliably over a noisy channel; i.e.,
how much redundancy must be incorporated into a message to protect against
errors?

Both questions concern redundancy – how unexpected is every letter of
the message, on the average. Entropy quantifies redundancy. We have seen
that a communication channel transmitting independent symbols on average
transmits one unit of the information (58) per symbol. Receiving letter (box)
number i through a binary channel (transmitting ones and zeros)12 brings
information log2(1/pi) = log2M − log2mi bits. Indeed, the remaining choice
(missing information) is between mi compartments. In other words, we may
say that the information measures the degree of surprise: less frequent events
are more surprising. The entropy −∑z

i=a pi log2 pi is the mean information
content per letter. Less probable symbols bring larger information content,
but they happen more rarely.

So the entropy is the mean rate of the information transfer, since it is
the mean growth rate of the number of typical sequences. What about the
maximal rate of the information transfer? Following Shannon, we answer
the question i) statistically, which makes sense in the limit of very long
messages, when one can focus on typical sequences, as we did in the previous
section in deriving (57,59). Consider for simplicity a message of N bits,

12Binary code is natural both for signals (present-absent) and for logic (true-false).
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where 0 comes with probability 1− p and 1 with probability p. To compress
the message to a shorter string of letters that conveys essentially the same
information it suffices to choose a code that treats effectively the typical
strings — those that contain N(1 − p) zeroes and Np ones. The number of
such strings is given by the binomial CN

Np which for large N is 2NS(p), where
S(p) = −p log2 p − (1 − p) log2(1 − p). The strings differ by the order of
appearance of 0 and 1. To distinguish between these 2NS(p) messages, we
encode any one using a binary string with lengths starting from one and
ending at NS(p) bits. For example, we encode by two one-bit words the two
messages where all Np ones are together either at the beginning (followed by
all N(1−p) zeroes) or at the end (preceded by all the zeroes). Then we encode
by the four two-bit words the messages with one hole, etc. The maximal word
length NS(p) is less than N , since 0 ≤ S(p) ≤ 1 for 0 ≤ p ≤ 1. In other
words, to encode all 2N sequences we need words of N bits, but to encode all
typical sequences, we need only words up to NS(p) bits. We indeed achieve
compression with the sole exception of the case of equal probability where
S(1/2) = 1. True, the code must include a bit more of longer codewords
to represent atypical messages. We then use longer and longer codewords
for less and less probable sequences. In the limit of large N the chance of
their appearance and their contribution to the rate of transmission is getting
negligible. Therefore, entropy sets both the mean and the maximal rate in
the limit of long sequences. It gives the transfer rate of information when all
the redundancy have been squeezed out.

The notion of typical messages in the limit N → ∞ is an information-
theory analog of ensemble equivalence in the thermodynamic limit. You may
find it bizarre that one uses randomness in treating information communi-
cations, where one usually transfers non-random meaningful messages. One
of the reasons is that encoding program does not bother to ”understand”
the message, and treats it as random. Draining the words of meaning is
necessary for devising universal communication systems.

Maximal rate of transmission correspond to the shortest mean length of
the codeword. If we encode n objects by an alphabet with q symbols, the
mean codeword cannot be shorter than log n/ log q = logqn. For example, to
encode n = 4 bases of the genetic code by bits (q = 2) we need at least two-
letter words. If we know that the source has the probability distribution p(i),
i = 1, . . . , n, then we can use this information to shorten the mean codeword
thus increasing the rate. Indeed, the entropy is now lower. Shannon proved
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that the shortest mean length of the codeword ` is bounded by

−
∑
i

p(i) logq p(i) ≤ ` < −
∑
i

p(i) logq p(i) + 1 . (64)

Of course, not any encoding guarantees the shortest mean codeword and
the maximal rate of transmission. Designating sequences of the same length
to objects with different probabilities is apparently sub-optimal. Inequality
(62) quantifies that. To make the mean word length shorter and achieve
signal compression in the limit of long messages, one codes frequent objects by
short sequences and infrequent ones by more lengthy combinations - lossless
compressions like zip, gz and gif work this way. Consider a fictional creature
whose DNA contains four bases A,T,C,G occurring with probabilities pi listed
in the table:

Symbol pi Code 1 Code 2
A 1/2 00 0
T 1/4 01 10
C 1/8 10 110
G 1/8 11 111

We want a binary encoding for the four bases. As mentioned above, there
are exactly four two-bit words, so that one can suggest the Code 1, which
has exactly 4 words and uses 2 bits for every base. Here the word length is
2. However, it is straightforward to see that the entropy of the distribution
S = −∑4

i=1 pi log2 pi = 7/4 is lower that 2. One then may suggest a variable-
length Code 2. It is built in the following way. We start from the least
probable C and G, which we want to have the longest codewords of the same
length differing by one (last) binary digit that distinguishes between the two
of them. We then can combine C and G into a single source symbol with the
probability 1/4, that is coinciding with the probability of T. To distinguish
from C,G, we code T by two-bit word placing 0 in the second position. The
combined C,G is now encoded 11, while T is encoded 10. We then can code
A by one-bit word 0 to distinguish it from the combined T,C,G.

It is straightforward now to see that the Code 2 uses less bits per base on
average, namely that its mean length of the codeword is exactly equal to the
entropy: (1/2) ·1+(1/4) ·2+(1/4) ·3 = 7/4. It is an example of the so-called
Huffman code, which draws binary tree starting from its leaves: First, ascribe
to the two least probable symbols two longest codewords differing in the last
digit. Second, combine these two symbols into a single one and repeat. The
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procedure ends after n− 1 steps where n is the size of the original alphabet.
One may think that the variable-length code always requires an extra symbol
(space or comma) to distinguish codewords in a continuous stream of 0 and
1. Actually, codes do not require a separating symbol, if they are prefix-free,
that is no codeword can be mistaken for the beginning of another one. Such
are, in particular, Huffman codes.

The most efficient code has the length of the mean codeword (the number
of bits per base) equal to the entropy of the distribution, which determines the
fastest mean transmission rate, that is the shortest mean codeword length.

To make yourself comfortable with the information brought by fractions
of a bit, think about the decrease of uncertainty. One bit halves the uncer-
tainty. For example, for a uniform distribution, receiving one bit shrinks its
interval by the factor 2−1. receiving H bits shrinks the uncertainty interval
to 2−H fraction of its original length. Receiving half-bit shrinks the interval
of possible values by the factor 2−1/2 ≈ 0.7.

The inequality (60) tells us, in particular, that using an alphabet is not
optimal for the speech transmission rate as long as the probabilities of the
letters are different. For example, if we use 26 letters, space and 5 punctua-
tion marks (,.!?-), we need 5-bit words to encode these 32 symbols (actually
used for teletype machines) We can use less symbols but variable codeword
length to make the average codeword shorter than 5. Morse code uses just
three symbols (dot, dash and space) to encode any language13. In English,
the probability of ”E” is 13% and of ”Q” is 0.1%, so Morse encodes ”E” by
a single dot and ”Q” by ”− − ·−”. One-letter probabilities give for the
written English language the information per symbol as follows:

−
z∑
i=a

pi log2 pi ≈ 4.11 bits ,

which is lower than log2 26 = 4.7 bits.

3.3 Correlations in the signals

The first British telegraph managed to do without C,J,Q,U,X, which tells us
that some letters can be guessed from their neighbors, and more generally

13Great contributions of Morse were one-wire system and the simplest possible encoding
(opening and closing the circuit), far more superior to multiple wires and magnetic needles
of Ampere, Weber, Gauss and many others.
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that there is a correlation between letters. Apart from one-letter probabili-
ties, one can utilize more knowledge about the language by accounting for
two-letter correlation (say, that ”Q” is almost always followed by ”U”, ”H”
often follows ”T”, etc). That will further lower the entropy. A simple uni-
versal model with neighboring correlations is a Markov chain. It is specified
by the conditional probability p(j|i) that the letter i is followed by j. For ex-
ample p(U |Q) = 1. The probability is normalized for every i:

∑
j p(j|i) = 1.

The matrix pij = p(j|i), whose elements are positive and in every column
sum to unity, is called stochastic. Do the vector of probabilities p(i) and
the transition matrix pij bring independent information? The answer is no,
because the matrix pij and the vector pi are not independent, but are related
by the condition of stationarity: p(i) =

∑
p(j)pji, that is p = {p(a), . . . p(z)}

is an eigenvector with the unit eigenvalue of the matrix pij.
The probability of any N -string is then the product of N − 1 transition

probabilities times the probability of the initial letter. As in (59), minus
the logarithm of the probability of a long N -string is a sum of uncorrelated
numbers:

log2 p(i1, . . . , iN) = log2 p(i1) +
N∑
k=2

log2 p(ik+1|ik) . (65)

At large N the sum grows linearly with N with the rate, which is the mean
value of the logarithm of conditional probability, −∑j p(j|i) log2 p(j|i) = Si,
called the conditional entropy Si. Therefore, the number of typical sequences
starting from i grows with N exponentially, as 2NSi . To get the mean rate of
growth for all sequences, it must be averaged over different i with their pro-
babilities p(i). That way we express the language entropy via p(i) and p(j|i)
by averaging over i the entropy of the transition probability distribution:

S = −
∑
i

pi
∑
j

p(j|i) log2 p(j|i) . (66)

That formula defines the information rate of the Markov source. We shall
further discuss Markov chains describing Google PageRank algorithm in
Section 5.4 below.

One can go beyond two-letter correlations and statistically calculate the
entropy of the next letter when the previous N − 1 letters are known (Shan-
non 1950). As N increases, the entropy approaches the limit which can be
called the entropy of the language. Long-range correlations and the fact that
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we cannot make up words further lower the entropy of English down to ap-
proximately 1.4 bits per letter, if no other information given. Comparing
1.4 and 4.7, we conclude that the letters in an English text are about 70%
redundant. About the same value one finds asking people to guess the letters
in a text one by one, which they do correctly 70% of the time. This redun-
dancy makes possible data compression, error correction and crosswords. It
is illustrated by the famous New York City subway poster of the 1970s:

”If u cn rd ths u cn gt a gd jb w hi pa!”

Triple redundancy of the alphabet encoding apparently serves the goal
of protecting the message against errors of transmission. It could be that it
also corresponds to the deeper need of our brain to obtain reinforcing of the
prior guess14 - ”what I tell you three times is true”.

So what is so special about alphabet? Redundant encodings are many. Note
first that the human language encodes meaning not in separate letters but in words.
An insight into the way we communicate is given by the frequency distribution of
words and their meanings (Zipf 1949). It was found empirically that if one ranks
words by the frequency of their appearance in texts, then the frequency decreases
as an inverse rank. For example, the first place with 7% takes ”the”, followed by
”of” with 3.5%, ”and” with 1.7%, etc.

The oldest system of writing were logographic systems where every word or
morpheme requires a separate symbol - logogram. Several independent such sys-
tems were developed: Egyptian hieroglyphics, cuneiform, Chinese characters, etc.
Scribes and readers then learned thousands of symbols, which necessarily were re-
stricted to a small part of society. The great democratizing invention of alphabetic
writing, which dramatically improved handling of information (and irreversibly
changed the ways we speak, hear and remember), was done only once in history.
All known alphabets derive from that seminal (Semitic) script. The idea was to
make writing not only conveying the meaning but also reproducing (extremely
poorly!) the way the speech sounds. Of course, all known logographies have some
phonetic component, generally based on the rebus principle (Putin=put+in). Al-
phabet makes a complete transition using phonograms instead of logograms. The
way we hear is related to the notion of phonemes. Linguists define the phoneme
as the smallest acoustic unit that makes a difference in meaning. Their numbers
in different languages are subject to disagreements but generally are in tens. For
example, most estimates for English give 45, that is comparable with the number
of letters in the alphabet. Another interesting question is how we recognize words
in a speech, which is essentially a running stream of sound, — apparently rhythm

14See Section 4.5 below.
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plays the leading role.
How redundant is the genetic code? There are four bases, which must encode

twenty amino acids. There are 42 two-letter words, which is not enough. The
designer then must use a triplet code with 43 = 64 words, so that the redun-
dancy factor is again about 3. Number of ways to encode a given amino acid is
approximately proportional to its frequency of appearance.

What are the error rates in the transmission of the genetic code? Typical
energy cost of a mismatched DNA base pair is that of a hydrogen bond, which
is about ten times the room temperature. If the DNA molecule was in thermal
equilibrium with the environment, thermal noise would cause error probability
e−10 ' 10−4 per base. This is deadly. A typical protein has about 300 amino
acids, that is encoded by about 1000 bases; we cannot have mutations in every
tenth protein. Moreover, synthesis of RNA from DNA template and of proteins
on the ribosome involve comparable energies and could cause comparable errors.
That means that Nature operates a highly non-equilibrium state, so that bonding
involves extra irreversible steps and burning more energy. This way of sorting
molecules is called kinetic proofreading (Hopfield 1974, Ninio 1975) and is very
much similar to the Maxwell demon discussed below in Section 4.2.

Another example of redundancy for error-protection is the NATO phonetic
alphabet used by the military and pilots. To communicate through a noisy acoustic
channel, letters are encoded by full words: A is Alpha, B is Bravo, C is Charlie,
etc.

How best to encode numbers? Using a separate symbol for every number stop

making sense when number N is getting large. Simple way is to use one symbol

and repeat it N times. It is immediately clear that one can encode better by

dividing into groups, so that the number N can be encoded by logN symbols,

which is much more efficient. But one particular way of organizing numbers was

another discovery of historical importance — a positional numeral system. Apart

from logN economy, there is another profound consequence of encoding where the

value depends on the position: it already implies algebraic operations. Indeed,

reading (decoding) requires multiplying and adding: 2021 = 2× 1000 + 2× 10 + 1.

It then allowed simple automatic rules for computations (formulated by Persian

al-Khwarizmi, from whose name the word algorithm appeared). Algebra, alcohol,

etc, also have Arabic origin

To conclude this subsection, recall that knowing the probability distribu-
tion one can compute entropy, which determines the most efficient rate of
encoding. One can turn tables and estimate the entropy of the data stream
looking for its most compact lossless encoding. It can be done in a one-pass
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(online) way, that is not looking at the whole string of data, but optimizing
encoding as one process the string from beginning to end. There are several
such algorithms called adaptive codes (Lempel-Ziv, deep neural networks,
etc). These codes are also called universal, since they do not require a priori
knowledge of the distribution.

3.4 Mutual information as a universal tool

Answering the question i) in Sect. 3.2, we have found that the entropy of
the set of symbols to be transferred determines the minimum mean number
of bits per symbol, that is the maximal rate of information transfer. In this
section, we turn to the question ii) and find out how this rate is lowered if
the transmission channel can make errors, so that one cannot unambiguously
restore the input B from the output A. How much information then is lost
on the way? In this context one can treat measurements A as messages
about the value of the quantity B we measure. One can also view storing
and retrieving information as sending a message through time rather than
space. We can include into the same scheme forecast and observation, asking
how much information about the experimental data B is contained in the
theoretical predictions A.

B A

noisy channel

When the channel is noisy, the statistics of inputs P (B) and outcomes
P (A) are generally different, that is we need to deal with two probability
distributions and the relation between them. Treating inputs and outputs as
taken out of distributions works for channels/measurements both with and
without noise; in the limiting cases, the distribution can be uniform or peaked
at a single value. Relating two distributions needs conditional probabilities,
which we already introduced in Section 3.3. It will lead us to relative entropy
and mutual information, which presently are the most powerful and universal
tools of information theory.

The relation between the message (measurement) Ai and the event (quan-
tity) Bj is characterized by the conditional probability (of Bj in the presence
ofAi), denoted P (Bj|Ai). For everyAi, this is a normalized probability distri-
bution, and one can define its entropy S(B|Ai) = −∑j P (Bj|Ai) log2 P (Bj|Ai).
Since we are interested in the mean quality of transmission, we average this
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entropy over all values of Aj, which defines the so-called conditional entropy:

S(B|A) =
∑
i

P (Ai)S(B|Ai) = −
∑
ij

P (Ai)P (Bj|Ai) log2 P (Bj|Ai) . (67)

We already encountered it in (66) considering correlations between subse-
quent terms in the sequence. In this subsection we use conditional probability
between input and output.

How much information about B brings the knowledge of A? The con-
ditional entropy measures what on average remains unknown about B after
the value of A is known. The missing information was S(B) before the me-
asurement and is equal to the conditional entropy S(B|A) after it. Then
what the measurements bring on average is their difference called the mutual
information:

I(A,B) = S(B)− S(B|A) =
∑
ij

P (Ai, Bj) log2

[
P (Bj|Ai)
P (Bj)

]
. (68)

Indeed, information is a decrease in uncertainty, so that the mutual infor-
mation is non-negative. That means that measurements on average lower
uncertainty by increasing the conditional probability relative to unconditio-
nal:

〈log2[P (Bj|Ai)/P (Bj)]〉 ≥ 0 .

For example, let B be a choice out of n equal possibilities: P (B) = 1/n and
S(B) = log2 n. If for every Ai we can have m different values of B, that is
P (B|A) = 1/m, then S(B|A) = log2m and I(A,B) = S(B) − S(B|A) =
log2(n/m) bits. It is non-negative, since evidently m ≤ n. Note that in
this case, knowledge of B fixes A, so that S(A|B) = 0 and I(A,B) = S(A).
When there is one-to-one correspondence, m = 1, and A tells us all we need
to know about B.

Probabilities are multiplied and entropies added for independent events.
For correlated events, one uses conditional probabilities and entropies in what
is called the chain rule:

P (Ai, Bj) = P (Bj|Ai)P (Ai) , (69)

S(A,B)=S(A)+S(B|A)=S(B)+S(A|B) .
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It gives I(A,B) in a symmetric form:

I(A,B) =
∑
ij P (Ai, Bj) log2

[
P (Ai,Bj)

P (Ai)P (Bj)

]
= S(B)−S(B|A)=S(A)+S(B)−S(A,B) = S(A)− S(A|B) . (70)

To illustrate the symmetry, consider the case dual to the abovem−n example:
Let A be a choice out of k equal possibilities and for every equally probable
input Bi we can have l different equally probable values of A. In this case,
P (A|B) = 1/l and S(A|B) = log2 l, so that I(A,B) = S(A) − S(A|B) =
log2(k/l) = S(B) bits, exactly like in the m− n case.

To avoid confusion, let us state the obvious: there is no symmetry bet-
ween A and B. They could be of very different nature - one is the position of
an atom, another is the reading of the device, for instance. Neither their en-
tropies, S(A) and S(B), nor the conditional entropies, S(B|A) and S(A|B),
are generally equal or even comparable. Yet the degree of their correlation
I(A,B) is a symmetric function.

It is important to stress that measuring A decreases the entropy of B
only on average over all values Ai: S(B|A) ≤ S(B). That follows from
P (Bj) =

∑
i P (Bj|Ai)P (Ai) and the convexity of the logarithm. Yet for any

particular Ai the entropy S(B|Ai) can be either smaller or larger than S(B),
depending on how this measurement changes the probability distribution
(see the problem Conditional Entropy of Criminality). Note that P (Ai, Bj)
could be either larger or smaller than P (Ai)P (Bj) when the pair Ai, Bj are
respectively correlated or anti-correlated. Yet on average, the non-negativity
of the mutual information gives the so-called sub-additivity of entropy:

S(A) + S(B) > S(A,B) . (71)

When A and B are independent, the joint entropy is a sum, and the in-
formation is zero. When A,B are related deterministically, S(A) = S(B) =
S(A,B) = I(A,B), where S(A) = −∑i P (Ai) log2 P (Ai), etc. And finally,
since P (A|A) = 1 then the mutual information of a random variable with it-
self is the entropy: I(A,A) = S(A). So one can call entropy self-information.
Another evident remark is that I(A,B) exceeds neither S(A) nor S(B). In-
deed, A cannot contain more information about B than about itself or than
the information B contains about itself.

We have seen in the previous section that the mutual information between let-

ters lowered the entropy of the language from the one-letter entropy, −
∑
i p(i) log p(i).
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That lowering is brought by the knowledge of the conditional probabilities p(j|i),
p(j|i, k . . .), which is more than knowledge of p(i).

3.5 Channel capacity

If the mutual information is what on average brings an imperfect channel,
how reliable it is? It is tempting to assume that the mutual information
plays for noisy channels the same role the entropy plays for ideal channels, in
particularly, sets the maximal rate of reliable communication in the limit of
long messages, thus answering the question ii) from the Section 3.2 Indeed,
if there are different outputs for the same input, like in the above simple
k − l example, the rate of information transfer is lower than for a one-to-
one correspondence, since we need to divide our k outputs into groups of
l, distinguishing only between the groups. More formally, for each typical
N -sequence of independently chosen B-s, we have [P (A|B)]−N = 2NS(A|B)

possible output sequences, all of them equally likely. To get the rate of
the useful information about distinguishing the inputs, we need to divide the
total number of typical outputs 2NS(A) into sets of size 2NS(A|B) corresponding
to different inputs. Therefore, we can distinguish at most 2NS(A)/2NS(A|B) =
2NI(A,B) sequences of the length N , which sets I(A,B) as the maximal rate
of information transfer.

However, that was a rather trivial case when inputs can be distinguished
from outputs without errors. But what if a single output can correspond
to different inputs like in the above m − n example. There is no way now
to determine every input exactly. Can we still use this imperfect channel
to convey information in a way where errors can be made arbitrarily small?
That depends on the statistics of inputs. Let us characterize the channel
itself, maximizing I(A,B) over all choices of the source statistics P (B). That
quantity is called the Shannon’s channel capacity, which quantifies the quality
of communication systems in bits per symbol:

C = max
P (B)

I(A,B) .
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To put it simply, the channel capacity is the log of the maximal number
of distinguishable inputs. For example, if our channel transmits the binary
input exactly (zero to zero, one to one), then the capacity is 1 bit, which is
achieved by choosing P (B = 0) = P (B = 1) = 1/2, see the left panel in the
Figure. Let us stress that if P (0) 6= P (1), then the average rate is less than
the capacity (one bit per symbol) despite the channel being perfect. Even if
the channel has many outputs for every input out of n, the capacity is still
log2 n, if those outputs are non-overlapping for different inputs, so that the
input can be determined without an error and P (B|A) = 1. Such case is
presented in the middle panel in the Figure. In this case, the transfer rate is
determined by the number of B-states; from the perspective of A-states, the
rate is S(A)− S(A|B) = 2− 1 = 1.

Like the mutual information, the capacity deviated down from S(B) when
the same outputs appear for different inputs, say, different groups of m inputs
each gives the same output, so that P (B|A) = 1/m. In this case, one cannot
achieve error-free transition for uniform P (B), one need to choose only one
input symbol from each of n/m groups, that is using P (B) = m/n for the
symbols chosen and P (B) = 0 for the rest; the capacity is then indeed
C = log2(n/m) bits (in the right panel of the Figure n = 6, m = 2). Lowered
capacity means increased redundancy, that is a need to send more symbols
to convey the same information. As mentioned, shorter alphabet requires
longer messages.

Let us treat at last the most generic case with random errors, when one
cannot separate inputs/outputs into completely disjoint groups. Here, one
may argue that taking the limit of large N does not help since the channel
continues to make errors all the time. And yet Shannon have shown (in the
co-called noisy channel theorem) that one can keep a finite transmission rate
and yet make the probability of error arbitrary small at the limit N → ∞.
The idea is that to correct errors one needs to send extra bits, so to get
the rate we need to compute how many bits are devoted to error correction
and how many to transferring the information itself. Shannon have shown
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that it is possible to make probability of error arbitrarily small when sending
information with a finite rate R, if there is any correlation between output
A and input B, that is C > 0. Then the probability of an error can be made
2−N(C−R), that is asymptotically small in the limit of N → ∞, if the rate is
lower than the channel capacity. This (arguably the most important) result
of the communication theory is rather counter-intuitive: if the channel makes
errors all the time, how one can decrease the error probability treating long
messages? Shannon’s argument is based on typical sequences and average
equipartition, that is on the law of large numbers (by now familiar to you).

For example, if in a binary channel the probability of every single bit
going wrong is q, then A is binary random variable with equal probabilities
of 0 and 1, so that S(A) = log2 2 = 1. Conditional probabilities are P (1|0) =
P (0|1) = q and P (1|1) = P (0|0) = 1 − q, so that S(A|B) = S(B|A) =
S(q) = −q log2 q − (1 − q) log2(1 − q). The mutual information I(A,B) =
S(A)−S(A|B) = 1−S(q). This is actually the maximum, that is the channel
capacity: C = maxP (B)[S(B) − S(B|A)] = 1 − S(q), because the maximal
entropy is unity for a binary variable B and corresponds to P (0) = P (1) =
1/2.

q

C

11/2

1
Capacity of a 
binary channel
with error 
probability q

Let us now see how the rate of transmission is bounded from above by
the capacity. In a message of length N , there are on average qN errors and
there are N !/(qN)!(N − qN)! ≈ 2NS(q) ways to distribute them. We then
need to devote some m bits in the message not to data transmission but to
error correction. Apparently, the number of possibilities provided by these
extra bits, 2m, must exceed 2NS(q), which means that m > NS(q), and the
transmission rate R = (N − m)/N < 1 − S(q). The channel capacity is
zero for q = 1/2 and is equal to 0.988 bits per symbol for q = 10−3. The
probability of errors is binomial with the mean number of errors qN and

the standard deviation σ =
√
Nq(1− q). If we wish to bound the error

probability from above, we must commit to correcting more than the mean
number of errors, making the transmission rate smaller than the capacity.
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The conditional entropy S(B|A) is often independent of the input statis-
tics P (B) like in the above example. Maximal mutual information, that is
capacity, is then achieved for maximal S(B). If no other restrictions imposed,
that corresponds to the uniform distribution P (B).

If the measurement/transmission noise ξ is additive, that is the output is
A = g(B) + ξ with an invertible function g, then S(A|B) = S(ξ) and

I(A,B) = S(A)− S(ξ) . (72)

The more choices of the output are recognizable despite the noise, the more
is the capacity of the channel. When the conditional entropy S(A|B) is
given, then to maximize the mutual information we need to choose the me-
asurement/coding procedure, for instance, g(B) above, that maximizes the
entropy of the output S(A).

Continuous case and Gaussian Channel. In a continuous case, an in-
determinacy is infinite, for instance, for determining the position of a point on
an interval L. If we agree to know the position with an accuracy ε, then the
entropy is S(B) = log2(L/ε). Let us now consider a measurement A of the
point position with a precision ∆. How much information such a measure-
ment brings? The indeterminacy in the point position after the measurement
is S(B|A) = log2(∆/ε), so that the measurement brought the information
independent of ε:

I(A,B) = S(B)− S(B|A) = log
L

∆
. (73)

We see that even though the entropies go to infinity in the continuous limit
ε→ 0, the mutual information stays finite. That property makes the mutual
information and its quantum cousin, entanglement entropy, so important
in physics, since they are insensitive to microscopic details and free from
ultraviolet divergencies.

More generally, we define the entropy of a a continuous distribution ρ(x)
by dividing into ε-intervals and denoting pi = ρ(xi)ε. Such entropy in the
limit ε→ 0 consists of two parts:

−
∑
i

pi log pi → −
∫
dxρ(x) log ρ(x)− log ε . (74)

The second part is an additive constant depending on the resolution. When
interested in the functional form of the distribution, we usually focus on the
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first term, which is called differential entropy S(ρ). For example, the diffe-
rential entropy of the Gaussian distribution P (ξ) = (2πN )−1/2 exp[−ξ2/2N ]
is as follows:

S(ξ) = −
∫ ∞
−∞

P (ξ) log2 P (ξ) =
1

2
log2 2πeN .

Consider a linear noisy channel: A = B + ξ, such that the noise is inde-
pendent of B and Gaussian with 〈ξ〉 = 0 and 〈ξ2〉 = N . Then P (A|B) =
(2πN )−1/2 exp[−(A − B)2/2N ]. If in addition we have a Gaussian input
signal with P (B) = (2πS)−1/2 exp(−B2/2S), then

P (A) =
∫
dBdξP (B)P (ξ)δ(A−B−ξ) = [2π(N+S)]−1/2 exp[−A2/2(N+S)] .

Now, using the chain rule, we can write

P (B|A) = P (A|B)P (B)/P (A) =

√
N + S

2N
exp

[
−S +N

2N

(
B − A

S +N

)2
]
.

In particular, the estimate of B is linearly related to the measurement A:

B̄(A) =
∫
BP (B|A) dB =

AS
S +N

= A
SNR

1 + SNR
, (75)

where signal to noise ratio is SNR = S/N . The rule (75) makes sense:
To ”decode” the output of a linear detector we use the unity factor at high
SNR, while at low SNR we scale down the output since most of what we are
seeing must be noise. As is clear from this example, linear relation between
the measurement and the best estimate requires two things: linearity of the
input-output relation and Gaussianity of the statistics. Let us now find the
mutual information (72):

I(A,B)=S(A)−S(A|B)=S(A)−S(B+ξ|B)=S(A)−S(ξ|B)=S(A)−S(ξ)

= 1
2

[log2 2πe(S +N )− log2 2πeN ] = 1
2

log2(1 + SNR) . (76)

The capacity of such a channel depends on the input statistics. One incre-
ases capacity by increasing the input signal variance, that is the dynamic
range relative to the noise. For a given input variance, the maximal mutual
information (channel capacity) is achieved by a Gaussian input, because the
Gaussian distribution has maximal entropy for a given variance. Indeed, va-
rying

∫
dxρ(x)(λx2 − ln ρ) with respect to ρ we obtain ρ(x) ∝ exp(−λx2).
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Therefore (76) determines also the capacity of the Gaussian channel in bits

per transmission: C = log2

√
(N + S)/N . That means that receiving a value

A allows to distinguish between 2C values, that is noise effectively makes a
continuous channel discrete. We shall elaborate on that in section 4.6.

Mutual information also sets the limit on the data compression A → C,
if coding has a random element so that its entropy S(C) is nonzero. In this
case, the maximal data compression, that is the minimal coding length in
bits, is min I(A,C).

Possible communication

              schemes

transmission

limit

compression

limit

min I(A,C) max I(A,B)

Take-home lesson: entropy of the symbol set is the ultimate data com-
pression rate; channel capacity is the ultimate transmission rate. Since we
cannot compress below the entropy of the alphabet and cannot transfer faster
than the capacity, then transmission is possible only if the former exceeds
the latter.

3.6 Hypothesis testing and Bayes’ formula

. . . la théorie des probabilités n’est, au fond, que le bon sens réduit au calcul
Laplace

All empirical sciences need a quantitative tool for confronting hypothesis
with data. One (rational) way to do that is statistical: update prior beliefs
in light of the evidence. It is done using conditional probability. Indeed, for
any e and h, we have P (e, h) = P (e|h)P (h) = P (h|e)P (e). If we now call h
hypothesis and e evidence, we obtain the rule for updating the probability
of hypothesis to be true:

P (h|e) = P (h)
P (e|h)

P (e)
. (77)

This form of the chain rule is so important that it has been named after Bayes,
who first introduced it (in 1763). That common-sense statement specifies how
to update the probability that the hypothesis h is correct after we receive the
data e: the new (posterior) probability P (h|e) is the prior probability P (h)
times the quotient P (e|h)/P (e) which presents the support e provides for h.
Without exaggeration, one can say that most errors made by data analysis
in science and most conspiracy theories are connected to neglect or abuse
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of this simple formula. For example, your hypothesis is the existence of a
massive international conspiracy to increase the power of governments and
the evidence is COVID pandemic. In this case P (e|h) is high: a pandemic
provoking increase of the state power is highly likely given such a conspiracy
exists. This is presumably why some people stop thinking here and accept the
hypothesis. They thus commit the error called inversion of the conditional,
since we need to evaluate not P (e|h), but P (h|e). Even when the former
is not small, the latter could be. Indeed, absent such an event, the prior
probability P (h) could be vanishingly small. To overcome that smallness by
a large quotient support factor we need to evaluate total P (e), that is the
probability that pandemic happens with or without conspiracy.

If we choose between two mutually exclusive hypotheses, h1 and h2, then
the total probability of the evidence consists of two terms: P (e) = P (e, h1)+
P (e, h2) = P (h1)P (e|h1) + P (h2)P (e|h2). Then the posterior probability of
the hypothesis being true is as follows:

P (h1|e) = P (h1)
P (e|h1)

P (e)
= P (h1)

P (e|h1)

P (h1)P (e|h1) + P (h2)P (e|h2)
. (78)

For example, checking a priori improbable hypothesis, P (h1) � P (h2), it
is better to design experiment or look for the data which could minimizes
P (e|h2) rather than maximizes P (e|h1), that is rule out alternative rather
than supports the hypothesis. This is why even good tests, with P (e|h1)
close to unity and P (e|h2) small, are not very reliable at the beginning of a
pandemic, when P (h1) is small. The same is true for drug test in a mostly
drug-free population. Suppose that a drug test is 99% sensitive and 99%
specific. That is, the test will produce 99% true positive results for drug users
(hypothesis h1) and 99% true negative results for clean people (hypothesis
h2). If we denote e the positive test result, then P (e|h1) = 0.99 and P (e|h2) =
1−0.99 = 0.01. Suppose that 0.5% of people are drug users, that is P (h1) =
0.005. The probability that a randomly selected individual with a positive
test is a drug user is 0.005 · 0.99/(0.99 · 0.005 + 0.01 · 0.995) ≈ 0.332 that is
less that half. The result is more sensitive to specificity approaching unity,
when P (e|h2)→ 0, than to sensitivity.

The choice between two (not necessarily exclusive) hypotheses is deter-
mined by the ratio of their probabilities conditioned on the data:

P (h1|e)
P (h2|e)

=
P (h1)

P (h2)

P (e|h1)

P (e|h2)
. (79)
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Both factors here quantify Occam’s razor, which is preference for simpler
hypothesis. The second factor is applied to data and is mostly used by
experimentalists. More complex hypothesis, say h2, is capable of a wider
variety of predictions, so it spreads its probability over the data space more
thinly. If the evidence is compatible with both hypotheses (the data range
is around their probability maxima as in the Figure), simpler hypothesis
generally assigns more probability to the evidence.

e

P(e|h )1

P(e|h )2

P

data

In distinction from experimentalists, theoretical physicists apply Occam’s
razor to the first factor in (79) choosing prior beliefs on aesthetic grounds of
mathematical beauty and simplicity.

Alternatively, one can always interpret higher probability as lower in-
formation brought by the choice. That interpretation of (79) is sometimes
called minimum description length: one should prefer the hypothesis that
communicates the data in the smaller number of bits. There are two sub-
sequent messages communicated: first we choose the model and then com-
municate the data within this model. The length of the message is then
− log2 P (h) − log2 P (e|h) = − log2 P (e, h). This way we say that the choice
of a simpler model is communicated in less bits and such model also commu-
nicates data prediction in less bits since more narrow distribution has lower
entropy. Technically, P (e|h) is also evaluated in a two-step process, so the
respective message has two parts: first we specify the choice parameters, then
communicate the data in these terms. Increasing the number of parameters
we are able to fit the data better which shortens the error list in the data
message; optimization of the respective trade-off is briefly described at the
end of Section 4.7.

Note a shift in the interpretation of probability brought by (77-79). Tradi-
tional sampling approach by mathematicians and gamblers treats probability
as the frequency of outcomes in repeating trials. Bayesian approach defines
probability as a degree of belief; that definition allows wider applications,
particularly when we cannot have repeating identical trials, nor an ensemble
of identical objects. For example, we have only one planet Earth and cannot
yet restart it from the same or different initial conditions. Therefore, any es-
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timate of the statistical significance of, say, global warming prediction must
be based on the Bayesian approach. The approach may seem unscientific
since it is dependent on the prior beliefs, which can be subjective. However,
repeatedly subjecting our hypothesis to variable enough testing, we hope that
the resulting flow in the space of probabilities will eventually come close to a
fixed point independent of the starting position. Normally, only sequence of
data with a clear trend of increasing probability may lead us to accept the
hypothesis.

Making prior assumptions explicit is important, both computationally
and conceptually. There are neither inference nor prediction without as-
sumptions, however uncomfortable some may feel about that. For example,
given 5, 8, . . . as two numbers of the sequence, one may put forward two
hypotheses: h1 predicts an arithmetic sequence 5, 8, 11, . . ., h2 - the Fibo-
nacci sequence 5, 8, 13, . . ., where any number is the sum of two preceding
ones. If the next number comes through the noisy channel as 12 ± 1, then
P (e|h1) = P (e|h2) and the choice in (79) is due to priors. Engineers and
accountants would argue that arithmetic sequences are more frequently en-
countered, while natural scientists would point to pine cones, floral petals
and seed heads to argue for Fibonacci.

Observing our own mental processes gives us both the idea of logic and of

statistical inference. A Bayesian approach is used in brain research on multiple

levels, from interpretation of neural spikes and functional brain imaging to mo-

deling sensory processing and belief propagation. One such approach is described

in Section 4.5.
One also uses the Bayes’ formula for design. For example, experimentalists

measure the sensory response A of an animal to the stimulus B, which gives
P (A|B)/P (A) or build a robot with the prescribed response. Then they go to
the natural habitat of that animal/robot and measure the distribution of stimulus
P (B) (see the example at the beginning of Section 4.4). After that one obtains
the conditional probability

P (B|A) = P (B)
P (A|B)

P (A)
, (80)

that allows animal/robot to perceive the environment and function effectively in

that habitat.
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3.7 Relative Entropy

The mutual information I(A,B) measures the degree of correlation, which
is essentially the difference between the true joint distribution P (A,B) and
the product distribution P (A)P (B) of two independent quantities. As such,
it is a particular case of a more general measure of difference between dis-
tributions. Let us ask the following question: How fast the sequence of data
can invalidate an incorrect hypothesis? If the true distribution is p but our
hypothetical distribution is q, what number N of trials is sufficient to decre-
ase the probability P (h|e) by somee a priori set factor? For that we need to
estimate how fast decreases with N the factor P = P (e|h)/P (e), that is to
compute the probability of the stream of data observed given the distribu-
tion q. The result i is observed piN times. We judge the probability of that
happening as qpiNi times the number of sequences with those frequencies:

P =
∏
i

qpiNi
N !∏

j(pjN)!
. (81)

This is how fast decays with N the probability of our hypothetical distribu-
tion being true given the set of data. Considering the limit of large N we
obtain a large-deviation-type relation like (191):

P ∝ exp

[
−N

∑
i

pi ln(pi/qi)

]
. (82)

The probability of not-exactly-correct hypothesis to approximate the data
exponentially decreases with the number of trials. The rate of that decrease
is the relative entropy (also called Kullback-Liebler divergence):

D(p|q) =
∑

i
pi ln(pi/qi) = 〈ln(p/q)〉 . (83)

The relative entropy determines how many trials we need: we prove our
hypothesis wrong when ND(p|q) becomes large. The closer is our hypothesis
to the true distribution, the larger is the number of trials needed. On the
other hand, when ND(p|q) is not large, our hypothetical distribution is just
fine.

The relative entropy measures how different is the hypothetical distribu-
tion q from the true distribution p. Note that D(p|q) is not the difference
between entropies (which just measures difference in uncertainties). The re-
lative entropy is not a true geometrical distance since it does not satisfy
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the triangle inequality and is asymmetric, D(p|q) 6= D(q|p). Indeed, there
is no symmetry between reality and our version of it (no matter how some
philosophers want us to believe). Yet D(p|q) has important properties of a
distance. Most important is nonnegativity, which can be shown using the
simple inequality lnx ≤ x− 1 (which turns into equality only for x = 1):

−D(p|q) =
∑

i
pi ln(qi/pi) ≤

∑
i
(qi − pi) = 0 .

The relative entropy turns into zero only when distributions coincide, that is
pi = qi for all i.

In particular, relative entropy quantifies how close to reality is the asymp-
totic equipartition estimate (59) of the probability of a given sequence. As-
sume that we have an N -sequence where the values/letters appear with
the frequencies qk, where k = 1, . . . , K. Then the asymptotic equipar-
tition (the law of large numbers) advices us that the probability of that
sequence is

∏
k q

Nqk
k = exp(N

∑
k qk ln qk) = exp[−NS(q)]. But the fre-

quencies we observe in a finite sequence are generally somewhat different
from the true probabilities of the {pk}. Then the positivity of the re-
lative entropy guarantees that the asymptotic equipartition underestima-
tes the probability of the sequence, the true probability is actually hig-
her:

∏
k p

Nqk
k = exp(N

∑
k qk ln pk) = exp[N

∑
k(qk ln qk + qk ln(pk/qk))] =

exp{−N [S(q)−D(q|p)]}.
How many different probability distributions {qk} (called types in infor-

mation theory) exist for an N -sequence made out of an alphabet with K
symbols? The distribution {qk} is a K-vector. Since qk can take any of
N + 1 values 0, 1/N, . . . , 1, then the number of possible K-vectors is at most
(N + 1)K , which grows with N only polynomially, where the alphabet size
K sets the power. The number of sequences grows exponentially with N , so
that there is an exponential number of possible sequences for each type. The
probability to observe a given type (empirical distribution) is determined by
the relative entropy P{qk} ∝ exp[−ND(q|p)].

Mutual information is that particular case of the relative entropy when
we compare the true joint probability p(xi, yj) with the distribution made
out of their separate measurements q(xi, yj) = p(xi)p(yj), where p(xi) =∑
j p(xi, yj) and p(yj) =

∑
i p(xi, yj): D(p|q) = S(X) + S(Y ) − S(X, Y ) =

I(X, Y ) ≥ 0. If i in pi runs from 1 to M we can introduce D(p|u) =
log2M − S(p), where u is a uniform distribution. That allows one to show
that both relative entropy and mutual information inherit from entropy con-
vexity properties. You are welcome to prove that D(p|q) is convex with
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respect to both p and q, while I(X, Y ) is a concave function of p(x) for fixed
p(y|x) and a convex function of p(y|x) for fixed p(x). In particular, convexity
is important for making sure that the extremum we are looking for is unique
and lies at the boundary of allowed states.

Relative entropy also measures the price of non-optimal coding. As we dis-

cussed before, a natural way to achieve an optimal coding would be to assign

the length to the codeword according to the probability of the object encoded:

li = − log2 pi. Indeed, the information in bits about the object, log2(1/pi), must

be exactly equal to the length of its binary encoding. For an alphabet with d

letters, li = − logd pi. The more frequent objects are then coded by shorter

words, and the mean length is the entropy. The problem is that li must all be

integers, while − logd pi are generally not. A set of integer li effectively corre-

sponds to another distribution with the probabilities qi = d−li/
∑
i d
−li . Assume

for simplicity that we found encoding with
∑
i d
−li = 1 (unity can be proved to

be an upper bound for the sum). Then li = − logd qi and the mean length is

l̄ =
∑
i pili = −

∑
i pi logd qi = −

∑
i pi(logd pi − logd pi/qi) = S(p) + D(p|q), that

is larger than the optimal value S(p), so that the transmission rate is lower. In

particular, if one takes li = dlogd(1/pi)e, that is the integer part, then one can

show that S(p) ≤ l̄ ≤ S(p) + 1, that is non-optimality is at most one bit.

Monotonicity and irreducible correlations. If we observe less varia-
bles, then the relative entropy is less, property called monotonicity:

D[p(xi, yj)|q(xi, yj)] ≥ D[p(xi)|q(xj)] ,

where as usual p(xi) =
∑
j p(xi, yj) and q(xi) =

∑
j q(xi, yj). When we ob-

serve less variables we need larger N to have the same confidence. In other
words, information does not hurt (but only on average!). For three variables,
one can define q(xi, yj, zk) = p(xi)p(yj, zk), which neglects correlations bet-
ween X and the rest. What happens to D[p(xi, yj, zk)|q(xi, yj, zk)] if we do
not observe Z at all? Integrating Z out turns q into a product. Monotonicity
gives

D[p(xi, yj, zk)|q(xi, yj, zk)] ≥ D[p(xi, yj)|q(xi, yj)] .

But when q is a product, D turns into I and we can use (70):

D[p(xi, yj, zk)|q(xi, yj, zk)] =
〈
p(X, Y, Z) log p(X,Y,Z)

p(X)p(Y,Z)

〉
= S(X) + S(Y, Z)

−S(X, Y, Z) ≥ D[p(xi, yj)|q(xi, yj)] = S(X) + S(Y )− S(X, Y ) ,
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so we obtain S(X, Y ) + S(Y, Z) − S(Y ) − S(X, Y, Z) ≥ 0, which is called
strong sub-additivity. It can be presented as the positivity of the conditional
mutual information

I(X,Z|Y ) = S(X|Y ) + S(Z|Y )− S(X,Z|Y ) = S(X, Y )− S(Y ) + S(Z, Y )

−S(Y )− S(X, Y, Z) + S(Y ) = S(X, Y ) + S(Y, Z)− S(Y )− S(X, Y, Z) .(84)

That allows one to make the next step in disentangling information encoding.
The straightforward generalization of the mutual information for many ob-
jects, I(X1, . . . , Xk) =

∑
S(Xi) − S(X1, . . . , Xk), simply measures the total

correlation. We can introduce a more sophisticated measure of correlations
called the interaction (or multivariate) information, which measures the ir-
reducible information in a set of variables, beyond that which is present in
any subset of those variables. For three variables it measures the difference
between the total correlation and that encoded in all pairs and is defined as
follows (McGill 1954):

II = I(X,Z)− I(X,Z|Y ) = S(X) + S(Y ) + S(Z)− S(X, Y )− S(X,Z)

+S(X, Y, Z)− S(Y, Z) = I(X, Y ) + I(X,Z) + I(Y, Z)− I(X, Y, Z). (85)

Interaction information measures the influence of a third variable on the
amount of information shared between the other two and could be of either
sign. When positive, it indicates that the third variable accounts for some
of the correlation between the other two, that is its knowledge diminishes
the correlation. When negative, it indicates that the knowledge of the third
variable facilitates the correlation between the other two. Alternatively, one
may say that a positive II(X, Y, Z) measures redundance in the information
about the third variable contained in the other two separately, while negative
one measures synergy which is the extra information about Y received by
knowing X and Z together, instead of separately.

For example, a channel with input X, noise Z and output Y corresponds
to I(X,Z) = 0 and I(X,Z|Y ) > 0, that is II(X, Y, Z) < 0. Indeed, once you
know the output, the unknown noise and input are related. Love triangles
can be either redundant or synergetic (information-wise). If Y dates either
X, both X,Z or none, then the dating states of X and Z are correlated.
Knowing one tells us more about another (chooses from more possibilities)
when the state of Y is not known than when it is: I(X,Z) > I(X,Z|Y ).
On the contrary, if Y can date with equal probability one, another, both
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or none, the states of X and Z are uncorrelated, but the knowledge of Y
induces correlation between X,Z: if we know that Y presently dates, then
it is enough to know that X does not to conclude that Z does. Note that
II(X, Y, Z) is symmetric.

Capturing dependencies by using structured groupings can be generalized
for arbitrary number of variables as follows:

In =
∑n
i=1 S(Xi)−

∑
ij S(Xi, Xj) +

∑
ijk S(Xi, Xj, Xk)

−∑ijkl S(Xi, Xj, Xk, Xl) + . . .+ (−1)n+1S(X1, . . . , Xn) . (86)

Entropy, mutual information and interaction information are the first three
members of that hierarchy.

An important property of both relative entropy and all In for n > 1 is
that they are independent of the additive constants in the entropies that is
of the choice of units or bin sizes.

Connections to Statistical Physics. The second law of thermodyna-
mics is getting trivial from the perspective of mutual information. We have
seen in Section 2.1 that even when we follow the evolution with infinite
precision, the full N -particle entropy is conserved, but one particle entropy
grows. Now we see that there is no contradiction here: subsequent colli-
sions impose more and more correlation between particles, so that mutual
information growth compensates that of one-particle entropy. Indeed, the
thermodynamic entropy of the gas is the sum of entropies of different par-
ticles

∑
S(pi, qi). In the thermodynamic limit we neglect inter-particle cor-

relations, which are measured by the generalized (multi-particle) mutual in-
formation

∑
i S(pi, qi)−S(p1 . . . pn, q1, . . . qn) = I(p1, q1; . . . ; pn, qn). Deriving

the Boltzmann kinetic equation (37) in Section 2.1, we replaced two-particle
probability by the product of one-particle probabilities. That gave the H-
theorem, that is the growth of the thermodynamic (uncorrelated) entropy.
Since the Liouville theorem guarantees that the phase volume and the true
entropy S(p1 . . . pn, q1, . . . qn) do not change upon evolution, then the increase
of the uncorrelated part must be compensated by the increase of the mutual
information. In other words, one can replace the usual second law of thermo-
dynamics by the law of conservation of the total entropy (or information): the
increase in the thermodynamic (uncorrelated) entropy is exactly compensa-
ted by the increase in correlations between particles expressed by the mutual
information. The usual second law then results simply from our renunciation
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of all correlation knowledge, and not from any intrinsic behavior of dynami-
cal systems. Particular version of such renunciation has been presented in
Section 2.2: the full N -particle entropy grows because of phase-space mixing
and continuous coarse-graining.

But the mutual information can work in opposite direction too. Imagine
that two systems were at respectively T1 and T2, heat dE1 passed from 2 to
1, and also that the degree of their correlation changed by ∆I. The second
law then generalizes (6) to(

1

T1

− 1

T2

)
dE1 −∆I ≥ 0 . (87)

If correlations were absent before and appeared when the systems were
brought into contact, then ∆I > 0 and we still have heat flowing from hot to
cold, its amount bounded from below: dE1(T2 − T1) ≥ T1T2∆I > 0. Howe-
ver, one can create a situation, where there was initial correlation between
the systems and it was destroyed during the heat exchange, that is ∆I < 0.
In this case, the heat could flow from cold to hot system. An information-
theoretic resource can be spent to perform refrigeration. That will be further
discussed in connection with Maxwell demon in the next Chapter.

Relative entropy allows also to generalize the second law for non-equilibrium
processes. Entropy itself can either increase upon evolution towards thermal
equilibrium or decrease upon evolution towards a non-equilibrium state, as
seen in Section 2.4. However, the relative entropy between the distribution
and the steady-state distribution monotonously decreases with time. Also,
the conditional entropy between values of any quantity taken at different ti-
mes, S(Xt+τ |Xt), grows with τ when the latter exceeds the correlation time.

4 Applications of Information Theory

My brothers are protons, my sisters are neurons
Gogol Bordello ”Supertheory of Supereverything”

This Chapter puts some content into the general notions introduced
above. Choosing out of enormous variety of applications, I tried to balance
the desire to show beautiful original works and the need to touch diverse sub-
jects to let you recognize the same ideas in different contexts. The Chapter
is concerned with practicality no less than with optimality; we often sacrifice
the latter for the former. The simplest and probably the most important
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lesson we learn here is that looking for a conditional entropy maximum is
not restricted to thermal equilibrium, but is a universal approach.

4.1 The whole truth and nothing but the truth

So far, we defined entropy and information via the distribution. In practical
applications, however, the distribution is usually unknown and we need to
guess it from some data. Information theory / statistical physics is a syste-
matic way of guessing, making use of partial information. We assume that
it is given as 〈Rj(x, t)〉 = rj, i.e. as the expectation (mean) values of some
dynamical quantities including normalization, R0 = r0 = 1. How to get the
best guess for the probability distribution ρ(x, t), based on that information?
Before, we used to find thermal equilibrium distribution looking for a condi-
tional entropy maximum. But now we want to treat any distribution; among
the parameters that we measure could be currents, gradients and other signs
of non-equilibrium. Yet the approach is essentially the same. There are in-
finitely many distributions that contain the whole truth (i.e. are compatible
with all the given information). Our distribution must also containnothing
but the truth that is it must maximize the missing information, which is the
entropy S = −〈ln ρ〉. This is to provide for the widest set of possibilities
for future use, compatible with the existing information. Looking for the
extremum of

S +
∑
j

λj〈Rj(x, t)〉 =
∫
ρ(x, t)

{
− ln[ρ(x, t)] +

∑
j

λjRj(x, t)
}
dx ,

we differentiate it with respect to ρ(x, t) and obtain the equation ln[ρ(x, t)] =∑
j λjRj(x, t) which gives the distribution

ρ(x, t) = exp
[∑

j
λjRj(x, t)

]
=

1

Z
exp

[∑
j=1

λjRj(x, t)
]
. (88)

The normalization factor

Z(λi) = e−λ0 =
∫

exp
[∑

j=1
λjRj(x, t)

]
dx ,

can be expressed via the measured quantities by using

∂ lnZ

∂λi
= ri . (89)
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The distribution (88) corresponds to the entropy extremum, but how we
know that it is the maximum? Positivity of relative entropy proves that.
Indeed, consider any other normalized distribution g(x) which satisfies the
constraints:

∫
dx g(x)Rj(x) = rj. Then∫

dx g ln ρ =
∑

j
λirj =

∫
dx ρ ln ρ = −S(ρ)

so that

S(ρ)− S(g) = −
∫
dx(g ln ρ− g ln g) =

∫
dx g ln(g/ρ) = D(g|ρ) ≥ 0 .

Gibbs distribution is (88) with R1 being energy. When it is the kinetic
energy of molecules, we have Maxwell distribution; when it is potential energy
in an external field, we have Boltzmann distribution. For our initial ”candy-
in-the-box” problem (think of an impurity atom in a lattice if you prefer
physics), let us denote the number of the box with the candy j. Different
attempts give different j but on average after many attempts we find, say,
the mean value 〈j〉 = r1. The distribution giving maximal entropy for a
fixed mean is exponential, which in this case is the geometric distribution:
ρ(j) = (1 − p)pj, where p = r1/(1 + r1) (home exercise). Similarly, if we
scatter on the lattice X-ray with wavenumber k and find 〈cos(kj)〉 = 0.3,
then

ρ(j) = Z−1(λ) exp[−λ cos(kj)]

Z(λ) =
n∑
j=1

exp[λ cos(kj)] , 〈cos(kj)〉 = d logZ/dλ = 0.3 .

We can explicitly solve this for k � 1� kn when one can approximate the
sum by the integral so that Z(λ) ≈ nI0(λ) where I0 is the modified Bessel
function. Equation I ′0(λ) = 0.3I0(λ) has an approximate solution λ ≈ 0.63.

Note in passing that the set of equations (89) may be self-contradictory or
insufficient so that the data do not allow to define the distribution or allow
it non-uniquely. For example, consider Ri =

∫
xiρ(x) dx for i = 0, 1, 2, 3.

Then (88) cannot be normalized if λ3 6= 0, but having only three constants
λ0, λ1, λ2 one generally cannot satisfy the four conditions. That means that
we cannot reach the entropy maximum, yet one can prove that we can come
arbitrarily close to the entropy of the Gaussian distribution ln[2πe(r2−r2

1)]1/2.
If, however, the extremum is attainable, then (88) defines the information

still missing after the measurements: S{ri} = −∑j ρ(j) ln ρ(j). It is analo-
gous to thermodynamic entropy as a function of (measurable) macroscopic
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parameters. It is clear that S have a tendency to decrease whenever we add
a constraint by measuring more quantities Ri.

If we know the given information at some time t1 and want to make
guesses about some other time t2 then our information generally gets less
relevant as the distance |t1 − t2| increases. In the particular case of guessing
the distribution in the phase space, the mechanism of loosing information
is due to separation of trajectories described in Sect. 2.1. Indeed, if we
know that at t1 the system was in some region of the phase space, the set
of trajectories started at t1 from this region generally fills larger and larger
regions as |t1 − t2| increases. Therefore, missing information (i.e. entropy)
increases with |t1 − t2|. Note that it works both into the future and into the
past. Information approach allows one to see clearly that there is really no
contradiction between the reversibility of equations of motion and the growth
of entropy.

Yet there is one class of quantities where information does not age. They
are integrals of motion. A situation in which only integrals of motion are
known is called equilibrium. When we leave system alone, all currents dissi-
pate and gradients diffuse. The distribution (88) then takes the equilibrium
form, either canonical (33) if environment temperature is known, or micro-
canonical if only total energy is known.

From the information point of view, the statement that systems approach
thermal equilibrium is equivalent to saying that all information is forgotten
except the integrals of motion. If, however, we possess the information about
averages of quantities that are not integrals of motion and those averages do
not coincide with their equilibrium values then the distribution (88) deviates
from equilibrium. Examples are currents, velocity or temperature gradients
like considered in kinetics.

Traditional way of thinking is operational: if we leave the system alone,
it is in equilibrium; we need to act on it to deviate it from equilibrium.
Informational interpretation lets us to see it in a new light: If we leave the
system alone, our ignorance about it is maximal and so is the entropy, so that
the system is in thermal equilibrium. When we act on a system in a way
that gives us more knowledge of it, the entropy is lowered, and the system
deviates from equilibrium.

We see that looking for the distribution that realizes the entropy extre-
mum under given constraints is a universal powerful tool whose applicability
goes far beyond equilibrium statistical physics. A beautiful example of using
this approach is obtaining the statistical distribution of the ensemble of neu-
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rons (Schneidman, Berry, Segev and Bialek, 2006). In a small window of
time, a single neuron either generates an action potential or remains silent,
and thus the states of a network of neurons are described naturally by bi-
nary vectors σi = ±1. Most fundamental results of measurements are the
mean spike probability for each cell 〈σi〉 and the matrix of pairwise correla-
tions among cells 〈σiσj〉. One can successfully approximate the probability
distribution of σi by maximum entropy distribution (88) that is consistent
with the two results of the measurement. The probability distribution of the
neuron signals that maximizes entropy is as follows:

ρ({σ}) = Z−1 exp

∑
i

hiσi +
1

2

∑
i<j

Jijσiσj

 , (90)

where the Lagrange multipliers hi, Jij have to be chosen so that the averages
〈σi〉, 〈σiσj〉 in this distribution agree with the experiment. Such models bear
the name Ising in physics, where they were first used for describing systems
of spins. The distribution (90) corresponds to the thermal equilibrium in the
respective Ising model, yet it describes the brain activity, which is apparently
far from thermal equilibrium (unless the person is brain dead).

One can also measure some multi-cell correlations and check how well they
agree with those computed from (90). Despite apparent patterns of collective be-
havior, that involve many neurons, it turns out to be enough to account for pairwise
correlations to describe the statistical distribution remarkably well. This is also
manifested by the entropy changes: measuring triple and multi-cell correlations
imposes more restrictions and lowers the entropy maximum. One then checks that
accounting for pairwise correlations changes entropy significantly while account
for further correlation changes entropy relatively little. The sufficiency of pairwise
interactions provides an enormous simplification, which may be important not
only for our description, but also for the brain. The reason is that brain actually
develops and constantly modifies its own predictive model of probability needed
in particular to accurately evaluate new events for their degree of surprise. The
dominance of pairwise interactions means that learning rules based on pairwise
correlations could be sufficient to generate nearly optimal internal models thus
allowing the brain to accurately evaluate probabilities. Side remark: we should
not think that what is encoded from sensors into an electrical neuron activity is
then ”decoded” inside the brain. Whatever it is, brain is not computer.

It is interesting how the entropy scales with the number of interacting neurons
N . The entropy of non-interacting (or nearest-neighbor interacting) neurons is
extensive that is proportional to N . The data show that Jij are non-zero for
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distant neurons as well. That means that the entropy of an interacting set is lower
at least by the sum of the mutual information terms between all pairs of cells.
The negative contribution is thus proportional to the number of interacting pairs,
N(N − 1)/2, that is grows faster with N , at least when it is not too large. One
can estimate from low-N data a ”critical” N , when the quadratic term is expected
to turn entropy into zero. That critical N corresponds well to the empirically
observed sizes of the clusters of strongly correlated cells. The lesson is: even when
pairwise correlations are weak, sufficiently large clusters can be strongly correlated.
It is also important that the interactions Jij have different signs, so that frustration
can prevent the freezing of the system into a single state (like ferromagnetic or
anti-ferromagnetic). Instead there are multiple states that are local minima of the
effective energy function, as in spin glasses.

Mention in passing the suggestions to use relative information and mutual

entropy for a more ambitious task of quantifying consciousness, understood as

processing information from different channels in an integrated way, irreducible

to processing information in the channels separately. Such approach is known as

integrated information theory (Tononi 2008). Another recent example is the use

of mutual information to quantify immersion of a person in an activity and the

related rate of success (Melnikoff 2022).

4.2 Exorcizing Maxwell demon

Demon died when a paper by Szilárd appeared, but it continues
to haunt the castles of physics as a restless and lovable poltergeist.

P Landsberg, quoted from Gleick ”The Information”

Making a measurement R one changes the distribution from ρ(x) to (ge-
nerally non-equilibrium) ρ(x|R), which has its own conditional entropy

S(x|R) = −
∫
dxdR ρ(R)ρ(x|R) ln ρ(x|R) = −

∫
dxdR ρ(x,R) ln ρ(x|R) .

The conditional entropy quantifies my remaining ignorance about x once I
know R. Measurement decreases the entropy of the system by the mutual
information (68,70) — that how much information about x one gains:

S(x|R)− S(x) = −
∫
ρ(x|R) ln ρ(x|R) dxdR +

∫
ρ(x) ln ρ(x) dx

=
∫
ρ(x,R) ln[ρ(x,R)/ρ(x)ρ(R)] dxdR = S(x,R)− S(R)− S(x) .(91)
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But all our measurements happen in a real world at a finite temperature.
Does it matter? Yes, it determines the energy cost of measurements. As-
sume that our system is in contact with a thermostat having temperature
T , which by itself does not mean that our system is in thermal equilibrium
(as, for instance, a current-carrying conductor). We then can define a free
energy F (ρ) = E − TS(ρ). The Gibbs-Shannon entropy (58) and the mu-
tual information (68,91) can be defined for arbitrary distributions. If the
measurement does not change energy (like the knowledge in which half of
the box the particles is), then the entropy decrease (91) increases the free
energy that is the total work we are able to do. The first law of thermodyn-
amics then requires that the minimal work to perform such a measurement
is F (ρ(x|R))− F (ρ(x)) = T [S(x)− S(x|R)].

Thermodynamics interprets F as the energy we are free to use keeping
the temperature. Information theory reinterprets that in the following way:
If we knew everything, we can possibly use the whole energy (to do work);
the less we know about the system, the more is the missing information S
and the less work we are able to extract. In other words, the decrease of
F = E − TS with the growth of S measures how available energy decreases
with the loss of information about the system. Maxwell understood that
already in 1878: ”Suppose our senses sharpened to such a degree that we
could trace molecules as we now trace large bodies, the distinction between
work and heat would vanish.”

The concept of entropy as missing information15 (Brillouin 1949) allows
one to understand that Maxwell demon or any other information-processing
device do not really decrease entropy. Indeed, if at the beginning one has an
information on position or velocity of any molecule, then the entropy was less
by this amount from the start; after using and processing the information
the entropy can only increase. Consider, for instance, a particle in the box
at a temperature T . If we know in which half it is, then the entropy (the
logarithm of available states) is ln(V/2). That teaches us that information
has thermodynamic (energetic) value at a finite temperature: by placing a
piston at the half of the box and allowing particle to hit and move it we can
get the work T∆S = T ln 2 out of thermal energy of the particle:

15that entropy is not a property of the system but of our knowledge about the system
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The law of energy conservation tells that to get such an information one
must make a measurement whose minimum energetic cost at fixed tempe-
rature is Wmeas = T∆S = T ln 2 (that was realized by Szilard in 1929 who
also introduced ”bit” as a unit of information). Such work needs to be done
for any entropy change by a measurement (91). This is true for an ideal (or
demonic) observer, which does not change its state upon measurements. In
a general case, the entropy change is the difference between the entropy of
the system S(A) and the entropy of the system interacting with the measu-
ring device S(A,M). When there is a change in the free energy ∆FM of the
measuring device, the measurement work is

Wmeas ≥ T∆S + ∆FM = T [S(A)− S(A,M)] + ∆FM . (92)

That guarantees that we cannot break the first law of thermodynamics.
But our work of lifting the weight was done at the expense of the thermal
energy of the system, that is we just turned heat into work. Indeed, hitting
the moving piston, particle looses momentum and energy, which it replenis-
hes back to T by hitting the walls with that temperature provided by the
environment. Can we then break the second law by constructing a perpe-
tuum mobile of the second kind, regularly measuring particle position and
using the thermal energy of the environment to do work? To answer the
question, we need to account for the fact that our demonic engine now in-
cludes both the working system A and the measuring device M. To make
a full thermodynamic cycle, we need to return the demon’s memory to the
initial state. What is the energy price of erasing information? Such erasure
involves compression of the phase space and is irreversible. For example, to
erase information in which half of the box the particle is, we may compress
the box to move the particle to one half irrespective of where it was. That
compression decreases entropy and is accompanied by the heat T ln 2 released
from the system to the environment. If we want to keep the temperature of
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the system, we need to do exactly that amount of work compressing the box
(Landauer 1961). In other words, demon cannot get more work from using
the information S(M) than we must spend on erasing it to return the system
to the initial state (to make a full cycle). More generally, we can lower the
work at the price of cooling the measuring device:

Weras ≥ TS(M)−∆FM . (93)

Together, the energy price of the cycle,

Weras +Wmeas ≥ T [S(A) + S(M)− S(A,M)] = TI , (94)

can be recognized as the temperature times what was defined in the Section 3.4
as the mutual information. Thermodynamic energy cost of measurement and
information erasure depends neither on the information content nor on the
free-energy difference; rather the bound depends only on the mutual correla-
tion between the measured system and the memory. Inequality (94) expres-
ses the trade off between the work required for erasure and that required for
measurement: when one is smaller, the other one must be larger. The rela-
tions (92,93,94) are versions of the second law of thermodynamics, in which
information content and thermodynamic variables are treated on an equal
footing.

Similarly, in the original Maxwell scheme, the demon observes the mole-
cules as they approach the shutter, allowing fast ones to pass from A to B
and slow ones from B to A. This is one way to use information to transer
heat from cold to hot, as described by (87). Creation of the temperature
difference with a negligible expenditure of work lowers the entropy preci-
sely by the amount of information that the demon collected. Erasing this
information will also require work.

Landauer’s principle not only exorcizes Maxwell’s demon, but also impo-
ses the fundamental physical limit on computations. Performing standard
operations independent of their history requires irreversible acts (which do
not have single-valued inverse). Any Boolean function that maps several in-
put states onto the same output state, such as AND, NAND, OR and XOR, is
logically irreversible. When a computer does logically irreversible operation
the information is erased and heat must be generated. It is worth stressing
that one cannot make this heat arbitrarily small making the process adiaba-
tically slow: T ln 2 per bit is the minimal amount of dissipation to erase a
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bit at a fixed temperature16.
Take-home lesson: information is physical. We can get extra work out of

it, for instance, improving the efficiency of thermal engines beyond the Carnot
limit. Processing information without storing an ever-increasing amount of
it must be accompanied by a finite heat release at a finite temperature.
Of course, any real device dissipates heat just because it works at a finite
rate. Lowering that rate one lowers the dissipation rate too. The message
is that no matter how slowly we process information, we cannot make the
dissipation rate lower than T ln 2 per bit. This is in distinction from usual
thermodynamic processes where there is no information processing involved
and we can make heat release arbitrarily small making the process slower.

4.3 Renormalization group and the art of forgetting

Erase the features Chance installed,
and you will see the world’s great beauty17.

A Blok
Statistical physics in general is about lack of information. One of the most

fruitful ideas of the 20-th century is to look how one looses information step
by step and what universal features appear in the process. Most often we
loose information about microscopic properties. We did that in Section 2.2
applying coarse-graining and treating only finite regions of phase-space. We
can also do that explicitly by averaging over small-scale fluctuations or some
other degrees of freedom. A general formalism which describes how to reduce
description keeping only most salient features is called the renormalization
group (RG). It consists in subsequently eliminating degrees of freedom, re-
normalizing remaining ones and looking for fixed points of such a procedure.
There is a shift of paradigm brought by the renormalization group approach.
Instead of being interested in this or that probability distribution, we are
interested in different RG-flows in the space of distributions. Whole families
(universality classes) of different systems described by different distributions
flow under RG transformation to the same fixed point i.e. have the same
asymptotic distribution.

16In principle, any computation can be done using only reversible steps, thus eliminating
the need to do work (Bennett 1973). That will require the computer to reverse all the
steps after printing the answer.

17Erase the features Chance installed. Watch by chance do not rub a hole. V Nekrasov

87



As almost everything in this course, the simplest realization of RG refers
to summing independent random numbers, the procedure described in detail
in the Section 8.1. Let us do summation step by step, summing two numbers
at every step. Consider a set of random iid variables {x1 . . . xN}, each having
the probability density ρ(x) with zero mean and unit variance. The two-step
RG reduces the number of random variables by replacing any two of them by
their sum and re-scales the sum to keep the variance: zi = (x2i−1 + x2i)/

√
2.

Since summing doubles the variance we divided by
√

2. The new random
variables each has the following distribution:

ρ′(z) =
√

2
∫
dxdyρ(x)ρ(y)δ(x+ y − z

√
2) . (95)

The distribution which does not change upon such procedure is called fixed
point (even though it is not a point but rather a whole function) and satisfies
the equation

ρ(x) =
√

2
∫
dyρ(y)ρ(

√
2x− y) .

Since this is a convolution equation, the simplest is to solve it by the Fourier
transform, ρ(k) =

∫
ρ(x)eikxdx. Multiplying by eikx

√
2 and integrating, we

get
ρ(k
√

2) = ρ2(k) . (96)

In other words, ρ(k) is the generating function, which is multiplied upon
summation of independent variables. The solution of (96) is ρ0(k) ∼ e−k

2
and

ρ0(x) = (2π)−1/2e−x
2/2. We thus have shown that the Gaussian distribution

is a fixed point of repetitive summation and re-scaling of random variables,
keeping variance fixed. This is not surprising, since it has a maximal entropy
among the distributions with the same variance.

To turn that into the central limit theorem, we need also to show that
this distribution is linearly stable, that is RG indeed flows towards it. Near
the fixed point, ρ = ρ0(1 + h), the transform can be linearized in h, giving
the transformed distribution h′(k) = 2h(k/

√
2). The eigenfunctions of the

linearized transform are hm(k) = km with eigenvalues 21−m/2 = h′m(k)/hm(k).
There are three conservation laws of the transformation (97): the moments∫
xnρ(x) dx must be preserved for n = 0 (normalization), n = 1 (zero mean)

and n = 2 (unit variance). The moments of ρ(x) are derivatives of the
generating function ρ(k) at k = 0. Therefore, the three conservation laws
mean that h(0) = h′(0) = h′′(0) = 0, so that only m > 2 are admissible,
which means stability, that is deviations from the fixed point decrease. To
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conclude, in the space of distributions with the same variance, the RG-flow
eventually brings us to the distribution with the maximal entropy, forgetting
all the information except the invariants - normalization, the mean and the
variance.

Another natural transformation is replacing a pair by their mean zi =
(x2i−1 + x2i)/2. The fixed point of this distribution satisfies the equation

ρ(z) =
∫
ρ(x)ρ(y)δ(z − x/2− y/2) dxdy ⇒ ρ(k) = ρ2(k/2) .

It has the solution ρ(k) = exp(−|k|) and ρ(x) = (1 + x2)−1, which is the
Cauchy distribution mentioned in Section 8.1. In this case, the distribution
has an infinite variance, and RG preserves only the mean (which is zero)
and normalization. More generally, one can consider a family of re-scaling
rules, zi = (x2i−1 + x2i)/2

µ, and obtain the family of universal distributions
ρ(k) = exp(−|k|µ), characterized by the parameter.

When we look for limiting distributions in the real world, we often need to
deal not with independent but with strongly correlated random variables. Let
us consider the Ising model of interacting spins and describe the procedure of
block spin transformation. To eliminate small-scale degrees of freedom, we
divide all the spins into groups (blocks) with the side k so that there are kd

spins in every block (d is space dimensionality). It is natural to group into
blocks the most strongly correlated spins. In magnetic systems, those are
spatial neighbors but in neuron systems (90) correlation is not necessarily
related to spatial proximity. We then assign to any block a new variable σ′

which is ±1 when respectively the spins in the block are predominantly up
or down. We assume that the system can be described equally well in terms
of block spins with the distribution of the same form as original but with
renormalized parameters.

Consider for simplicity 1d chain with interaction of the nearest neighbors,
where the Gibbs distribution is Z−1 exp

(
−K∑

ij σ
′
iσ
′
j

)
, and K = J/2T is

the parameter which will be renormalized. The partition function is easy to
compute by summing not over N spins but over the N − 1 bonds between
them. A bond brings ether factor eK when two spins have the same sign or
e−K when the signs are different. For a chain with open ends, we have also
two possible values at the ends, which gives

Z(K) =
∑
{σ=±1}

exp
[
K
∑
i

σiσi+1

]
= 2(2 coshK)N−1 .
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Let us transform the partition function by the procedure (called decima-
tion18) of eliminating degrees of freedom by ascribing (undemocratically) to
every block of k = 3 spins the value of the central spin. Consider two neighbo-
ring blocks σ1, σ2, σ3 and σ4, σ5, σ6 and sum over all values of σ3, σ4 keeping
σ′1 = σ2 and σ′2 = σ5 fixed. The respective factors in the partition function
can be written as follows: exp[Kσ3σ4] = coshK + σ3σ4 sinhK, which is true
for σ3σ4 = ±1. Denote x = tanhK. Then only the terms with even powers
of σ3 and σ4 contribute the factors in the partition function that involve these
degrees of freedom (assuming a chain of spins, i.e σi+N = σi):∑

σ3,σ4=±1

exp[K(σ′1σ3 + σ3σ4 + σ4σ
′
2)]

= cosh3K
∑

σ3,σ4=±1

(1 + xσ′1σ3)(1 + xσ4σ3)(1 + xσ′2σ4)

= 4 cosh3K(1 + x3σ′1σ
′
2) = e−g(K) coshK ′(1 + x′σ′1σ

′
2) , (97)

g(K) = ln

(
coshK ′

4 cosh3K

)
. (98)

The expression (97) has the form of the Boltzmann factor exp(K ′σ′1σ
′
2) with

the re-normalized constant K ′ = tanh−1(tanh3K) or x′ = x3 — this formula
and (98) are called recursion relations. The partition function of the whole
system in the new variables can be written as∑

{σ′}
exp

[
−g(K)N/3 +K ′

∑
i

σ′iσ
′
i+1

]
.

The term proportional to g(K) represents the contribution into the free
energy of the short-scale degrees of freedom which have been averaged out.
This term does not affect the calculation of any spin correlation function.
Yet the renormalization of the constant, K → K ′, influences the correlation
functions. Let us discuss this renormalization. Since K ∝ 1/T then T →∞
correspond to x→ 0+ and T → 0 to x→ 1−. One is interested in the set of
the parameters which does not change under the RG, i.e. represents a fixed
point of this transformation. Both x = 0 and x = 1 are fixed points of the
transformation x → x3. The first one corresponds to the flat distribution
with a zero mean, that is to a disordered state. The second one corresponds

18the term initially meant putting to death every tenth soldier of a Roman army regiment
that run from a battlefield.
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to the delta-function peaked either at σi = 1 or σi = −1 for all i. The first
fixed point is stable and the second one unstable. Indeed, iterating the pro-
cess for 0 < x < 1, we see that x approaches zero and effective temperature
infinity. That means that large-scale degrees of freedom are described by
the distribution with the effective temperature so high that the system is in
a paramagnetic state. It is in agreement with the general argument on im-
possibility of long-range order in one-dimensional systems with short-range
interaction because any overturned spin breaks the correlation between left
and right parts. For however small yet finite temperature, the distance to the
next overturned spin is e−K , that is finite. At this limit we have K,K ′ → 0
so that the contribution of the small-scale degrees of freedom is getting inde-
pendent of the temperature: g(K) → − ln 4. We see that spatial re-scaling
leads to the renormalization of temperature: spin system looks hotter when
viewed with less resolution.

Similarly, we may sum over every second spin which gives the recursive
relation tanhK ′ = tanh2K. It corresponds to different steps, but the same
flow and the same fixed points.

What entropic measure monotonically grows along RG quantifying the
irreversibility of forgetting? In other words, how to show that RG flow is
gradient-like, that is irreversibly sliding down some potential slope? Eli-
minating some degrees of freedom necessary decreases the entropy of the
whole system even when RG moves us towards more disordered state. Then
it is more natural to be interested in the entropy per spin or in the mu-
tual information between eliminated and remaining degrees of freedom. In-
deed, the relative entropy and the mutual information have an important
property of monotonicity, decreasing upon elimination of variables, as des-
cribed in Section 3.7. For RG, we can define the mutual information bet-
ween two sub-lattices: eliminated and remaining. The positivity of the mu-
tual information then implies the monotonic growth of the entropy per site
h(K) = limN→∞ S(K,N)/N . Indeed, consider, for instance, the RG elimina-
ting every second spin, N → N/2, and renormalizing the coupling constant
by K → K ′. Subtracting the entropy of the original lattice from the sum
of the entropies of two identical sub-lattices gives the mutual information:
I = 2S(N/2, K ′)− S(N,K) = N [h(K ′)− h(K)] ≥ 0.

In a finite system with short-range correlations, the entropy for large N
is generally as follows:

S(N) = hN + C , I = N [h(K ′)− h(K)] + 2C ′ − C . (99)
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We now have two characteristics, h and C. In the fixed point the extensive
terms in I cancel and I = C > 0. One can explain positivity of C saying
that a finite system appears more random than it is, since we haven’t seen
all the possible correlations.

Mutual information also naturally appears in the description of the infor-
mation flows in the real space. Let us break the 1d N -chain into two parts,
M and N −M . The mutual information between two parts of the chain (or
between the past and the future of a message) is as follows: I(M,N −M) =
S(M)+S(N−M)−S(N). Here, the extensive parts (linear in M,N) cancel
in the limit N,M → ∞. Therefore, such mutual information, also called
excess entropy, is equal to C from (99).

After these general arguments, let us now compute h and C for the Ising
model. Remind that the entropy is expressed via the partition function as
follows:

S =
E − F
T

= T
∂ lnZ

∂T
+ lnZ .

For the 1d Ising chain we obtain: h = ln(2 coshK) − K tanhK and C =
K tanhK−ln(coshK). Upon RG flow, these quantities monotonously change
from h(K) ≈ 3e−2K , C ≈ ln 2 at K →∞ to h(K) ≈ ln 2, C → 0 at K → 0.
One can interpret this, saying that C = ln q, where q is the degeneracy
of the ground state. Indeed, q = 2 at the zero-temperature fixed point
due to two ground states with opposite magnetization, while q = 1 in the
fully disordered state. So this mutual information (and the excess entropy)
indeed measures how much information per one degree of freedom one needs
to specify (for non-integer q, obtained mid-way of the RG flow, one can think
of it as viewing the system with finite resolution). Note that the past-future
mutual information also serves as a measure of the message complexity (that
is the difficulty of predicting the message). Without going into details, note
also that C depends on the boundary conditions. This is still rather trivial
in 1d, where RG moves systems towards disorder, so that K ′ < K and
h(K ′) > h(K). In higher dimensions, on the other hand, the next iteration
of decimation cannot be performed.

T=0 K=0 T=0 cT K=0

2d1d
6σ5σ4σ3σ2σ1σ
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The picture of RG flow is more interesting in higher spatial dimensi-
ons. There could exist fixed points (limiting distributions) which describe
neither low-temperature fully ordered state nor high-temperature fully dis-
ordered state, but a critical state of the phase transition between the two.
The zero-temperature fixed point is unstable in 1d, i.e. K decreases under
RG transformation. Yet in the low-temperature region (x ≈ 1, K → ∞)
it decreases very slow so that it does not change in the main order: K ′ =
K − const ≈ K ′. This can be interpreted as due to the interaction between
k-blocks being mediated by their boundary spins that all look at the same
direction: K ′ ≈ K〈σ3〉σ2=1〈σ4〉σ5=1 ≈ K (by the same token, at high tempe-
ratures 〈σ〉 ∝ K so that K ′ ∝ K3). However, in d dimensions, there are kd−1

spins at the block side so that K ′ ∝ kd−1K as K → ∞ (in the case k = 3
and d = 2 we have K ′ ≈ 3K, see the Figure). That means that K ′ > K that
is the low-temperature fixed point is stable at d > 1. On the other hand,
the paramagnetic fixed point K = 0 is stable too, so that there must be an
unstable fixed point in between at some Kc which corresponds to a critical
temperature Tc. In distinction from summing random numbers, we are in-
terested now in unstable fixed point, because it separates regions between
two qualitatively different large-scale behavior - ordered and disordered. At
a finite temperature, there are always ordered and disordered domains of dif-
ferent scales. At T > Tc, looking at larger and larger domains we find them
less and less correlated with each other. Yet at T < Tc, the mean spins of
larger and larger domains are more and more correlated with each other.

critical surface

RG flow with two couplings

σ
1K

2K

1K

2K

Yet we now need to consider RG flows not in the 1d space of K-values,
but in multi-dimensional parameter spaces. Already in 2d, summing over
corner spin σ produces diagonal coupling between blocks. In addition to
K1, which describes an interaction between neighbors, we need to introduce
another parameter, K2, to account for a next-nearest neighbor interaction.
In fact, RG generates all possible further couplings so that it is a flow in an
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infinite-dimensional K-space. An unstable fixed point in this space determi-
nes critical behavior. The dimensionality of the attractor is determined by
the Lyapunov exponents. Negative exponents correspond to the directions in
which the flow is converging and erasing information about the microscopic
distribution. Positive Lyapunov exponents correspond to unstable directions,
respective parameters need to be tuned to be at criticality. We know, howe-
ver, that we need to control a finite number of parameters to reach a phase
transition; for Ising at h = 0 and many other systems it is a single parameter,
temperature. For all such systems (including most magnetic ones), RG flow
has only one unstable direction, all the rest must be contracting stable di-
rections, like the projection on K1, K2 plane shown in the Figure. The line of
points attracted to the fixed point is the projection of the critical surface, so
called because the long-distance properties of each system corresponding to
a point on this surface are controlled by the fixed point. The critical surface
is a separatrix, dividing points that flow to high-T (paramagnetic) behavior
from those that flow to low-T (ferromagnetic) behavior at large scales.

We can now understand why physicists are so interested in an unstable
fixed point and its critical surface. That picture of the RG flow explains
universality of long-distance critical behavior: different physical systems (in
different regions of the parameter K-space) flow to the same fixed point.
Indeed, changing the temperature in a system with only nearest-neighbor
coupling, we move along the line K2 = 0. The point where this line meets
critical surface defines K1c and respective Tc1. At that temperature, the
large-scale behavior of the system is determined by the RG flow i.e. by the
fixed point. In another system with nonzero K2, changing T we move along
some other path in the parameter space, indicated by the broken line at the
figure. Intersection of this line with the critical surface defines some other
critical temperature Tc2. But the long-distance properties of this system at
that temperature are determined by the same fixed point.

What quantifies the rate of information forgetting by RG flow in a multi-
dimensional space? Eliminating modes step by step generally decreases I, but
re-scaling and renormalization may increase it, because some of the information
about eliminated degrees of freedom is stored in the renormalized values of the
parameters of the distribution. Increase or decrease of I upon RG thus shows
whether the large-scale behavior is respectively ordered or disordered. How to find
a quantity that always changed monotonically upon RG? Breaking a single bond
in more than one dimension does not separate. In 2d plane, one can consider a
(finite) line L and break the direct interactions between the degrees of freedom
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on the different sides of it. That is we make a cut and ascribe to its every point
two (generally different) values on the opposite sides. The statistics of such set
is now characterized not by a scalar function - probability on the line - but by a
matrix, similar to the density matrix in quantum statistics. We shall describe it in
detail in Subsection 6.2: one takes the whole quantum system in a ground state,
trace out (average over) all the degrees of freedom outside the line and obtain the
density matrix ρL of the degrees of freedom on the line. For that density matrix
one defines von Neumann entropy SL = −TrρL log ρL

For long lines in short-correlated systems, that quantity can be shown to de-

pend only on the distance r between the end points (and not on the form of a

line connecting them, that is information flows like an incompressible fluid). Mo-

reover, this dependence is logarithmic at criticality (when we have fluctuations

of all scales and the correlation radius is infinite). To cancel non-universal terms

depending on the microscopic detail, one defines the function c(r) = rdSL(r)/dr.

which is shown to be a monotonic zero degree function, using positivity of the

mutual information (sub-additivity of the entropy) between lines with r and r+dr

(Zamolodchikov 1986, Casini and Huerta 2006). The same function changes mo-

notonically under RG flow and in a fixed point takes a finite value equal to the

so-called zero charge of the respective conformal field theory. The zero chanrge is

a measure of relevant degrees of freedom that respond to boundary perturbations.

It is even more difficult to introduce proper intensive measure of information flow

in dimensions higher than two, so far it is done in a quite model-specific way (see

e.g. Komargodsky and Schwimmer 2011) .
In looking for fundamental characteristics of order in fluctuating systems in

higher dimensions, one can go even deeper19. For instance, one can consider for
quantum system in 2+1 dimensions the relative entanglement of three finite planar
regions, A,B,C, all having common boundaries. As a quantum analog of the
interaction information (85), one can introduce so-called topological entanglement
entropy SA+SB+SC+SABC−SAB−SBC−SAC . For some classes of systems, one
can show that in the combination, the terms depending on the boundary lengthes
cancel out and what remains (if any) can be thus independent of the deformations
of the boundaries, that is characterizing the topological order, if it exists in the
system (Kitaev, Preskill 2006).

19Mention in passing that in dimensions d > 4, the block-spin renormalization of the
Ising-class models leads to asymptotic Gaussian distribution ln ρ(η) ∝ −|∇η|2
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4.4 Information is life

What lies at the heart of every living thing is not a fire,
not warm breath, not a ’spark of life.’ It is information.

Richard Dawkins
One may be excused thinking that living beings consume energy and mat-

ter to survive, unless one is a physicist and knows that energy and matter are
conserved and cannot be consumed. All the energy, absorbed by plants from
sunlight and by us from food, is emitted as heat. Life-sustaining substance is
entropy: we consume information and generate entropy by intercepting flows
from low-entropy energy sources to high-entropy body heat — just think
how much information was processed to squeeze 500 kkal of chemical energy
into 100 grams of a chocolate, and you enjoy it even more. For plants, the
Sun is a low-entropy energy source due to its high temperature (the same is
true for the whole Earth, which exports much more entropy than it receives).
Nor we consume matter, only make it more disordered: what we consume
has much lower entropy than what comes out of our excretory system. In
other words, we decrease entropy inside and increase it outside of our bodies.
Consuming information is our way to resist (temporarily) the second law of
thermodynamics and survive. On a higher level, nervous system maintains
the body integrity consuming information by active inference, as described
in Section 4.5.

Our way to stay out of the (most probable) state of thermal equilibrium
is to use replication to generate highly ordered (and improbable) structures.
The instructions for replication are encoded in genes. Collectively, the evolu-
tion as a natural selection is an increasingly efficient encoding of information
about the environment in the gene pool of its inhabitants. This process is
accelerated by sex, which still provides one of the highest transfer rates of
information (even though most of it is discarded). The ultimate survivor is
the information in the genes, which continues to exist long after many its
former carriers, individual and species, went extinct.

If an elementary act of life as information processing (say, thought) gene-
rates ∆S, we can now ask about its energy price. Similar to our treatment
of the thermal engine efficiency (1), we assume that one takes Q from the
reservoir with T1 and delivers Q − W to the environment with T2. Then
∆S = S2 − S1 = (Q−W )/T2 −Q/T1 and the energy price is as follows:

Q =
T2∆S +W

1− T2/T1

.
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When T1 → T2, the information processing is getting prohibitively ineffective,
just like the thermal engine. In the other limit, T1 � T2, one can neglect
the entropy change on the source, and we have Q = T2∆S +W . Hot Sun is
indeed a low-entropy source.

So how many bits we consume per second? Let us now estimate our rate
of information processing and entropy production. An average lazy human
being dissipates about W = 200 watts of power at T = 300K. Since the
Boltzmann constant is k = 1.38× 10−23, that gives about W/kT ' 1023 bits
per second. The amount of information processed per unit of subjective time
(per thought) is about the same, assuming that each moment of consciousness
lasts about a second (Dyson, 1979).

We now discuss how such beings actually process information. Do the
Gibbs entropy and the mutual information have any quantitative relation
to the way we react to the signals? Yes, they do! When one must react
differently to different stimuli, the average choice-reaction time was found
experimentally to be linearly proportional to the entropy of the statistical
distribution of stimuli (Hick 1952, Hyman 1953). The more is the uncertainty,
the longer it takes to recognize the event. For example, when one needs to
name the letter or number that appear randomly on a screen, the average
response time grows logarithmically with the size of the set. Logarithmic
dependence on the set size means that the decision is made by subdividing
strategy. Similarly, the time to find an item in an ordered menu grows
logarithmically with the menu length, yet it grows linearly when the menu
is disordered.

When the number of elements stays constant but the frequencies of their
appearances are made unequal thus lowering entropy, the average response
time decreases proportionally. Even more remarkably, when experimenta-
lists introduce a correlation between subsequent stimuli, the response time
goes down in proportion to the conditional entropy, which is less than un-
conditional. One can turn the tables and prescribe the reaction time. As
this time is getting shorter, we make more and more errors in naming the
objects, which diminishes the mutual information between the input (num-
ber i on a screen) and output (our name j for it). Experimentally one
measures the joint probability p(i, j) from which one obtains the marginal
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probabilities p(i) =
∑
j p(i, j), p(j) =

∑
i p(i, j) and conditional probabi-

lity p(j|i) = p(i, j)/p(i). One then computes S(j) = −∑i p(j) log p(j),
S(j|i) = −∑ij p(i)p(j|i) log p(j|i) and I(i, j) = S(j) − S(j|i), which turns
out linearly proportional to the reaction time prescribed. We see how living
beings use Boltzmann and Gibbs entropies, as well as the mutual information.

Since the time of processing is proportional to the amount of informa-
tion, one can conclude that the system works to keep uniform an average
amount of information processed per unit time, that is the rate. The next
example presents more sophisticated strategy in processing stimuli, where the
system maximizes information transfer rate by keeping it uniform through
the dynamic range of the signal (such strategies are sometimes called infomax
principle).

Maximizing capacity. Imagine yourself on the day five of Creation desig-
ning the response function for a sensory system of a living being. Technically,
the problem is to choose thresholds for switching to the next level of response,
or equivalently, to choose the function of the input for which we take equi-
distant thresholds. Suppose that we wish to divide the whole perceivable
(finite) interval of signals into three regions, encoding them as weak (1,2),
medium (2,3) and strong (3,4):

Response

Input

state

1

4

2

3

For given value intervals of input and response, should we take the solid
line of linear proportionality between response and stimulus? Or choose the
lowest curve that treats all low-intensity inputs as weak and amplifies diffe-
rence in high-intensity signals? The choice depends on the goal. For example,
the upper curve was actually chosen (on the day six) for the auditory system
of animals and humans: our ear senses loudness as the logarithm of the in-
tensity, which amplifies differences in weak sounds and damps strong ones.
That way we better hear whisper of a close one and aren’t that frightened
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by loud threats.
If, however, the goal is to maximize the mean information transfer rate

(capacity) at the level of a single neuron/channel, then the response curve
(encoding) must be designed by the Creator together with the probability
distribution of visual stimuli. That it is indeed so was discovered in one of
the first application of information theory to the real data in biology (Laugh-
lin 1981). It was conjectured that maximal-capacity encoding must use all
response levels with the same frequency, which requires that the response
function is an integral of the probability distribution of the input signals
(see Figure). First-order interneurons of the insect eye were found to code
contrast rather than absolute light intensity. Subjecting the fly in the lab
to different contrasts x, the response function y = g(x) was measured from
the fly neurons; the probability density of inputs, ρ(x), was measured across
its natural habitat (woodlands and lakeside) using a detector which scanned
horizontally, like a turning fly.

The coding strategy for maximizing information capacity by ensuring that all response levels are used with equal 

frequency. Upper left curve: probability density function for stimulus intensities. Lower left curve: the response function, 

which ensures that the interval between each response level encompasses an equal area under the distribution, so that 

each state is used with equal frequency. In the limit where the states are vanishingly small this response function 

corresponds to the cumulative probability function. Right panel: The contrast-response function of fly neuron compared to 
the cumulative probability function for natural contrasts. Simon Laughlin, Naturforsch. 36, 910-912 (1981)

We can now explain it noting that the representation with the maximal
capacity corresponds to the maximum of the mutual information between
input and output: I(x, y) = S(y) − S(y|x). Since we consider a one-to-one
relation y = g(x), that is an error-free transmission, then the conditional
entropy S(y|x) is zero. Therefore, according to Section 3.4, we need to max-
imize the entropy of the output assuming that the input statistics ρ(x) is
given. Absent any extra constraints except normalization, the entropy for a
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distribution on a finite interval is maximal when ρ(y) is constant. Indeed,
since ρ(y)dy = ρ(x)dx = ρ(x)dydx/dy = ρ(x)dy/g′(x), then

S(y) = −
∫
ρ(x) ln[ρ(x)/g′(x)] dx = S(x) + 〈ln[g′(x)]〉 , (100)

δS

δg
=

∂

∂x

ρ

g′(x)
= 0 ⇒ g′(x) = Cρ(x) ,

as in the Figure. In other words, we choose equal bins for the variable
whose probability is flat. Since the probability ρ(x) is positive, the response
function y = g(x) is always monotonic i.e. invertible. Note that our choice of
response function is an exact analog of efficient encoding using longer code-
words for less frequent letters. In that way, we utilized only the probability
distribution of different signal levels, similar to language encoding which uti-
lizes different frequencies of letters (and not, say, their mutual correlations).
We have also applied quasi-static approximation, neglecting dynamics and
relating instantaneous values of x and y. Let yourself be impressed by the
agreement of theory and experiment — there were no fitting parameters.
The same approach works well also for biochemical and genetic input-output
relations. For example, the dependence of a gene expression on the level of
a transcription factor is dictated by the statistics of the latter. That also
works when the conditional entropy S(y|x) is independent of the form of the
response function y = g(x). See more details in the Appendix 8.5.

For particular types of signals, practicality may favor non-optimal but simple

schemes like amplitude and frequency modulation (both are generally non-optimal

but computationally feasible and practical). Even in such cases, the choice is dicta-

ted by the information-theory analysis of the efficiency. For example, neuron either

fires a standard pulse (action potential) or stays silent, which makes it natural to

assume that the information is encoded as binary digits (zero or one) in discrete

equal time intervals. Yet one can imagine that the information is encoded by the

time delays between subsequent pulses. On the engineer’s language, the former

method of encoding is a limiting case of amplitude modulation, while the latter

case is that of frequency modulation. The maximal rate of information transmis-

sion in the former case is only dependent on the minimal time delay between the

pulses determined by the neuron recovery time. On the other hand, in the latter

case, the rate depends on both the minimal error of timing measurement and of

admissible maximal time between pulses. In reality, brain activity ”depends in one

way or another on all the information-bearing parameters of an impulse — both

on its presence or absence as a binary digit and on its precise timing” (MacKay
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and McCulloch 1952).

4.5 Theory of mind

Who are you going to believe, me, or your own eyes? Marx
And how the sensory information is processed and determines the be-

havior? An ambitious application of information theory is an attempt to
understand and quantify sentient behavior. One idea going back to Helm-
holts is to view ”perception as as unconscious inference”. There is evidence
that perception of our brain is inferential, that is based on the prediction and
hypothesis testing. Among other things, this is manifested by the long known
phenomenon of binocular rivalry which occurs when different pictures are
presented to the two eyes. Rather than perceiving a stable, single amalgam
of the two stimuli, one experiences alternations as the two stimuli compete
for perceptual dominance, which can be influenced by priming. Another evi-
dence is the recently established fact that signals between brain and sensory
organs travel in both directions simultaneously. It is then likely that even
our unconscious activity uses rational Bayes’ rule.

Perception is thus treated not as a bottom-up encoding of sensory states
Y into internal neuronal representation of the environmental states X, but as
a combination of top-down prior expectation with bottom-up sensory signals.
The combined bottom-up-top-down approach makes sense from evolutional
and developmental perspectives. Indeed, the bottom-up approach assumes
that there is some entity which processes the sensory inputs Y into a picture
of the world P (X|Y ). Yet where that entity came from? Imagine a brain
as a bunch of neurons in a black box receiving electrical signals, which do
not carry with them labels ”from the retina”, ”from the liver”, ”from your
grandmother”, etc. The best one can do is to send out signals which help
you to survive. Since one have managed to survive up to this point, then the
right survival strategy is continuation, which presumes receiving more or less
the same signals as before.

In this spirit, we describe perception as hypothesis testing within the
Bayes’ framework, introduced in Section 3.6. The mechanics of the sensory
system determines P (Y |X), which is the conditional probability of sensory
input for a given state of environment. In the example of the fly eye from the
Section 4.4, x is a contrast in light intensity and y is the neuron signal. Upon
receiving the particular input y, the simplest inference about the environment
is that of maximal likelihood: taking the value x that maximizes P (y|x).
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However, to make a decision or action based on the inference, we need a
measure of confidence in the result. That means that our inference must be
probabilistic, obtaining the whole posterior probability distribution P (X|Y )
— sharp distribution gives high and flat distribution low confidence. To
obtain the posterior distribution, we need a prior distribution P (X) and the
Bayes’ formula (77):

P (X|Y ) = P (Y |X)P (X)/P (Y ) . (101)

Leaving aside for a while the normalizing factor P (Y ), we thus presume that
the mind has so-called generative model, represented by the joint distribution
P (X, Y ) = P (Y |X)P (X). Exact computation by (101) can be impossible or
unpractical, for instance, due to necessity to average over many hidden states
and variables. It is natural to assume that the brain uses variational approach
based on optimizing some tractable proxy. The first thing to account is the
degree of surprise or necessary change, characterized by the relative entropy
between prior and posterior distributions. Averaged over all X and Y , it is
nothing but the mutual information, that is the average information brought
by sensory inputs:

D[P (X|Y )|P (X)] =
∑
Y

P (Y )
∑
X

P (X|Y ) log[P (X|Y )/P (X)] = I(X, Y ) .

For perception, however, we shall need to evaluate the change at a given y.
Changing beliefs and updating expectations entails a cognitive cost, as we
know all too well. More important and probably related: expected states are
preferred for survival (fish expects to stay in the water), while surprises are
to be avoided. Generative model is strongly biased towards a narrow interval
of parameters guaranteeing survival. Yet this natural tendency to minimize
the change conflicts with the necessity to accommodate the data. Whenever
we encounter a trade-off, free energy negotiates it. The working hypothesis is
that for a given y the brain looks for the posterior distribution Q(X) which
minimizes the following free energy:

F [Q, y] = D[Q(x)|P (x)]−
∑
x

Q logP (y|x) =
∑
x

Q(x)

[
log

Q(x)

P (x)
− logP (y|x)

]

=
∑
x

Q(x) log
Q(x)

P (x, y)
= −

∑
x

Q(x) logP (x, y)− S(Q)

= D[Q(x)|P (x|y)]− logP (y) . (102)

102



As clear from the beginning of the second line, it measures the mismatch
between the internal generative model P (x, y) and current observation as a
functional of Q(x) and a function of y. The three lines suggest three different
operational strategies according to the three different interpretations of the
same quantity. The first line describes the above trade-off between inertia
and force of data: the first term on the right is the degree of change, while
the second term quantifies the accuracy of data representation — Q(x) must
give more weight to those x which provide for higher probability to observe y
according to P (y|x), which is given. The second line can be written as E/T−
S(Q), where minus log of prior probability, logP (x, y) = −E(x, y), can be
loosely interpreted as the ”energy” of some Gibbs distribution. Minimization
requires the trade-off between the energy-imposed ”truth” of accounting for
prior P (x, y) and ”nothing but the truth” maximization of the entropy S(Q).
Note that the ”energy” here is also measured in bites, that is the temperature
is unity. In a sense, we now call energy what needs minimization, while
entropy requires maximization. The third line does not describe any trade-
off, but shows that the free energy is bounded from below by the sensory
surprise − logP (y). Only when our variational Q(x) is equal to the exact
P (x|y), the free energy reaches its global minimum.

The third line (102) suggests that perceptual inference, that is computing
Q(x), is not the only way to minimize F (Q, y); another way is to change the
sensory data y. That requires action: one can switch the channel or look
the other way rather than change the beliefs. That brings us to the active
inference approach, which puts action into perception [2]. The picture is
that living beings survive adapting action-perception loop with their envi-
ronment. That means that every sensory input is not obtained passively,
but is predicted by the brain and is solicited by an action intended for the
predicted input. Mismatch between predicted and actually received sensory
input leads to updating the predictive (generative) model, which then trig-
gers new action leading to new sensory observations better corresponding to
expectations. Perception and action are complementary ways to diminish the
mismatch. Perception changes your mind replacing prior beliefs by posterior
ones, while action changes the world to make it more compatible with the
beliefs.

In particular, our perception of objects is very much determined by the
generative model with its prediction of how actions change sensory input
(encoded in conditional probability of what could have happened). Indeed,
even with one eye closed we distinguish a three-dimensional object from its
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two-dimensional picture despite receiving identical visual signals. The reason
is that our brain knows that moving our head will reveal the new parts of
the image in the former case, but not in the later.

While still highly hypothetical, this theory finds some empirical support
in measurements of the connectivity and activity of neural networks. For
example, some connectivity patterns in a motor cortex support the idea of
a motor command as a prediction, such that the prediction errors related to
body position and motion can be resolved by reflexes without belief upda-
ting. Simply speaking, brain can infer the positions of body parts without
receiving outside signals. The analysis of the experimental data on brain
activity is facilitated by the asymmetry between descending signals carrying
expectations and ascending signals bringing prediction errors — the latter
involve nonlinear operations generating higher frequencies, which is measu-
rable. The active inference approach is also useful in building models for
analyzing data from behavioral experiments and disease processes, drawing
inferences about inferences. When top-down signals totally dominate, one
has hallucinations; what is considered normal perception could then be called
”controlled hallucination”.

In a nutshell: surprise minimization by active inference is our way to
survive.

I think that poetry and music appeal to our ever-predicting mind by
creating expectations (using rhythm or melody) and then partially fulfilling
and partially breaking them. An optimal mixture of expected and surprising
is what makes for a great art, which still waits for its free-energy analysis.
Another possible dramatic implication of the active inference approach is
a treatment of emotions not solely as fixed universal patterns of brain and
body inherited from animal ancestors and triggered by sensory inputs, but
as constructed and learnt patterns of prediction and reaction amenable to
significant variability and plasticity.

4.6 Rate Distortion and Information Bottleneck

When we transfer information, we look for maximal transfer rate and thus
define channel capacity as the maximal mutual information between input
and output. But when we encode the information, we may be looking for the
opposite: what is the minimal number of bits, sufficient to encode the data
with a given accuracy.

For example, encoding a real number requires infinite number of bits.
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Representation of a continuous input B by a finite discrete output encoding
A generally leads to some distortion, which we shall characterize by the real
function d(A,B). How large is the mean distortion, D =

∑
ij P (Ai, Bj)d(Ai, Bj),

for a given statistics of B, encoding with R bits and 2R values? It depends
on the choice of the distortion function, which specifies what are the most
important properties of the signal B. For Gaussian statistics (which is com-
pletely determined by the variance), one chooses the squared error function
d(A,B) = (A − B)2. We first learn to use it in the standard least squares
approximations — now we can understand why squares and not other po-
wers — because minimizing variance minimizes the entropy of a Gaussian
distribution and thus the amount of information needed to characterize it.

Consider a Gaussian B with 〈B〉 = 0 and 〈B2〉 = σ2. If we have one
bit to represent it, apparently, the only information we can convey is the
sign of B. The simplest is to encode positive/negative regions is by numbers

±A. To minimize squared error, we choose A = ±〈|B|〉 = ±σ
√

2/π, which
corresponds to

D(1) = 2(2π)−1/2
∫ ∞

0

(
B−σ

√
2/π

)2
exp[−B2/2σ2]

dB

σ
= σ2(1−2/π) . (103)

Let us now turn the tables and ask what is the minimal rate R sufficient to
provide for distortion not exceeding D. This is called rate distortion function
R(D). We know that the rate is the mutual information I(A,B), but now we
are looking not for its maximum (as in channel capacity) but for the minimum
over all the encodings defined by the conditional probabilities P (B|A), such
that the distortion does not exceed D. Since I(A,B) = S(B)−S(B|A), then
minima of I(A,B) are maxima of S(B|A). It is helpful to think of distortion
as produced by the added noise ξ with the variance D. For a fixed variance,
maximal entropy S(B|A) corresponds to the Gaussian distribution, so that
we have an (imaginary) Gaussian channel with the variance 〈(B−A)2〉 = D.
Together with the Gaussian input having 〈B2〉 = σ2, they provide for the
minimal rate given by (76):

R(D) = I(A,B) = S(B)− S(B|A) = S(B)− S(B − A|A)

≥ S(B)− S(B − A) = 1
2

log2(2πeσ2)− 1
2

log2(2πeD) = 1
2

log2
σ2

D . (104)

It goes to infinity for D → 0 and turns into zero for D = σ2. Indeed,
for D ≥ σ2 we can take A = 0 with probability one making the mutual
information zero - absolute minimum!
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Often we need to represent by R bits m independent Gaussian signals
with different variances σi, i = 1, . . . ,m — for instance, signals from different
spectral intervals. How to divide these bits to minimize the total distortion?
We look for the distortions Di and minimize

∑
iDi = D under the condition

that
∑
iR(Di) = R. Differentiating

∑
i[Di + λ log2 σ

2
i /Di] with respect to

Di, we find out that Di are all equal to the same constant D/m, as long as
this constant is less than all σi. Taking smaller R, we increase D and reach
the moment when D/m exceeds some σj - then we need to take respective
Rj = 0, that is allocate zero bites to this component. Alternatively, if we
managed to decrease enough the variance of some component, it does not
deserve to be represented (except one bit for its mean if it is nonzero) —
such is the logic of rate distortion theory.

One can show that the rate distortion function R(D) is monotonous and
convex for all systems. When the distortion is not a quadratic function,
the conditional probability of encoding P (A|B)) is not Gaussian. In solving
practical problems, it must be found solving the variational problem, where
one finds a normalized P (A|B)), which minimizes the mutual information
under the condition of a given mean distortion. For that one minimizes the
functional

F = I + βD =
∑
ij

P (Ai|Bj)P (Bj)

{
ln
P (Ai|Bj)

P (Ai)
+ βd(Ai, Bj)

}
. (105)

After variation with respect to P (Ai|Bj) we obtain

P (Ai|Bj) =
P (Ai)

Z(Bj, β)
e−βd(Ai,Bj) , (106)

where the partition function Z(Bj, β) =
∑
i P (Aj)e

−βd(Ai,Bj) is the normali-
zation factor. Recall that what is given is P (B), not P (A). The latter must
be expressed via the same conditional probability:

P (Ai) =
∑
i

P (Ai|Bj)P (Bj) . (107)

The system of equations (106,107) is usually solved by iterations.
Immediate physical analogy is that (106) is a Gibbs distribution with the

”energy” equal to the distortion function. Maximizing entropy for a given
energy (Gibbs) is equivalent to minimizing mutual information for a given
distortion function. As usual, what is given is in the exponent. Choice of
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the value of the inverse temperature β reflects our priorities: at small β the
conditional probability is close to the unconditional one, that is we minimize
information without much regard to the distortion. On the contrary, large β
requires our conditional probability to be sharply peaked at the minima of
the distortion function.

Similar, but more sophisticated optimization procedures are applied, in
particular, in image processing. Images contain enormous amount of infor-
mation. The rate at which visual data are collected by the photoreceptor
mosaic of animals and humans is known to exceed 106 bits/sec. On the other
hand, studies on the speed of visual perception and reading speeds give num-
bers around 40-50 bits/sec for the perceptual capacity of the visual pathway
in humans. The brain then have to perform huge data compressions. This is
possible because visual information is highly redundant due to strong corre-
lations between pixels. Mutual information is the main tool in the theory of
(image, voice, pattern) recognition and AI.

B A C
event       measurement     encoding  

The measured quantity A thus contains too much data of low information
value. We wish to compress A to C while keeping as much as possible
information about B. Understanding the given signal A requires more than
just predicting/inferring B, it also requires specifying which features of the
set of possible signals {A} play a role in the prediction. Here meaning seeps
back into the information theory. Indeed, information is not knowledge (and
knowledge is not wisdom). We formalize this problem as that of finding a
short code for {A} that preserves the maximum information about the set
{B}. That is, we squeeze the information that A provides about B through
a ”bottleneck” formed by a limited set of codewords {C}. This is reached
via the method called Information Bottleneck (Tishby at al 2000) , targeted
at characterizing the tradeoff between information preservation (accuracy of
relevant predictions) and compression. Here one looks for the minimum of
the functional

I(C,A)− βI(C,B) . (108)

The coding A → C is also generally stochastic, characterized by P (C|A).
The quality of the coding is determined by the rate, that is by the average
number of bits per message needed to specify an element in the codebook
without confusion. This number per element A of the source space {A} is
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bounded from below by the mutual information I(C,A) which we thus want
to minimize. Effective coding utilizes the fact that mutual information is usu-
ally sub-extensive in distinction from entropy which is extensive. Note the
difference from the Section 3.4, where in characterizing the channel capacity
(upper bound for the error-free rate) we maximized I(A,B) over all choices
of the source space {B}, while now we minimize I(C,A) over all choices of
coding. To put it differently, there we wanted to maximize the information
transmitted, now we want to minimize the information processed. This mini-
mization, however, must be restricted by the need to retain in C the relevant
information about B which we denote I(C,B). Having chosen what proper-
ties of B we wish to stay correlated with the encoded signal C, we add the
mutual information I(C,B) with the Lagrange multiplier −β to the functi-
onal (108). The sign is naturally chosen such that β > 0 (analog of inverse
temperature), indeed, we want minimal coding I(A,B) preserving maximal
information I(C,B) (that is I(C,B) is treated similarly to the channel ca-
pacity in the previous section). The single parameter β again represents the
tradeoff between the complexity of the representation measured by I(C,A),
and the accuracy of this representation, measured by I(C,B). At β = 0 our
quantization is the most sketchy possible — everything is assigned to a single
point. At β grows, we are pushed toward detailed quantization. By varying
β one can explore the tradeoff between the preserved meaningful information
and compression at various resolutions. Comparing with the rate distortion
theory functional (106), we recognize that we are looking for the conditional
probability of the mapping P (C|A), that is we explicitly want to treat some
pixels Ai as more relevant than the others.

However, the constraint on the meaningful information is now nonlinear in
P (C|A), so this is a much harder variational problem. Indeed, (108) can be written
as follows:

I(C,A)− βI(C,B) =
∑
ij

P (Cj |Ai)P (Ai) ln
P (Cj |Ai)
P (Cj)

− β
∑
jk

P (Bk|Cj)P (Cj)

{
ln
P (Bk|Cj)
P (Bk)

}
. (109)

The conditional probabilities of A,B under given C are related by the Bayes’ rule

P (Bk|Cj) =
1

P (Cj)

∑
i

P (Ai)P (Bk|Ai)P (Cj |Ai) , (110)

where the conditional probability of the measurements, P (Bk|Ai), is assumed to be
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known. The variation of (109) with respect to the encoding conditional probability,
P (Cj |Ai), now gives the equation (rather than an explicit expression):

P (Cj |Ai) =
P (Cj)
Z(Ai,β) exp

[
−β

∑
k P (Bk|Ai) log P (Bk|Ai)

P (Bk|Cj)

]
=

P (Cj)
Z(Ai,β) exp {−βD[P (B|A)||P (B|C)]} , (111)

We see that the relative entropy D between the two conditional probability dis-
tirbutions emerged as the effective distortion measure D. The system of equati-
ons (110,111) is also solved by iterations. For example, one minimizes I(A,C) +
βD[P (B|A)||P (B|C)] in alternating iterations first over P (C|A), then over P (C),
then over P (B|A), then repeating the cycle. Doing compression procedure many
times, A→ C1 → C2 . . . is used in multi-layered Deep Learning Algorithms. Here
knowledge of statistical physics helps in several ways, particularly in identifying
phase transitions (with respect to β) and the relation between processing from
layer to layer and the renormalization group: features along the layers become
more and more statistically decoupled as the layers gets closer to the fixed point.

Practical problems of iterations and machine learning are closely related to
fundamental problems in understanding and describing the biological evolution.
Here an important task is to identify classes of functions and mechanisms that are
provably evolvable — can logically evolve into existence over realistic time periods
and within realistic populations, without any need for combinatorially unlikely
events to occur. Quantitative theories of evolution in particular aim to quantify
the complexity of the mechanisms that evolved, which is done using information
theory.

4.7 Information is money

This section is for those brave souls who decided to leave physics for gambling. If
you have read till this point, you must be well prepared for that.

Let us start from the simplest game: you can bet on a coin, doubling your bet if
you are right or loosing it if you are wrong. Surely, an intelligent person would not
bet money hard saved during graduate studies on a totally random process with
a zero gain. You bet only when you have an information that sides have unequal
probabilities: p > 1/2 and 1− p. To have a steady income and an average growth
you want to play the game many times. Shall we look then for the maximal average
return? The maximal mean arithmetic growth rate is (2p)N and corresponds to
betting every time all your money on the more probably side. That mean, however,
comes from a single all-win realization; the probability of that winning streak
goes to zero with growing N as pN . To avoid loosing it all with probability fast
approaching unity, you bet only a fraction f of your money on the more probable
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p-side. What to do with the remaining money, keep it as an insurance or bet on a
less probable side? The first option just diminishes the effective amount of money
that works. Moreover, the other side also wins sometimes, so we put 1− f on the
side with 1 − p chance. If after N such bets the p-side came n times then your
money is multiplied by the factor (2f)n[2(1− f)]N−n = 2NΛ, where the rate is

Λ(f) = 1 +
n

N
log2 f +

(
1− n

N

)
log2(1− f) . (112)

As N → ∞ we approach the mean geometric rate, which is λ = 1 + p ln f + (1 −
p) ln(1− f). Note the similarity with the Lyapunov exponents from Sections 3.3–
3.5 — we consider the logarithm of the exponentially growing factor since we know
limN→∞(n/N) = p (it is called self-averaging quantity because it is again a sum
of random numbers). Differentiating Λ(f) with respect to f you find that the
maximal growth rate corresponds to f = p (proportional gambling) and equals to

λ(p) = 1 + p log2 p+ (1− p) log2(1− p) = S(u)− S(p) , (113)

where we denoted the entropy of the uniform distribution S(u) = 1 bit. We thus
see that the maximal rate of money growth equals to the entropy decrease, that is
to the information you have (Kelly 1950). What is beautiful here is that the proof
of optimality is constructive and gives us the best betting strategy. An important
lesson is that we maximize not the mean return but its mean logarithm, that is a
geometric mean. Since it is a self-averaging quantity the probability to grow with
this rate approaches unity as N → ∞. Note, however, that the geometric mean
is less than the arithmetic mean. Therefore, we may have a situation when the
arithmetic growth rate is larger than unity while the geometric mean is smaller
than unity. That would be unfortunate, since the probability to loose it all will
tend to unity as N →∞, even though the mean returns grows unbounded.

It is straightforward to generalize (113) for gambling on horse races or investing,
where many outcomes have different probabilities pi and payoffs gi. To maximizing∑
pi log(figi) we look for the maxumum of

∑
pi log fi. Since

∑
fi = 1 we can treat

it as a distribution. The relative entropy
∑
pi log(pi/fi) is non-negative, so that∑

pi log fi reaches its maximum when all fi = pi independent of gi, that is our
distribution coincide with the true distribution, which is proportional gambling.
The rate is then

λ(p, g) =
∑
i

pi ln(pigi) . (114)

Here you have a formidable opponent - the track operator, who actually sets the
payoffs. Knowing the probabilities, an ideal operator can set the payoffs, gi = 1/pi,
to make the game fair and your rate zero. More likely is that the real operator
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has business sense to make the racecourse profitable by setting the payoffs a bit
lower to make your λ negative20. Your only hope then is that your information
is better. Indeed, if the operator assumes that the probabilities are qi and sets
payoffs as gi = 1/Zqi with Z > 1, then

λ(p, q) = − lnZ +
∑
i

pi ln(pi/qi) = − lnZ +D(p|q) . (115)

That is if you know the true distribution but the operator uses the approximate
one, the relative entropy D(p|q) determines the rate with which your winnings
can grow. Nobody’s perfect so maybe you use the distribution q′, which is not
the true one. In this case, you still have a chance if your distribution is closer to
the true one: λ(p, q, q′) = − lnZ + D(p|q) − D(p|q′). Remind that the entropy
determines the optimal rate of coding. Using incorrect distribution incurs the cost
of non-optimal coding. Amazingly, (115) tells that if you can encode the data
describing the sequence of track winners shorter than the operator, you get paid
in proportion to that shortening21.

To feel less smug, note that bacteria follow the same strategy without ever
taking this or other course on statistical physics. Indeed, analogously to coin
flipping, bacteria often face the choice between growing fast but being vulnerable to
antibiotic or grow slow but being resistant. They then use proportional gambling
to allocate respective fractions of populations to different choices. There could
be several lifestyle choices, which is analogous to horse racing problem (called
phenotype switching in this case). The same strategy is used by many plants,
where the fraction of the seeds do not germinate in the same year they were
dispersed; the fraction increases together with the environment variability.

More generally, the environment can be characterized by a set of parameters
A, while the internal state of a gambler, plant or bacteria can be characterized by
another set of parameters denoted B. In the proportional gambling setting, A is
the vector of probabilities {pi} and B is the vector of fractions {fi}. In another
setting, A could include the concentration of a nutrient and B - the amount of
enzyme needed to metabolize the nutrient. The growth rate is then the function
of these two parameters r(A,B) and the mean growth rate is as follows:

λ =

∫
dAdB P (A,B)r(A,B) =

∫
dAP (A)

∫
dB P (B|A)r(A,B) . (116)

20European roulette wheel has 37 red and black pockets a single green, so that even the
highest-odds bets, on red or black, have a slightly less than half chance of success.

21In reality, people bet according to their whims rather than play a long game, while
bookmakers set the rewards according to the statistics of betting rather than horse win-
nings, which guarantees their income independent of the race outcome.
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To maximize the growth, bacteria, plants and gamblers need to coordinate the
internal state with that of environment. That coordination is determined by the
conditional probability P (B|A), which determines the mutual information between
the external world and the internal state:

I(A,B) =

∫
dAP (A)

∫
dBP (B|A) log2

P (B|A)

P (B)
. (117)

But acquiring that information has its own cost aI. One then looks for a tradeoff
between maximizing growth and minimizing information cost. To decrease the cost
of acquiring this information, we wish to let P (B|A) closer to P (B). Therefore,
we look for the maximum of the functional F = λ − aI, which gives similarly to
(105,106)

P (B|A) =
P (B)

Z(A, β)
eβr(A,B) , (118)

where β = a−1 ln 2 and the partition function Z(A, β) =
∫
dBP (B)eβr(A,B) is

the normalization factor. We now recognize the rate distortion theory from the
previous subsection; the only difference is that the energy now is minus the growth
rate. The choice of β reflects relative costs of the information and the metabolism.
If information is hard to get, one chooses small β, which makes P (B|A) weakly
dependent of r(A,B) and close to unconditional probability. If information is
cheaper, (118) tells us that we need to peak our conditional probability around the
maxima of the growth rate. All the possible states in the plane r, I are below some
monotonic convex curve, much like in the energy-entropy plane in Section 1.1. One
can reach optimal (Gibbs) state on the boundary either by increasing the growth
rate at a fixed information of by decreasing the information at a fixed growth rate.

So far we assumed that the probabilities {pi} are known. But more often one
needs to play the game to learn the chances. As one plays, incurs some gains and
losses and collects some information, one needs to strike the right balance between
exploitation of an existing information to maximize the gain and exploration for
a new information. For example, there is a broad class of the so-called sequential
allocation problems encompassing design of clinical trials, adaptive routing, job-
scheduling, and military logistics. Optimal for all them is the remarkable index
strategy, which we first illustrate using the simple problem of scheduling jobs: Job
i takes time ti and, on completion, gives reward ri. It is important that later
rewards are γt less valuable, where the discount factor 0 < γ < 1. To maximize
the total discounted reward, we do i before j, if riγ

ti + rjγ
ti+tj > rjγ

tj + riγ
ti+tj

or

νi =
γti

1− γti
ri > νj =

γtj

1− γtj
rj .
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So we can compute this index νi for each job independently, and schedule them
in decreasing order of the indices. Let us now play more complicated multi-armed
bandit game, where we can only make one bet at a time, choosing among several
options (arms of slot-machines). Imagine that each arm gives the same reward
r = 1 if you win and 0 if you loose. At the start we do not know the probabilities
of winning si, so we assume uniform prior: P (si) = 1, 0 ≤ si ≤ 1. We play
each arm several times and compute the posterior distribution by Bayes’ formula.
If we encountered wi wins and li losses, then for every value of si, the posterior
probability is the binomial distribution of wi, li happening:

P (si) = swi
i (1− si)li

(wi + li + 1)!

wi!li!
. (119)

Upon further trials with l losses and k wins, the distribution is multiplied by
ski (1 − si)

l, that is preserves its form, just renormalizing parameters. Bayesian
update for every arm is equivalent to a random walk in a positive direction on a
2-dimensional lattice (wi, li). Each of these lattice points is a state of a Markov
process with one-step vector of transition probabilities P = {wi/(wi + li), li/(wi +
li)}.

We need a strategy which maximizes the sum of the discounted rewards: the
expected value of the sum r0 + γr1 + γ2r2 + . . .. Even though the total number
of steps is potentially infinite, the discount factor introduces an effective horizon
' (1 − γ)−1. The powerful statement that we give without a proof is that the
optimal strategy is to play at each step the arm with the maximal Gittins index
νi (Gittins, 1979). It is the ratio of the expected sum of rewards to the discounted
time, under the probability that it will be terminated in the future:

ν(li, ni, t) = sup
τ>0

∑τ−1
k=0 γ

k〈rt+k−1〉∑τ−1
k=0 γ

k
, (120)

where 〈rt+k−1〉 = wi(ti+k−1)/[wi(ti+k−1)+ li(ti+k−1)] is the expected award
at the step k, and we sum the future rewards that one would obtain by choosing
to play only the i-th arm up to the stopping time t+ τ . The brackets denote the
averaging over all the lattice paths with expectations based on the distributions
(119) at every lattice point (wi(ti + k − 1), li(ti + k − 1). We take the maximum
over the number of future steps, which is variable, since we admit the possibility
of switches to another arm. That supremum can be shown to be achieved, that is
the stopping time τ is finite, because the discounted time in the denominator of
(120) grows with τ . Denote L = ν/(1− γ), then

L = (1− γτ )
τ−1∑
k=0

γk〈rt+k−1〉 =
τ−1∑
k=0

γk〈rt+k−1〉+ γτL .
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So this is the value L for which receiving the lump sum L now or after some
optimal number of further rewards are equally good alternatives. One then obtains
L (numerically) as a maximal reward which is a fixed point, that is does not change
upon one step.

The game thus proceeds as follows: At the beginning, each index is equal to
the prior probability of winning, which is 1/2. We start from an arbitrary arm
and play it until the number of losses makes its index less than 1/2, then we
switch to another one, etc. After a while, all arms are played many times with
switches occurring when enough losses encountered. In the limit li + wi → ∞,
the probability shrinks to P (si) = δ(si − pi), where pi = limli+wi→∞wi/(wi + li),
the mean reward is r0 = pi and the evident optimal strategy is to choose the arm
with the highest pi, that is νi = r0 = pi. Generally, the finite-time index is larger
than its infinite-time asymptotics, accounting for the possibility that the actual
probability is larger than the observed one. As we play an arm, its distribution
(119) is getting more and more narrow and the index decreases, which makes
it possible to switch to another arm. Switching arms provides a possibility of
exploration and obtaining new information.

Financial activity of people is not completely reducible to gambling and its
essence understood much less. When you earn enough money, it may be a good
time to start thinking about the nature of money itself. Money appeared first
as a measure of value, it acquired probabilistic aspect with the development of
credit. These days, when most of it is in bits, it is clear that this is not matter
(coins, banknotes) but information. Moreover, the total amount of money grows
on average, but could experience sudden drops when the crisis arrives. Yet in pay-
ments money behaves as energy, satisfying the conservation law. I have a feeling
that we need a new concept for describing money, which has properties of both
entropy and energy. Free energy combines energy and entropy additively, descri-
bing, in particular, how an entropy increase (loss of information) diminished the
amount of work one can do. Similarly, free energy can describe a decrease in pur-
chasing power due to information loss. Yet we probably need a more sophisticated
notion to describe money as a universal medium of exchange, which is essentially
a social construct. For example, cold hard cash is guaranteed by governments, but
credit card payments are guaranteed usually by private banks, so these two kinds
of money are not identical. Add to this non-bank money like cryptocurrencies
and we start to understand that the value of money depends essentially on how
many people agree to use it. It is a challenge to devise a conceptual framework
able to handle both material and ephemeral sides of money, but it seems that the
information theory is a right place to start.

The preceding sections gave a long list of representation examples of various
efficiency. To finish with it, mention briefly the standard problem of choosing how
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many fitting parameters to use. While it is intuitively clear that one should not
use too many parameters for too few data points, mutual information makes this
choice precise. If we work with a given class of functions (say, Fourier harmonics)
then it is clear that increasing the number K of functions we can approximate our
N points better and better, so that the deviation D(K) is a decreasing function
of K. But we know that our data contain noise so it does not make much sense to
approximate every fluctuation. In other words, every fitting parameter introduces
its own entropy si (for a white noise, we have all Fourier harmonics having the same
si). Technically, we need to minimize the mutual information of the representation,
which would consist of two parts: ND(K) +

∑K
i=1 si. Here the first term comes

from an imperfect data fitting, so it contains the relative entropy D(K) between
our hypothetical distribution and the true one, while the second term is the entropy
related to our K degrees of freedom. Extremum comes from a competition between
two terms. When we obtain more data and N is getting large, the value of K,
which gives a minimum, usually saturates.

5 Stochastic processes

So far, we quantified uncertainty mostly by counting the possibilities. Classifying
and counting are among the most difficult mental processes (possibly, because it
is not easy to be fair). It is best to hire somebody else to do the job. That tireless
somebody, who never stops, is a random walker. In this Section, we explore and
exploit the fundamental process of random walk in different environments. We first
introduce the random walk in discrete and continuous versions, then the Brownian
motion. It will allow us to present the modern generalizations of the second law and
fluctuation-dissipation relations using random walk in a changing landscape. It is
interesting both for fundamentals of science and for numerous modern applications
related to fluctuations in nano-particles, macro-molecules, stock market prices etc.
We then describe the Google’s PageRank algorithm which uses random walk on a
graph to quantify not the amount of information but its perceived importance.

5.1 Random walk and diffusion

Consider a particle that can hop randomly to a neighboring cite of d-dimensional
cubic lattice, starting from the origin at t = 0. We denote a the lattice spacing, τ
the time between hops and ei the orthogonal lattice vectors that satisfy ei · ej =
a2δij . The probability to be in a given cite x evolves according to the equation

P (x, t+ τ) =
1

2d

d∑
i=1

[P (x + ei, t) + P (x− ei, t)] . (121)
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That can be rewritten in the form convenient for taking the continuous limit:

P (x, t+ τ)− P (x, t)

τ
=

a2

2dτ

d∑
i=1

P (x + ei, t) + P (x− ei, t)− 2P (x, t)

a2
. (122)

This is a finite difference approximation to the diffusion equation if we take the
continuous limit a→ 0, τ → 0 keeping finite the ratio κ = a2/2dτ :

(∂t − κ∆)P (x, t) = 0 . (123)

The space density ρ(x, t) = P (x, t)a−d satisfies the same equation. The solution
with the initial condition ρ(x, 0) = δ(x) is the Gaussian distribution:

ρ(x, t) = (4πκt)−d/2exp

(
− x2

4κt

)
. (124)

As well as (121,122), the diffusion equation conserves the total probability,
∫
ρ(x, t) dx,

because it has the form of a continuity equation, ∂tρ(x, t) = −div j with the cur-
rent j = −κ∇ρ. Note that (123,124) are isotropic and translation invariant while
the discrete version respected only cubic symmetries.

Another way to describe a random walk is to treat ei as a random variable

with 〈ei〉 = 0 and 〈eiej〉 = a2δij , so that x =
∑t/τ
i=1 ei. The probability of the sum

is (124), that is the product of Gaussian distributions of the components, with the
variance growing linearly with t.

A path of a random walker behaves rather like a surface than a line. Two-
dimensionality of the random walk is a reflection of the square-root diffusion law:
〈x〉 ∝

√
t. Indeed, we defined in Section 2.4 the box-counting dimension (54)

looking how the number of boxes N(a) needed to cover the a geometric object
grow as the box size a decreases. For a line, N ∝ 1/a, generally N ∝ a−d. As we
discussed above, diffusion requires the time step to shrink with the lattice spacing
according to τ ∝ a2. The number of elements is the number of steps and grows for a
given t as N(a) = t/τ ∝ a−2, so that d = 2. One can also obtain dimension of a set
as the relation between its size x and the number N ∝ xd of standard-size elements
needed to cover it. For a random walk, the number of elements is of order of the
number of steps, N ∝ t ∝ x2. Surfaces generally intersect along curves in 3d, they
meet at isolated points in 4d and do not meet at d > 4. That is reflected in special
properties of critical phenomena in 2d (where random walker fills the surface) and
4d (where random walkers do not meet and hence do not interact). Is the mean
time spent on a given site,

∑∞
t=0 P (x, t), finite or infinite? It follows from (124)

that the answer depends on the space dimensionality:
∫
ρ(x, t) dt ∝

∫∞ t−d/2dt
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diverges for d ≤ 2. In other words, the walker in 1d and 2d returns to any point
infinite number of times.

The properties of random walks can be expressed alternatively in terms of sums
over different paths. Let us write the transition probability indicating explicitly
the origin: ρ(x, t; 0, 0). It is a conditional probability of x under the condition that
the time −t before the walker was at 0. Then we can write the convolution identity
which simply states that the walker was certainly somewhere at an intermediate
time t1:

ρ(x, t; 0, 0) =

∫
ρ(x, t;x1, t1)ρ(x1, t1; 0, 0) dx1 . (125)

We now divide the time interval t into an arbitrary large number of intervals and
using (124) we write

ρ(x, t; 0, 0) =

∫
Πn
i=0

dxi+1

[4πκ(ti+1 − ti)]d/2
exp

[
− (xi+1 − xi)

2

4κ(ti+1 − ti)

]

→
∫
Dx(t′) exp

[
− 1

4κ

∫ t

0
dt′ẋ2(t′)

]
. (126)

The last expression is an integral over paths that start at zero and end up at x
at t. Notation Dx(t′) implies integration over the positions at intermediate times
normalized by square roots of the time differences. The exponential gives the
weight of every trajectory.

5.2 Brownian motion

Let us see how the properties of the random walk and diffusion appear a
physical system. We consider the motion of a small particle in a fluid. The
momentum of the particle, p = Mv, changes because of collisions with the
molecules. Thermal equipartition quarantees that the mean kinetic energy
of the particle is the same as of any molecule and equal to T/2, When the
particle M is much larger than the molecular mass m then the rms parti-

cle velocity v =
√
T/M is small comparing to the typical velocities of the

molecules vT =
√
T/m. Then one can write the force f(p) acting on it as

Taylor expansion in p, keeping the first two terms, independent of p and
linear in p: fi(p, t) = fi(0, t) + pj(t)∂fi(0, t)/∂pj(t) (note that we neglected
the dependence of the force of the momentum at earlier times). Such ex-
pansion makes sense if the third term is much less than the second one, but
then the second term must be much smaller than the first one — what is the
reason to keep both? The answer is that molecules hitting standing particle
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produce force whose average is zero. The mean momentum of the particle is
zero as well. However, random force by itself would make the squared mo-
mentum grow with time exactly like the squared displacement of a random
walker in the previous section. To describe the particle in equilibrium with
the medium, the force must be balanced by resistance which is also provided
by the medium: the particle meets more molecules in the direction it moves
and looses its momentum to them. That resistance has non-zero mean and
must be described by the second term, which then may be approximated as
∂fi/∂pj = −λδij. If the particle radius R is larger than the mean free path `,
in calculating resistance, we can consider fluid as a continuous medium and
characterize it by the viscosity η. For a slow moving particle, v � vT `/R,
the resistance is given by the Stokes formula

λ = 6πηR/M . (127)

We then obtain
ṗ = f − λp . (128)

The solution of the linear equation (128) is

p(t) =
∫ t

−∞
f(t′)eλ(t′−t)dt′ . (129)

We must treat the force f(t) as a random function since we do not track
molecules hitting the particle, which makes (128) Langevin equation. We
assume that 〈f〉 = 0 and that 〈f(t′)·f(t′+t)〉 = 3C(t) decays with t during the
correlation time τ which is much smaller than λ−1. Since the integration time
in (129) is of order λ−1 then the condition λτ � 1 means that the momentum
of a Brownian particle can be considered as a sum of many independent
random numbers (integrals over intervals of order τ) and so it must have a
Gaussian statistics ρ(p) = (2πσ2)−3/2 exp(−p2/2σ2) where

σ2 = 〈p2
x〉=〈p2

y〉=〈p2
z〉=

∫ ∞
0
C(t1 − t2)e−λ(t1+t2)dt1dt2

≈
∫ ∞

0
e−2λt dt

∫ 2t

−2t
C(t′) dt′≈ 1

2λ

∫ ∞
−∞

C(t′) dt′ . (130)

On the other hand, equipartition guarantees that 〈p2
x〉 = MT so that we

can express the friction coefficient via the correlation function of the force
fluctuations (a particular case of the fluctuation-dissipation theorem):

λ =
1

2TM

∫ ∞
−∞

C(t′) dt′ . (131)
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Displacement

∆r(t′) = r(t+ t′)− r(t) =
∫ t′

0
v(t′′) dt′′

is also Gaussian with a zero mean. To get its second moment we need the
different-time correlation function of the velocities

〈v(t) · v(0)〉 = (3T/M) exp(−λ|t|) (132)

which can be obtained from (129). Note that the friction makes velocity
correlated on a longer timescale than the force. That gives

〈|∆r|2(t′)〉 =
∫ t′

0
dt1

∫ t′

0
dt2〈v(t1)v(t2)〉 =

6T

Mλ2
(λt′ + e−λt

′ − 1) .

The mean squared distance initially grows quadratically (so-called ballistic
regime at λt′ � 1). In the limit of a long time (comparing to the relaxation
time λ−1 rather than to the force correlation time τ) we have the diffusive
growth 〈(∆r)2〉 ≈ 6Tt′/Mλ. Generally 〈(∆r)2〉 = 2dκt where d is space
dimensionality and κ - diffusivity. In our case d = 3 and then the diffusivity
is as follows (the Einstein relation):

κ =
T

Mλ
=

T

6πηR
. (133)

The diffusivity depends on the particle radius but not the mass. Heavier
particles are slower both to start and to stop moving. Measuring diffusion of
particles with a known size one can determine the temperature22.

The probability distribution of displacement at λt′ � 1,

ρ(∆r, t′) = (4πκt′)−3/2 exp[−|∆r|2/4κt′] ,

satisfies the diffusion equation ∂ρ/∂t′ = κ∇2ρ. If we have many particles
initially distributed according to n(r, 0) then their distribution n(r, t) =∫
ρ(r− r′, t)n(r′, 0) dr′, also satisfies the diffusion equation: ∂n/∂t′ = κ∇2n.

22With temperature in degrees, (133) contains the Boltzmann constant, k = κMλ/T ,
which was actually determined by this relation and found constant indeed, i.e. independent
of the medium and the type of particle. That proved the reality of atoms - after all, kT is
the kinetic energy of a single atom.
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In the external field V (q), the particle satisfies the equations

ṗ = −λp + f − ∂qV , q̇ = p/M . (134)

Note that these equations characterize the system with the Hamiltonian H =
p2/2M+V (q), that interact with the thermostat, which provides friction−λp
and agitation f - the balance between these two terms expressed by (131)
means that the thermostat is in equilibrium.

We now pass from considering individual trajectories to the description
of the ”cloud” of trajectories and its statistics. Remind that our particle is
macroscopic, that is we consider the so-called over-damped limit λτ � 1,
where τ is the random force correlation time. Since we shall not be in-
terested in small irregular changes of the velocity, but only in the statis-
tics of displacement, we average (coarse-grain) over moving time window,
p(t) → p(t) =

∫ t+τ
t−τ p(t

′)dt′. After the average, we can neglect acceleration.
In this limit our second-order equation (134) on q is reduced to the first-order
equation (we keep the same notations for coarse-grained quantities):

λp = λM q̇ = f − ∂qV . (135)

We can now derive the equation on the probability distribution ρ(q, t), which
changes with time due to random noise and evolution in the potential, the
two mechanisms can be considered additively. We know that without V ,

q(t)− q(0) = (λM)−1
∫ t

0
f(t′)dt′ , 〈|q(t)− q(0)|2〉 = 2κt ,

and the density ρ(q, t) satisfies the diffusion equation. With V but without
thermal kicks, we have the dynamical equation without any randomness,
λM q̇ = −∂qV , which corresponds to a flow in q-space with the velocity
w = −∂qV/λM . In that flow, density satisfies the continuity equation ∂tρ =
−div ρw = −∂qiwiρ. Together, diffusion and advection give the so-called
Fokker-Planck equation

∂ρ

∂t
= κ∇2ρ+

1

λM

∂

∂qi
ρ
∂V

∂qi
= −div J . (136)

More formally, one can derive this equation by writing the Langevin equation
(135) as q̇i − wi = ηi and taking the random force Gaussian delta-correlated:
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〈ηi(0)ηj(t)〉 = 2κδijδ(t). Since it is the quantity q̇ − w which is Gaussian now,
then the path integral representation (126) changes into

ρ(q, t; 0, 0) =

∫
Dq(t′) exp

[
− 1

4κ

∫ t

0
dt′|q̇−w|2

]
, (137)

To describe the time change, consider the convolution identity (125) for an infini-
tesimal time shift ε, then instead of the path integral we get simply the integral
over the initial position q′. We substitute q̇ = (q− q′)/ε into (137) and obtain

ρ(q, t) =

∫
dq′(4πκε)−d/2 exp

[
− [q− q′ − εw(q′)]2

4κε

]
ρ(q′, t− ε) . (138)

What is written here is simply that the transition probability is the Gaussian
probability of finding the noise η with the right magnitude to provide for the
transition from q′ to q. It is a coarse-grained continuous version of (121). We now
change integration variable, y = q′+ εw(q′)−q, and keep only the first term in ε:
dq′ = dy[1− ε∂q ·w(q)]. Here ∂q ·w = ∂iwi = divw. In the resulting expression,
we expand the last factor ρ(q′, t− ε):

ρ(q, t) ≈ (1− ε∂q ·w)

∫
dy(4πκε)−d/2e−y

2/4κερ(q + y − εw, t− ε)

≈ (1− ε∂q ·w)

∫
dy(4πκε)−d/2e−y

2/4κε
[
ρ(q, t) + (y − εw) · ∂qρ(q, t)

+(yiyj − 2εyiwj + ε2wiwj)∂i∂jρ(q, t)/2− ε∂tρ(q, t)
]

= (1− ε∂q ·w)[ρ− εw · ∂qρ+ εκ∆ρ− ε∂tρ+O(ε2)] , (139)

and obtain (136) collecting terms linear in ε. Note that it was necessary to expand

until the quadratic terms in y, which gave the contribution linear in ε, namely the

Laplacian, i.e. the diffusion operator.

The Fokker-Planck equation has a stationary solution which corresponds
to the particle in an external field and in thermal equilibrium with the sur-
rounding molecules:

ρ(q) ∝ exp[−V (q)/λMκ] = exp[−V (q)/T ] . (140)

Apparently it has a Boltzmann-Gibbs form, and it turns into zero the pro-
bability current: J = −ρ∂V/∂q − κ∂ρ/∂q = e−V/T∂(ρeV/T )/∂q = 0. From
the perspective of the Information Theory, if the only thing we know is that
particle at q has the mean energy V (q) then the probability distribution is
an exponent of the energy.

We shall use the Fokker-Planck equation in the next section for the con-
sideration of the detailed balance and fluctuation-dissipation relations.
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5.3 General fluctuation-dissipation relation

Recently, a significant generalization of equilibrium statistical physics ap-
peared for systems with one or few degrees of freedom deviated arbitrary
far from equilibrium. This is under the assumption that the rest of the
degrees of freedom is in equilibrium and can be represented by a thermo-
stat generating thermal noise. This new approach also allows one to treat
non-thermodynamic fluctuations, like the negative entropy change.

We illustrate these developments using the example of the over-damped
Brownian particle with the coordinate x(t) in a time-dependent potential
V (x, t):

ẋ = −∂xV + η . (141)

Here the random function η(t) can be thought of as representing interaction
with a thermostat with the temperature T so that 〈η(0)η(t)〉 = 2Tδ(t). This
equation (used very often in different applications) can be applied to any
macroscopic observable, where one can distinguish a systematic and random
part of the evolution.

The Fokker-Planck equation for the probability ρ(x, t) has the form (136):

∂tρ = T∂2
xρ+ ∂x(ρ∂xV ) = −ĤFPρ . (142)

We have introduced the Fokker-Planck operator,

HFP = − ∂

∂x

(
∂V

∂x
+ T

∂

∂x

)
,

which allows one to exploit an analogy between quantum mechanics and sta-
tistical physics. We may say that the probability density is the ψ-function
is the x-representation, ρ(x, t) = 〈x|ψ(t)〉. In other words, we consider evo-
lution in the Hilbert space of functions so that we may rewrite (142) in
a Schrödinger representation as d|ψ〉/dt = −ĤFP |ψ〉, which has a formal
solution |ψ(t)〉 = exp(−tHFP )|ψ(0)〉. The only difference with quantum me-
chanics is that their time is imaginary (of course, they think that our time is
imaginary). In other terms, Schrodinger equation, (ıh̄∆− 2mV )|ψ〉 = 0 cor-
responds to imaginary diffusivity. The transition (conditional) probability is
given by the matrix element:

ρ(x′, t′;x, t) = 〈x′| exp[(t− t′)HFP )|x〉 . (143)
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Without the coordinate-dependent field V (x), the transition probability is
symmetric, ρ(x′, t;x, 0) = ρ(x, t;x′, 0), which is formally manifested by the
fact that the respective Fokker-Planck operator ∂2

x is Hermitian. This pro-
perty is called the detailed balance.

How the detailed balance is modified in an external field? If the po-
tential V is time independent, then we have a Gibbs steady state ρ(x) =
Z−1

0 exp[−βV (x)], where Z0 =
∫

exp[−βV (x, 0)] dx. That state satisfies a
modified detailed balance: the probability current is the (Gibbs) probability
density at the starting point times the transition probability; forward and
backward currents must be equal in equilibrium:

ρ(x′, t;x, 0)e−V (x)/T = ρ(x, t;x′, 0)e−V (x′)/T . (144)

〈x′|e−tHFP−V/T |x〉 = 〈x|e−tHFP−V/T |x′〉 = 〈x′|e−V/T−tH
†
FP |x〉 .

Since this must be true for any x, x′ then e−tH
†
FP = eV/T e−tHFP e−V/T and

H†FP ≡
(
∂V

∂x
− T ∂

∂x

)
∂

∂x
= eV/THFP e

−V/T , (145)

i.e. eV/2THFP e
−V/2T is hermitian, which can be checked directly. The quantum-

mechanical notations thus allowed us to translate the detailed balance from
the property of transition probabilities to that of the evolution operator.

If we now allow the potential to change in time then the system goes
away from equilibrium. Consider an ensemble of trajectories starting from
the initial positions taken with the equilibrium Gibbs distribution corre-
sponding to the initial potential: ρ(x, 0) = Z−1

0 exp[−βV (x, 0)]. As time
proceeds and the potential continuously changes, the system is never in equi-
librium, so that ρ(x, t) does not generally have a Gibbs form. Indeed, even
though one can define a time-dependent Gibbs state Z−1

t exp[−βV (x, t)] with
Zt =

∫
exp[−βV (x, t)]dx, one can directly check that it is not any longer

a solution of the Fokker-Planck equation (142) because of the extra term:
∂tρ = −βρ∂tV . The distribution needs some time to adjust to the potential
changes and is generally dependent on the history of these. For example, if
we suddenly broaden the potential well, it will take diffusion (with diffusivity
T ) to broaden the distribution. Still, can we find some use of the Gibbs fac-
tor and also have anything generalizing the detailed balance relation (144)
we had in equilibrium? Such relation was found surprisingly recently despite
its generality and relative technical simplicity of derivation.
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To find the quantity that has a Gibbs form (i.e. have its probability
determined by the instantaneous partition function Zt), we need to find an
equation which generalizes (142) by having an extra term that will cancel the
time derivative of the potential. It is achieved by considering, apart from a
position x, another random quantity defined as the potential energy change
(or the external work done) along the particle trajectory during the time t:

Wt =
∫ t

0
dt′
∂V (x(t′), t′)

∂t′
. (146)

The time derivative is partial i.e. taken only with respect to the second
argument, so that the integral is not equal by the difference between the
start and the finish, but is determined by the whole history. The work is a
fluctuating quantity depending on the trajectory x(t′), which depends on the
initial point and noise.

Let us now take many different realizations of the noise η(t), choose
initial x(0) with the Gibbs probability ρ0 and run (141) many times with
different initial data and noise realizations taken with their probabilities.
It will give us many trajectories having different endpoints x(t) and diffe-
rent energy changes W accumulated along the way. Now consider the joint
probability ρ(x,W, t) to come to x acquiring energy change W . This two-
dimensional probability distribution satisfies the generalized Fokker-Planck
equation, which can be derived as follows: Similar to the argument prece-
ding (136), we note that the flow along W in x − W space proceeds with
the velocity dW/dt = ∂tV so that the respective component of the current is
ρ∂tV and the equation takes the form

∂tρ = β−1∂2
xρ+ ∂x(ρ∂xV )− ∂

W
ρ∂tV , (147)

Since W0 = 0 then the initial condition for (147) is

ρ(x,W, 0) = Z−1
0 exp[−βV (x, 0)]δ(W ) . (148)

While we cannot find ρ(x,W, t) for arbitrary V (t) we can multiply (147) by
exp(−βW ) and integrate over dW . Since V (x, t) does not depend on W , we
get the closed equation for f(x, t) =

∫
dWρ(x,W, t) exp(−βW ):

∂tf = β−1∂2
xf + ∂x(f∂xV )− βf∂tV , (149)

Now, this equation does have an exact time-dependent solution

f(x, t) = Z−1
0 exp[−βV (x, t)] ,
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where the factor Z−1
0 is chosen to satisfy the initial condition (148). Note

that f(x, t) is instantaneously defined by V (x, t), no history dependence as
we have generally in ρ(x, t). In other words, the distribution weighted by
exp(−βWt) looks like Gibbs state, adjusted to the time-dependent potential
at every moment of time. Remark that the phase volume defines probability
only in equilibrium, yet the work divided by temperature is an analog of the
entropy change (production), and the exponent of it is an analog of the phase
volume change. Let us stress that f(x, t) is not a probability distribution.
In particular, its integral over x is not unity but the mean phase volume
change, which remarkably is expressed via equilibrium partition functions at
the ends (Jarzynski 1997):∫

f(x, t)dx =
∫
ρ(x,W, t)e−βWdxdW =

〈
e−βW

〉
=
Zt
Z0

=

∫
e−βV (x,t)dx∫
e−βV (x,0)dx

. (150)

Here the bracket means double averaging: over the initial distribution ρ(x, 0)
and over the different realizations of the Gaussian noise η(t) during the
time interval (0, t). We can also obtain all weighted moments of x like
〈xn exp(−βWt)〉 23. One can introduce the free energy Ft = −T lnZt, so
that Zt/Z0 = exp[β(F0 − Ft)].

Let us reflect. We started from a Gibbs distribution but considered ar-
bitrary temporal evolution of the potential. Therefore, our distribution was
arbitrarily far from equilibrium during the evolution. And yet, to obtain the
mean exponent of the work done, it is enough to know the partition functions
of the equilibrium Gibbs distributions corresponding to the potential at the
beginning and at the end (even though the system is not in equilibrium at the
end). This is, of course, because the further relaxation to the equilibrium
at the end value of the potential is not accompanied by doing any work.
Remarkable that there is no dependence on the intermediate times. One
can also look at it from the opposite perspective: no less remarkable is that
one can determine the truly equilibrium property, the free energy difference,
from non-equilibrium measurements (which could be arbitrary fast rather
than adiabatically slow as we used to do in traditional thermodynamics).

We can write for the dissipation Wd = W − Ft + F0 (the work minus the
free energy change) the following identity:

〈e−βWd〉 =
∫
dWdρ(Wd) exp(−βWd) = 〈e−∆S〉 = 1 , (151)

23I thank R. Chetrite for this derivation.
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which is a generalization of the second law of thermodynamics. Indeed,
the mean dissipation divided by temperature is the thermodynamic entropy
change. Using the Jensen inequality 〈eA〉 ≥ e〈A〉, one can obtain the usual
second law of thermodynamics in the following form:

〈βWd〉 = 〈∆S〉 ≥ 0 .

Moreover, the Jarzynski relation is a generalization of the fluctuation-dissipa-
tion theorem, which can be derived from it for small deviations from equi-
librium. Namely, we can consider V (x, t) = V0(x) − f(t)x, consider limit
of f → 0, expand (150) up to the second-order terms in f and express the
response to the field as the time derivative of the second moment.

When information processing is involved, it must be treated on equal
footing, which allows one to decrease the work and the dissipation below the
free energy difference:

〈e−βWd−I〉 = 〈e−∆S〉 = 1 . (152)

(Sagawa and Uedo, 2012; Sagawa 2012). We have considered such a case in
Section 4.2, where we denoted Wd = Q and used 〈Wd〉 ≥ −IT = −T∆S.
The exponential equality (152) is a generalization of this inequality and (94).

So the modern form of the second law of thermodynamics is an equality
rather than an inequality. The latter is just a partial consequence of the
former. Compare it with the re-formulation of the second law in Section 3.3
as a conservation law rather than a law of increase. And yet (152) is not
the most general form. The further generalization is achieved by relating the
entropy production to irreversibility, stating that the probability to have a
change −∆S in a time-reversed process is as follows (Crooks 1999):

ρ†(−∆S) = ρ(∆S)e−∆S . (153)

Integrating (153) one obtains (152). That remarkable relation allows also
one to express the mean entropy production via the relative entropy (83)
between probabilities of the forward and backward evolution:

〈∆S〉 =
〈
ln[ρ(∆S)/ρ†(−∆S)]

〉
. (154)

Let us derive the relation (153) for our toy model of the generalized
baker map from the Section 2.4. Remind that at every step the volume
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contraction factor is the Jacobian of the transformation: J = r/l for x ∈
(0, l) and J = l/r for x ∈ (l, 1). We derived there a long-time average
rate of the entropy production, ln J = (l − r) ln(r/l), which corresponded
to the volume contraction rate of a fluid element. However, during a finite
time n there is always a finite probability to observe an expansion of an
element. This probability must decay exponentially with n, and there is a
universal law relating relative probabilities of the extraction and contraction.
If during n steps a small rectangular element finds themselves n1 times in
the region 0 < x < l and n2 = n − n1 times inside l < x < 1 then its
sides along x and y will be multiplied respectively by l−n1r−n2 and rn1ln2 .
The volume contraction factor for such n-sequence is (l/r)n2−n1 and its log is
∆S = n ln J = n1 ln r

l
+n2 ln l

r
. The probability of the sequence is P (ln J) =

ln1rn2 . Opposite sign of ln J will takes place, for instance, in a time-reversed
sequence. Time reversal corresponds to the replacement x→ 1−y, y → 1−x,
that is the probability of such sequence is P (− ln J) = rn1ln2 . Therefore,
denoting the entropy production rate σ = − ln J , we obtain the universal
probability independent of r, l:

P (∆S)

P (−∆S)
=

P (σ)

P (−σ)
=

(
l

r

)n2−n1

= enσ = e∆S . (155)

In a multi-dimensional case, apart from making the potential time-dependent,
there is another way to deviate the system from equilibrium: to add to the random
thermal force f(t) and the potential force −∂qV (q) another coordinate-dependent
force F(q) which is non-potential (not a gradient of any scalar):

ṗ = −λp+ f − ∂qV + F , q̇ = p/M .

The dynamical equations (with λ = 0 and f = 0) have the form ṗ = −∂qH + F,
q̇ = ∂pH, where H = p2/2M +V . Since the non-potential force makes the system
non-Hamiltonian, contact with the thermostat generally does not lead to thermal
equilibrium, as we discussed in Section 2.4. The equation on the full phase-space
distribution ρ(p,q, t) has the form

∂tρ = {H, ρ}+ T∆pρ+ ∂pρF = HKρ . (156)

It is called the Kramers equation (Fokker-Planck equation follows from it in the
overdamped limit). Only without F, the Gibbs distribution exp(−H/T ) is a steady
solution of (156) and one can formulate the detailed balance

H†K = ΠeβHHKe
−βHΠ−1 , (157)
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where we added the operator inverting momenta: ΠpΠ−1 = −p. A non-potential
force violates the the detailed balance in the following way:

H†K = ΠeβHHKe
−βHΠ−1 + β(F · q̇) . (158)

The last (symmetry-breaking) term is again the power (F · q̇) divided by tempe-
rature i.e. the entropy production rate. The work done by that force depends on
the trajectory in distinction from the case of a time-independent potential force.
That dependence of the work on the trajectory precludes thermal equilibrium and
is common for non-potential forces and for time-dependent potential forces. A
close analog of the Jarzynski relation can be formulated for the production rate
averaged during the time t:

σt =
1

tT

∫ t

0
(F · q̇) dt . (159)

If F = dU/dq, that is a gradient of a scalar, then (F · q̇) = dU(q(t))/dt, and
the integral turns into zero. The quantity (159) fluctuates from realization to
realization. The probabilities P (σt) satisfy the relation, analogous to (153), which
we give without general derivation

P (σt)

P (−σt)
∝ etσt . (160)

The second law of thermodynamics states that to keep the system away from
equilibrium, the external force F must on average do a positive work. Over a
long time we thus expect σt to be overwhelmingly positive, yet fluctuations do
happen. The relations (160,155) show how low is the probability to observe a
negative entropy production rate - this probability decays exponentially with the
time of observation. Such fluctuations were unobservable in classical macroscopic
thermodynamics, but they are often very important in modern applications to nano
and bio objects. In the limit t → ∞, when the probability of the integral (159)
must have a large-deviation form, P (σt) ∝ exp[−tH(σt)], so that (160) means that
H(σt)−H(−σt) = −σt, as if P (σt) was Gaussian.

One calls (153,160) detailed fluctuation-dissipation relations since they are

stronger than integral relations of the type (150,151). Indeed, it is straightforward

to derive 〈exp(−tσt)〉 = 1 from (160).
The relation similar to (160) can be derived for any system symmetric with

respect to some transformation, to which we add perturbation anti-symmetric with
respect to that transformation. Consider a system with the variables s1, . . . , sN
and the even energy: E0(s) = E0(−s). Consider the energy perturbed by an odd
term, E = E0 − hM/2, where M(s) =

∑
si = −M(−s). The probability of the
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perturbation P [M(s)] satisfies the direct analog of (160), which is obtained by
changing the integration variable s→ −s:

P (a)=

∫
dsδ[M(s)−a]eβ(ha−E0) =

∫
dsδ[M(s)+a]e−β(ha+E0) =P (−a)e−2βha .

The validity condition for the results in this Section is that the interaction with the
thermostat is represented by noise independent of the the evolution of the degrees
of freedom under consideration.

5.4 Stochastic Web surfing and Google’s PageRank

When it was proclaimed that the Library contained all books, the first
impression was one of extravagant happiness... As was natural, this was

followed by an excessive depression. The certitude that some ... precious
books were inaccessible seemed almost intolerable.

J L Borges ”The Library of Babel”
We cannot any more avoid the question: can we find an objective and quanti-

tative measure not only of the amount of information, but also of its importance?
We need to know which are the most precious books in the Library. By this time,
it should come as no surprise for the reader that such measures can also be found
using the statistical approach.

For an efficient information retrieval from the Web Library, webpages need
to be ranked by their importance to order search results. A reasonable way to
measure the importance of a page is to count the number of links that refer to it.
Not all links are equal though — those from a more important page must bring
more importance. On the other hand, a link from a page with many links must
bring less importance (here probability starts creeping in). One then comes to
the two rules: i) every page relays its importance score to the pages it links to,
dividing it equally between them, ii) the importance score of a page is the sum of
all scores obtained by links. For Internet with n pages, we organize all their scores
into a vector p = {p1, . . . , pn} which we normalize:

∑n
i=1 pi = 1. According to the

above rules, pi =
∑
j pj/nj where nj is the number of outgoing links on page j,

which links to the page i. In other words, we are looking for the eigenvector of
the hyperlink matrix, pÂ = p, where the matrix elements aij = 1/nj if j links to
i and aij = 0 otherwise. Does a unique eigenvector with all non-negative entries
and a unit eigenvalue always exist? If yes, how to find it?

The iterative algorithm to find the score eigenvector is called PageRank24 (Brin
and Page 1998). The algorithm equates the score pi of a page with the probabi-

24”Page” relates both to webpage and to Larry Page, who with Sergei Brin invented the
algorithm and created Google.
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lity that a person randomly clicking on links will arrive at this page. It starts
from ascribing equal probability to all pages, pi(0) = 1/n, and generates the new
probability distribution by applying the above rules of the score relay:

p(t+ 1) = p(t)Â . (161)

We recognize that this stochastic process is a Markov chain, which means that the
future is determined by the present state and the transition probability, but not
by the past. We thus interpret Â as the matrix of transition probabilities between
pages for our stochastic surfer. In later modifications, one fills the elements of Â
not uniformly as 1/nj but use information about actual frequencies of linking that
can be obtained from access logs. Could our self-referential rules lead to a vicious
circle or the iterations converge at t→∞? It better be convergent fast to be of any
use for the instant-gratification generation. It is clear that if the largest eigenvalue
λ1 of Â was larger than unity, than the iterations would diverge; if λ1 < 1, then
the iterations would converge to zero. Both contradict normalization

∑
pi = 1.

We need the largest eigenvalue to be unity and correspond to a single eigenvector,
so that the iterations converge. How fast it converges then will be determined by
the second largest eigenvalue λ2 (which must be less than unity).

Moment reflection is enough to identify the problem: some pages do not link to
any other page, which corresponds to rows of zeroes in Â. Such pages accumulate
the score without sharing it. Another problem is caused by loops. The figure
presents a simple example illustrating both problems:

If all transition probabilities are nonzero, the probability vector with time tends
to (0, 0, 1), that is the surfer is stuck at the page 3. When the probabilities a13, a23

are very small, the surfer tend to be caught for long times in the loop 1←→ 2.
To release our random surfer from being stuck at a sink or caught in a loop,

the original PageRank algorithm allowed it to jump randomly to any other page
with equal probability. To be fair with pages that are not sinks, these random
teleportations are added to all nodes in the Web: surfer either clicks on a link on
the current page with probability d or opens up a random page with probability
1 − d. To quote the original: ”We assume there is a ”random surfer” who is
given a web page at random and keeps clicking on links, never hitting ”back” but
eventually gets bored and starts on another random page. The probability that
the random surfer visits a page is its PageRank. And, the damping factor is the
probability at each page the ”random surfer” will get bored and request another
random page.” This is equivalent to replacing Â by Ĝ = dÂ + (1 − d)Ê. Here
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the teleportation matrix Ê has all entries 1/n, that is Ê = eeT /n, where e is the
column vector with ei = 1 for i = 1, . . . , n. After that, all matrix entries gij are
strictly positive and the graph is fully connected.

It is important that now our matrix has positive elements in every column
whose sum is unity. Such matrices are called stochastic, since every column can
be thought of as a probability distribution. Every stochastic matrix has unity
as the largest eigenvalue. Indeed, since

∑
j gij = 1, then e is an eigenvector of

the transposed matrix: ĜTe = e. Therefore, 1 is an eigenvalue for ĜT , and also
for Ĝ, which has the same eigenvalues. We can now use convexity to prove that
this is the largest eigenvalue. For any vector p, every element of pĜ is a convex
combination of the elements,

∑
j pjgij , which cannot exceed the largest element

of p since
∑
j gij = 1. For an eigenvector with an eigenvalue exceeding unity,

at least one element of pĜ must exceed the largest element of p, therefore such
eigenvector cannot exist. This is a particular case of the theorem: The eigenvalue
with the largest absolute value of a positive square matrix is positive, and belongs
to a positive eigenvector, where all of the vector’s elements are positive. All other
eigenvectors are smaller in absolute value (Markov 1906, Perron 1907).

The great achievement of PageRank algorithm is the replacement of the itera-
tive process (161) by

p(t+ 1) = Ĝp(t) . (162)

That process cannot be caught into a loop and converges, which follows from the
fact that Gii 6= 0 for all i; that is there is always a probability to stay on the
page breaking any loop. The eigenvalues of Ĝ are 1, dλ2 . . . dλn, where {λi} are
eigenvalues of Â (prove it), so the choice of d affects convergence, the smaller the
faster. On the other hand, it is somewhat artificial to use teleportation to an
arbitrary page, so larger values of d give more weight to the true link structure of
the Web. As in other optimization problems we encountered in this course, one
needs a workable compromise. The standard Google choice d = 0.85 comes from
estimating how often an average surfer uses bookmarks. As a result, the process
usually converges after about 50 iterations.

One can design a personalized ranking by replacing the teleportation matrix
by Ê = evT , where the probability vector v has all nonzero entries and allows for
personalization, that is can be chosen according to the individual user’s history of
searches and visits. That means that it is possible in principle to have our personal
rankings of the webpages and make searches custom-made.

As mentioned, the sequence of the probability vectors defined by the relations
of the type (161,162) is a Markov chain. In particular, the three random quantities
X → Y → Z is a Markov triplet if Y is completely determined by X,Z, while
X,Z are independent conditional on Y , that is I(X,Z|Y ) = 0. Such chains have
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an extremely wide domain of applications.

6 Quantum information

Since our world is fundamentally quantum mechanical, it is interesting what that
reveals about the nature of information and uncertainty. Quantum mechanical
is inherently statistical, predictions and measurement results are truly random
(not because we did not bother to learn more on the system). Measurement
dramatically differ in a quantum world since it irreversibly changes the system
and this change cannot be made arbitrarily small. Apart from that fundamental
difference, interest in quantum information is also pragmatic. Classical systems,
including computers, are limited by locality (operations have only local effects) and
by the classical fact that systems can be in only one state at the time. However,
a quantum system can be in a superposition of many different states at the same
time, which means that quantum evolution exhibit interference effects and proceeds
in the space of factorially more dimensions than the respective classical system.
This is a source of the parallelism of quantum computations. Moreover, spatially
separated quantum systems may be entangled with each other and operations may
have non-local effects because of this. Those two basic facts motivate an interest
in quantum computation and in quantum information theory. Non-surprisingly,
it is also based on the notion of entropy, which is similar to classical entropy
yet differs in some important ways. Uncertainty and probability exist already in
quantum mechanics where we consider an isolated system. On top of that we
shall consider quantum statistics due to incomplete knowledge, which is caused by
considering subsystems. In this section I’ll give a very brief introduction to the
subject, focusing on information and entropy and their most dramatic differences
from the classical world. Recall that the entropy consideration by Planck is what
started quantum physics in the first place. Looking at two asymptotics of a spectral
curve, he decided to search for an analytic formula matching their entropies, simply
adding them. The resulting formula is the logarithm of the number of ways to
distribute a given energy in equal discrete portions — quantization was born.

6.1 Quantum mechanics and quantum information

In the previous two Chapters, we looked at different subjects (evolution, life, mo-
ney, etc) through the lenses of entropy and information. Let us now take a look
at quantum mechanics. Quantum mechanics mathematically is quite elementary,
since it is based on linear algebra, that is the study of vector states and linear
operations on them. A state of a physical system is a vector. We shall denote such
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(column) vectors either by ψi or use Dirac notation |i〉. The dual (row) vector then
is denoted 〈i| and the inner (scalar) product by 〈i|j〉. Any system is characterized
by its stationary states and possible jumps between those states. The fundamental
statement is that any system can be in a pure state ψi or in a superposition of
states, ψ =

∑
i
√
piψi. An example of a pure state is a fixed-energy eigenstate of a

Hamiltonian (which is an operator that is a matrix). The possibility of a superpo-
sition is the total breakdown from classical physics, where those states (say, with
different energies) are mutually exclusive.

There are two things we can do with a quantum state: let it evolve (unita-
rily) without touching or measure it. Measurement is classical, it produces one
and only pure state from the initial superposition; immediately repeated measu-
rements will produce the same outcome. However repeated measurement of the
identically prepared initial superposition find different states, the state i appears
with probability pi. A property that can be measured is called an observable and
is described a self-adjoint operator (matrix).

There is an uncertainty already in a pure state of an isolated quantum system.
If the operators of two observables are non-commuting, [Â, B̂] = ÂB̂ − B̂Â 6= 0,
then the product of their variances is restricted from below:

|〈ψ|[Â, B̂]|ψ〉|2 = 4|〈ψ|ÂB̂|ψ〉|2 − |〈ψ|ÂB̂ + B̂Â|ψ〉|2

≤ 4|〈ψ|ÂB̂|ψ〉|2 ≤ 4〈ψ|Â2|ψ〉〈ψ|B̂2|ψ〉 . (163)

Here the second step is the Cauchy-Schwarz inequality. In particular, momentum
and coordinate are such pair, Â = p̂ − 〈p〉, B̂ = q̂ − 〈q〉. Since the momentum
operator in the coordinate representation is p̂x = ıh̄∂x, then [p̂x, x] = −ıh̄, which
gives the Heisenberg uncertainty principle: the variances of the coordinate and the
momentum along the same direction satisfy the inequality

√
σpσq ≥ h̄/2 . (164)

In particular, that means that we cannot describe quantum states as points in
the phase space (p, q). Indeed, what we shall call below quantum entanglement is
ultimately related to the fact that one cannot localize quantum states in a finite
region — if coordinates are fixed somewhere, then the momenta are not.

Uncertainty relation (164) is an undegraduate version, let us describe now the
graduate version, like we replaced the undergraduate version of the second law,
〈∆S〉 ≥ 0, by its graduate version 〈e∆S〉 = 1. Indeed, variances are sufficient
characteristics of uncertainty only for Gaussian distributions, generally entropy
must play that role. Taking log of the Heisenberg relation, we obtain log(2σp/h̄)+
log(2σq/h̄) = S(p) + S(q) ≥ 0, recasting it as requirements on the entropies of the
Gaussian probability distributions of the momentum and the coordinate of a free
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particle. In 3 dimensions, different components commute, so that
√
σpσq ≥ 3h̄/2

and S(p) + S(q) ≥ log 3. When the respective probability distributions of non-
commuting variables are not Gaussian, formulation in terms of variances does not
make sense; yet the entropic uncertainty relation remains universally valid and is
thus fundamental (Deutsch 1982).

More formally, if we measure a quantum state ψ by projecting onto the ortho-
normal basis {|x〉}, the outcomes define a classical probability distribution p(x) =
〈x|ψ|x〉, which is a probability vector whose entries are the diagonal elements of ψ
in the x-basis. The Shannon entropy S(X) quantifies how uncertain we are about
the outcome before we perform the measurement. If |z〉 is another orthonormal
basis, there is a corresponding classical probability distribution of outcomes when
we measure the same state ψ in the z-basis. If the operators projecting on x, z do
not commute, the two bases are incompatible, so that there is a tradeoff between
our uncertainty about X and about Z, captured by the inequality

S(X) + S(Z) ≥ log(1/c) , c = max
x,z
|〈x|z〉|2 . (165)

We shall prove a more general form of this relation in the next subsection.
Two different bases {|x〉}, {|z〉} for a d-dimensional space are called mutually

unbiased if |〈xi|zk〉|2 = 1/d for all i, k. That means that if we measure any x-
basis state in the z-basis, all d outcomes are equally probable and give the same
contribution into the total probability:

∑
k |〈xi|zk〉|2 =

∑
i |〈xi|zk〉|2 = 1. For

measurements in two mutually unbiased bases performed on a pure state, the
entropic uncertainty relation becomes

S(X) + S(Z) ≥ log d . (166)

This inequality is saturated by x-basis states, for which S(X) = 0 and S(Z) =
log d. In particular, in one dimension log d = 0.

The entropy used here is the familiar classical Shannon entropy which cha-
racterizes the information brought by the measurements. Let us now introduce a
distinct quantum measure of information. It is related to the states of quantum
systems, rather than to the outcomes of measurements. We have defined classical
”bit” as a unit of information choosing between two states, so we can also call a
bit a physical system, where we distinguish two states only. That could be a coin,
a magnetic moment looking along or against an applied field, a photon with two
polarizations, etc. Similarly, we define qubit — a quantum system having only
two states: |0〉 and |1〉. The most general state of a qubit A is a superposition of
two states, ψA = a |0〉+ b |1〉, then any observable is as follows:

〈ψA|ÔA|ψA〉 = |a|2〈0|ÔA|0〉+ |b|2〈1|ÔA|1〉+ (a∗b+ ab∗)〈0|ÔA|1〉 . (167)
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Normalization requires |a|2 + |b|2 = 1 and if the overall phase does not matter,
then a qubit is characterized by two real numbers, say the amplitude |a| and the
relative phase between a and b, Alternatively, we may characterize it by a complex
number. The qubit represents the unit of quantum information the same way the
bit represents the unit of classical information. Here we see that quantum systems
operate with much more information - one needs many bits to record a complex
number with a reasonable precision, and the difference grows exponentially when
we compare the states of N classical bits with the possible states of N qubits.
Moreover, qubit is not a classical bit because it can be in a superposition, nor can
it be considered a random ensemble of classical bits with the probability |a|2 in
the state |0〉, because the phase difference of the complex numbers a, b matter, as
seen from (167).

And yet quantum mechanics tells us that we cannot measure the complex
numbers a, b, that is we cannot determine the quantum state of the qubit. This is
in sharp contract with our ability to determine the state of a bit (say, when classical
computer retrieves a memory). Measurements of a qubit bring either the result
|0〉 with the probability |a|2 or the result |1〉 with the probability |b|2 = 1 − |a|2.
In other words, a quantum coin can defy gravity and stand on its edge at an
arbitrary angle, but any measurements collapses it on one side, either heads or tails
up. What use then in quantifying the quantum information if we cannot measure
it? One should not despair though. While we cannot measure it directly, we can
communicate it. Moreover, we shall describe below indirect ways to manipulate a
quantum system so that a measurement gives a result, which depends distinctly
on the state of the system. These ways involve entanglement between different
subsystems.

6.2 Quantum statistics and entanglement entropy

To consider subsystems, we need to pass from quantum mechanics to quantum
statistics and introduce the fundamental notion of the density matrix. Consider
a composite system AB, which is in a pure state ψAB. Denote by x the coordinates
on A and by y on B. The expectation value of any O(x) can be written as Ō =∑
x,y ψ

∗
AB(x, y)Ô(x)ψAB(x, y). For independent sub-systems, one has ψAB(x, y) =

ψA(x)ψB(y) and Ō =
∑
x ψ
∗
A(x)Ô(x)ψA(x), so that one can forget about B and

characterize A by the vector ψA. But generally, dependencies on x and y are
not factorized, and the action of Ô(x) changes both x and y. We then ought to
characterize A by the so-called density matrix

ρ(x, x′) =
∑

y
ψ∗AB(x′, y)ψAB(x, y),
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so that Ō =
∑
x[Ô(x)ρ(x, x′)]x′=x, where Ô(x) acts only on x and then we put

x′ = x.
More formally, if the pure state ψAB is a (tensor) product25 of pure states of A

and B, ψAB = ψA⊗ψB, then any operator ÔA acting only in A has the expectation
value

〈ψAB|ÔA ⊗ ÎB|ψAB〉 = 〈ψA|ÔA|ψA〉〈ψB|ÎB|ψB〉 = 〈ψA|ÔA|ψA〉 .

Here Î is the identity operator. However, a general pure state ψAB could be not a
single (tensor) product of pure states but a sum of tensor products:

ψAB =
∑
i

√
piψ

i
A ⊗ ψiB , (168)

Even more generaly, it is some generic M×N matrix where N,M dimensionalities
of A,B respectively:  ψ1

Aψ
1
B . . . ψ1

Aψ
M
B

. . .
ψNAψ

1
B . . . ψNAψ

M
B

 (169)

Yet we can make it N × N diagonal with N positive eigenvalues
√
pi and extra

M − N rows of zeroes by applying unitary transformation in A and B, that is
making ψAB → UψABV with M×M unitary V-matrix and N×N U-matrix. That
is called Schmidt decomposition by orthonormal vectors ψiA, ψ

i
B, which allows us

to present any state of AB as a sum of the products (168).
Note that there is only one sum here: for each vector in A there is just one

vector in B. If there is more than one term in this sum, we call subsystems A and
B entangled. There is no factorization of the dependencies in such a state. We
can always make ψAB a unit vector, so that

∑
i pi = 1 and these numbers can be

treated as probabilities (to be in the state i). Now the operator acting only on A
has the expectation value

〈ψAB|ÔA ⊗ ÎB|ψAB〉 =
∑
i,j

√
pipj〈ψiA|ÔA|ψ

j
A〉〈ψ

i
B|ÎB|ψ

j
B〉

=
∑
i,j

√
pipj〈ψiA|ÔA|ψ

j
A〉δij =

∑
i

pi〈ψiA|ÔA|ψiA〉 = TrAρAÔA ,

where the density matrix in such notations is written as follows:

ρA =
∑
i

pi|ψiA〉〈ψiA| . (170)

25Multiplying every component of one N-vector by every component of another M-
vector gives a MN-vector called tensor product. For example, (a, b) ⊗ (c, d, e) =
(ac, ad, ae, bc, bd, be).
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It is all we need to describe A. The matrix is hermitian, it has all non-negative
eigenvalues and a unit trace. Every matrix with those properties can be ”purified”
that is presented (non-uniquely) as a density matrix of some pure state ψAB in the
extended system AB. Possibility of purifications is quantum mechanical with no
classical analog: the classical analog of a density matrix is a probability distribution
which cannot be purified.

Statistical density matrix describes a mixed state or, in other words, an en-
semble of states. Different ensembles can give the same density matrix, see home
exercise. Mixed state described by a matrix must be distinguished from quantum-
mechanical superposition described by a vector. The superposition is in both states
simultaneously; the ensemble is in perhaps one or perhaps the other, characterized
by probabilities - that uncertainty appears because we do not have any informa-
tion of the state of the B-subsystem. Let us illustrate this in the simplest case of
a two-qubit system A,B. Consider a pure quantum state of the form

ψAB = a |00〉+ b |11〉 . (171)

A and B are correlated in that state, one can predict one by knowing another: the
measurement of the second qubit always gives the same result as the measurement
of the first one. Now any operator acting on A gives

〈ψAB|ÔA ⊗ ÎB|ψAB〉 = (a∗〈00|+ b∗〈11|)ÔA ⊗ ÎB|(a|00〉+ b|11〉)
= |a|2〈0|ÔA|0〉+ |b|2〈1|ÔA|1〉 , (172)

ρA = |a|2 |0〉 〈0|+ |b|2 |1〉 〈1| =
[
|a|2 0
0 |b|2

]
. (173)

We can interpret this as saying that the system A is in a mixed state, that is
with probability |a|2 in the quantum state |0〉, and with probability |b|2 it is in the
state |1〉. Due to the orthogonality of B-states, the same result (172) is obtained
if 〈0|ÔA|1〉 6= 0, in distinction from (167). Being in a superposition is not the
same as being in mixed state, where the relative phases of the states |0〉 , |1〉 are
experimentally inaccessible.

General 2 × 2 density matrix is characterized by three real numbers, P =
(P1, P2, P3):

ρ(P) =
1

2

[
1− P1 P2 + ıP3

P2 − ıP3 1 + P1

]
. (174)

Non-negativity of the eigenvalues requires P 2 = P 2
1 + P 2

2 + P 2
3 ≤ 1, that is the

space of such density matrices is a ball. The boundary P 2 = 1 corresponds to
zero determinant, that is to eigenvalues 0 and 1 — that means that ρ is a one-
dimensional projector and the subsystem is in a pure state.
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We call the system entangled 26 if its density matrix has more than one nonzero
eigenvalue, so that there is more than one term in the sum (170).

The von Neumann entropy of a density matrix ρA is defined by the formula
analogous to the Gibbs-Shannon entropy of a probability distribution:

S(ρA) = −Tr ρA log ρA . (175)

Since we are dealing with diagonalizable matrices, a logarithm (or any other
function) of the matrix is defined for a diagonal matrix as follows: if ρ =

∑
k pk |k〉 〈k|,

then log ρ =
∑
k log(pk) |k〉 〈k|. To avoid confusion, we shall always use Latin let-

ters for the argument of Shannon entropy and Greek letters for the argument of
von Neumann entropy.

The von Neumann entropy quantifies the sort of uncertainty, which exists only
in a quantum world and is related to principal restriction of measurements to a
finite volume. The classical entropy is the logarithm of the number of microstates
compatible with the given macroscopic state. The quantum entropy S(ρA) is,
roughly speaking, the logarithm of the number of states of the inaccessible part
B of the universe compatible with all measurements of A, together with a priori
knowledge that A+B is in a pure state.

Evidently, S(ρA) is invariant under a unitary transformation ρA → UρAU
−1,

which is an analog of the Liouville theorem on the conservation of distribution by
Hamiltonian evolution. Just like the classical entropy, it is non-negative, equals to
zero only for a pure state and reaches its maximum log d for equipartition (when
all d non-zero eigenvalues are equal), that is satisfies concavity (62). What does
not have a classical analog is that the purifying system B has the same entropy
as A (since the same pi appears in its density matrix). Moreover, von Neumann
entropy of a part S(ρA) can be larger than that of the whole system S(ρAB).
When AB is pure, S(ρAB) = 0, but S(ρA) could be nonzero (Landau 1927).
Information can be encoded in the correlations among the parts, yet be invisible
when we look at one part of a quantum system, but not a classical one. That
purely quantum correlation between different parts is called entanglement, and
the von Neumann entropy of a subsystem of pure state is called entanglement
entropy. Classically, we measured the nonlocality of information encoding by the
mutual information I(A,B) = S(A) + S(B) − S(A,B), which never exceeds the
sum of two entropies. Quantum I is non-negative as well as classical, but generally

26Early idea of entanglement was conjured in 17 century: it was claimed that if two mag-
netic needles were magnetized at the same place and time, they would stay ”in sympathy”
forever at however large distances, and the motion of one is reflected on another. One con
man tried to sell it to Galileo, who naturally wanted to see first if this communication
device works.
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is different. Nonlocality of information encoding is raised to the whole new level
in the quantum world. For example, when AB is in an entangled pure state then
S(ρAB) = 0, A and B together are perfectly correlated, but separately each one is
in a mixed state, so that S(ρA) = S(ρB) > 0. Classically, the mutual information
of perfectly correlated quantities is equal to each of their entropies, but quantum
mutual information is their sum that is twice more: I(ρAB) = S(ρA) + S(ρB) −
S(ρAB) = 2S(ρA). Quantum correlations are stronger than classical.

The Von Neumann entropy of a density matrix is the Shannon entropy S(p) =
−
∑
i pi log pi of its vector of eigenvalues, which is the probability distribution {pi}

of its orthonormal eigenstates. In particular, for ψAB = a |00〉 + b |11〉 we have
S(ρA) = −|a|2 log2 |a|2 − |b|2 log2 |b|2. The maximum S(ρA) = 1 is reached when
|a|2 = |b|2 = 1/2, which is called a state of maximal entanglement. Yet when we
trace out B (or A) we wipe out this information: any measurement on A or B
cannot tell us anything about the state of the pair, since both outcomes are equally
probable. On the contrary, when either b → 0 or a → 1, the entropy S(ρA) goes
to zero and measurements (of either A or B) give us definite information on the
state of the system.

We can now establish a general uncertainty relation. If we measure a mixed
state ρ by projecting onto the orthonormal basis {|x〉}, the outcomes define the
density matrix M̂xρ = ρx =

∑
x |x〉 〈x|ρ|x〉 〈x|. The measurement operator M̂z

projecting onto another basis {|z〉} defines M̂zρ = ρz =
∑
z |z〉 〈z|ρ|z〉 〈z|. Both

density matrices are diagonal, so that each von Neumann entropy is equal to the
respective Shannon entropy: S(ρx) = S(X) and S(ρz) = S(Z). We now introduce
the relative entropy

D(ρ|ρx) = Tr ρ(log ρ− log ρx) = Tr ρ log ρ− Tr ρx log ρx = S(X)− S(ρ) .

As in the classical case, it is non-negative and quantifies the number of measure-
ments needed to distinguish two density matrices. It also possesses an important
property of monotonicity, that is non-increases upon any partial trace. This pro-
perty is as intuitive as in the classical case — after all, it should be no easier
to distinguish two density matrices looking only at subsystem, yet the proof is
complicated and we do not give it here. We now use monotonicity of the relative
entropy D(ρ|ρx) under the action of the measurement in z-basis:

D(ρ|ρx) ≥ D(M̂zρ|M̂zρx) = D(ρz|M̂zρx) = −S(Z)− Tr ρz log M̂zρx . (176)

The new density matrix obtained by two measurements,

M̂zρx = M̂zM̂xρ =
∑

z
|z〉
∑

x
〈z |x〉 〈x|ρ|x〉 〈x| z〉 〈z| ,

is diagonal, so that

log M̂zρx =
∑

z
|z〉 log

(∑
x
〈z |x〉 〈x|ρ|x〉 〈x| z〉

)
〈z| .
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The logarithm is a monotonic function:

log

(∑
x

〈z |x〉 〈x|ρ|x〉 〈x| z〉
)
≤ log

(
max
x,z
|〈x|z〉|2

∑
x

〈x|ρ|x〉
)

= log

(
max
x,z
|〈x|z〉|2

)
.

Substituting that into (176), we obtain the generalization for a mixed state of the
uncertainty relations (165,166) written for a pure state:

S(X) + S(Z) ≥ log(1/c) + S(ρ) , c = max
x,z
|〈x|z〉|2 .

That shows that the von Neumann entropy quantifies the increase in uncertainty.

Let ρA =
∑
k pk|φkA〉〈φkA| be diagonal in the basis of eigenvectors {|φkA〉}, but

we measure by projecting ρA on a different orthogonal set {|ψiA〉}. In this case, the
outcome i happens with the probability q′(i) = 〈ψiA|ρA|ψiA〉 =

∑
k pkDik, where

Dik = |〈ψiA|φkA〉|2 is so-called double stochastic matrix, that is
∑
iDik =

∑
kDik =

1. The Shannon entropy of that probability distribution is larger than the von
Neumann entropy,

S(q′) = S(p) +
∑

ik
pkDik log

(∑
n
pnDin/pk

)
= S(p) +D(q′|p) ≥ S(p) = S(ρA) ,

that is such measurements are less predictable.

Coming to equilibrium. When a classical system is getting attached to a
thermostat, it comes to thermal equilibrium with it, attaining maximum of entropy
determined by the temperature of the thermostat. But what if a quantum system is
getting attached to a large system with which they together form a pure quantum
state with a zero entropy? Are thermalization and entropy growth possible for
subsystems of a quantum system which as a whole remains in a pure quantum
state? Yes they are! Thermalization takes place for any subsystem of a large
system if the dynamics is ergodic and can be characterized by the growth of the
entanglement entropy. Then the system as a whole acts as a thermal reservoir for
its subsystems, provided those are small enough.

Consider a small quantum system which at some moment is getting attached
to a large system. At this moment, the information is encoded locally, the en-
tanglement entropy is zero and the subsystem is not in equilibrium with the whole
system. As the small subsystem starts interacting with the large system and ap-
proaches equilibrium, the von Neumann entropy grows and reaches its maximum.
Information, which was initially encoded locally in an out-of-equilibrium state,
becomes encoded more and more nonlocally as the system evolves, eventually be-
coming invisible to an observer confined to the subsystem. Such thermalization
can be quantified by a relative entropy. Denote the (evolving) density matrix of
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our subsystem ρ. If the evolution of the subsystem, when it is closed, is described
by the Hamiltonian H, we can define the Gibbs density matrix as

ρ0 =
exp(−βH)

Tr exp(−βH)
= Z−1 exp(−βH) . (177)

We now introduce respective free energies:

F (ρ) = E − β−1S(ρ) = Tr ρH + β−1Tr ρ ln ρ = β−1Tr ρ(ln ρ+ βH) ,

F0 = −β−1 lnTr exp(−βH) = −T lnZ .

The relative von Neumann entropy between ρ and ρ0 can be expressed via the
difference in the free energies:

D(ρ|ρ0) = Tr ρ ln ρ− Tr ρ ln ρ0

= Tr ρ(ln ρ+ βH) + β−1 lnTr exp(−βH) = β[F (ρ)− F0] ≥ 0 , (178)

where the last inequality follows from positivity of the relative entropy. There-
fore, the Gibbs state has the lowest free energy at a given temperature, which is
determined by its environment treated as thermostat. Unitary evolution of the
subsystem and its environment induces on a subsystem a decrease (by monotoni-
city) of D(ρ, ρ0), eventually bringing the subsystem to the Gibbs state.

6.3 Quantum communications

Without going into specifics of quantum processors and communication schemes,
here we discuss how much information one can transfer by sending (or sharing)
quantum objects. Let us first ask: How many bits of classical information can be
recovered from a quantum system? Even though any qubit potentially contains a
complex number, any measurement will only give one or another state, so that a
pure state of a qubit can store one classical bit. The four orthogonal maximally
entangled states of the qubit pair, (|00〉± |11〉)/

√
2 and (|01〉± |10〉)/

√
2 can store

two bits. Generally, sending a quantum system whose state is determined by a d-
dimensional complex vector, one can send at most log d bits of classical information
(for instance, by sending one of the states from d basic vectors).

How this is related to the quantum mutual information can be realized by
looking at a more symmetric variant of the same problem. Let a composite system
AB be described by the density matrix ρAB. Alice has access to A, while Bob has
access to B. The results of the measurements belong to classical information (can
be written in the notebooks CA and CB). The maximal number of bits Alice can
get from her measurements about those of Bob (and vice versa) is the classical
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mutual information between their notebooks, I(CA, CB). Measurements corre-
spond to tracing out some degrees of freedom, so that monotonicity guarantees
that I(CA, CB) ≤ I(ρAB) ≤ log d, where I(ρAB) = S(ρA) + S(ρB)− S(ρAB) is the
mutual information of the initial density matrix ρAB.

Let us now turn to quantum information, that is to the information about
quantum states themselves rather that to the measurements results. We pose the
same natural question we asked for classical communications in Section 3.2: How
much can a message be compressed, that is what is the maximum information one
can transmit per quantum state? Is it given by von Neumann entropy or by Shan-
non entropy as in the classical case? Now the letters of our message are quantum
states picked with their respective probabilities pk, that is each letter is described
by the density matrix and the message is a tensor product of N vectors. Leaving
aside how actual quantum communication devices handle information compres-
sion, we discuss here only the amount of quantum information, that is the number
of combinations of states involved. If the states are mutually orthogonal and the
density matrix is diagonal, it is essentially the classical case, that is the answer
is given by the Shannon entropy S(p) = −

∑
k pk log pk, which is the same as von

Neumann entropy in this case. For example, the output of a qubit source which
sends |0〉 with probability p and |1〉 with probability 1 − p can be compressed
similarly to the classical source described in Section 3.2.

The new issue in quantum information theory is that nonorthogonal quantum
states cannot be perfectly distinguished, a feature with no classical analog. If a
pure state AB was built from non-orthogonal states, taken with probabilities qi,
then the density matrix is non-diagonal. There is then the difference between
the Shannon entropy of the mixture and the von Neumann entropy of the matrix,
S{qi}−S(ρA). It is non-negative and quantifies how much distinguishability is lost
when we mix nonorthogonal pure states. Measuring ρA we can receive S(ρA) bits,
which is less than S{qi} bits that was encoded mixing the states with probabilities
{qi}.

For example, non-orthogonal states |0〉 and the superposition |s〉 = (|0〉 +
|1〉)/

√
2 cannot be distinguished if a measurement in the basis |0〉 , |1〉 brings |0〉,

only when it brings |1〉. For an output producing non-orthogonal states |0〉 and
|s〉, sending classical information about the probabilities of these states (p for
|0〉 and 1 − p for |s〉) is not optimal, since both letters of our alphabet contain
the state |0〉, which means redundancy. That redundancy must allow for tighter
compression than S(p). That can be demonstrated using essentially the argument
from Section 3.2 with the only difference that instead of typical sequences we
consider typical subspaces. Let us do it first in the simplest possible way using
the states |0〉 , |1〉. Indeed, a long N -string emitted by the source will look like a
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superposition of the terms having up to reordering the following form:

|0〉⊗Np |s〉⊗N(1−p) ≈ |0〉⊗N(1+p)/2 |1〉⊗N(1−p)/2 . (179)

This is because in the limit N(1− p) � 1 the product |s〉⊗N(1−p) can be approx-
imated by the superposition of the states with equal probability of |0〉 and |1〉.
The number of the states of the form (179) is given by the number of N(1 + p)/2
choices out of N ; the logarithm of the number of states by the Stirling formula
is NS(1/2 + p/2). If (1 + p)/2 > 1 − p, that is p > 1/3, we can choose a coding
scheme, where we use the states of the form (179) as the new alphabet letters and
neglect atypical states. We then achieve compression since S(p)− S(1/2 + p/2) =
(1/2+p/2) log(1/2+p/2)+(1/2−p/2) log(1/2−p/2)−p log p−(1−p) log(1−p) > 0
for p > 1/3. That bound makes sense since at p < 1/3 the chosen way of encoding
actually increases redundancy and one needs to use different encoding. The most
efficient one uses the states, where the single-qubit density matrix of our source
is diagonal, instead of the states |0〉 , |1〉, where it is not. The number of typical
strings is then given by the Shannon entropy of this representation, which is now
equal to the von Neumann entropy and is strictly lower than the Shannon entropy
for any representation where the density matrix is not diagonal, as we discus-
sed above. We thus conclude that the best possible rate of quantum information
transfer is given by von Neumann entropy of the density matrix of the source.

For example, if the probabilities of the non-orthogonal states |0〉 and |s〉 =
(|0〉 + |1〉)/

√
2 are p = 1 − p = 1/2, the Shannon entropy is S(p) = 1 bit. The

density matrix in the orthogonal basis |0〉 , |1〉 is as follows:

ρ =
1

4

[
3 1
1 1

]
. (180)

The eigenvalues are q = (2+
√

2)/2 = sin2(π/8) and 1−q = (2−
√

2)/2 = cos2(π/8)
with the respective eigenstates

√
q |1〉+

√
1− q |0〉 and −√q |0〉+

√
1− q |1〉. The

von Neumann entropy is the Shannon entropy in this orthonormal representation:

S(ρ) = S(q) = −q log q−(1−q) log(1−q) = 1+
1

2

(
1− 1√

2
log

2 +
√

2

2−
√

2

)
≈ 0.6 bits ,

that is indeed less than S(p).
The von Neumann entropy S(ρ) gives the number of qubits of quantum in-

formation carried per letter of a long message only for pure states. This is not
the case for mixed states. When our alphabet is made of mixed yet mutually
orthogonal states, then the states are distinguishable and the problem is classical,
since we can just send the probabilities of the states, so the maximal rate is the
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Shannon entropy. However, it is now less than the von Neumann entropy, which
now includes also a nonzero entropy of every mixed state ρk:

S(ρ)=−
∑
k

Tr(pkρk) log(pkρk)

=−
∑
k

(pk log pk + pkTr ρk log ρk)=S(p) +
∑
k

pkS(ρk) .

When a system is in a mixed state, S(ρ) is no longer a good measure of quantum
entanglement since it clearly mixes quantum and classical correlations. Indeed,
von Neumann entropy exceeds Shannon entropy:

S(p) = S(ρ)−
∑
k

pkS(ρk) = S

(∑
k

pkρk

)
−
∑
k

pkS(ρk) . (181)

To conclude, the information transfer rate
i) by orthogonal pure states is equal to S(p) = S(ρ),
ii) by non-orthogonal pure states is equal to S(ρ), which is less than S(p),
iii) by orthogonal mixed states is equal to S(p), which is less than S(ρ).

For non-orthogonal mixed states, it is believed that

χ(ρk, pk) = S

(∑
k

pkρk

)
−
∑
k

pkS(ρk)

(called in quantum communications Holevo information) defines the limiting com-
pression rate in all cases including when it does not coincide with S(p). That was
not proved yet. The reason for the belief is that χ is monotonic (i.e. decreases
when we take partial traces), but S(ρ) is not - indeed one can increase von Neu-
mann entropy by going from a pure to a mixed state. It follows from concavity that
χ is always non-negative. We see that it depends on the probabilities pk that is on
the way we prepare the states. Of course, (181) is a kind of mutual information,
it tells us how much, on the average, the von Neumann entropy of an ensemble is
reduced when we know which preparation was chosen, exactly like classical mutual
information I(A,B) = S(A)−S(A|B) tells us how much the Shannon entropy of A
is reduced once we get the value of B. So we see that classical Shannon information
is a mutual von Neumann information.

6.4 Conditional entropy and teleportation

Similar to the classical conditional entropy (67), one defines for von Neumann
entropy

S(ρAB|ρB) = S(ρAB)− S(ρB) . (182)
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However, this is not an entropy conditional on something known, moreover it is
not zero for correlated quantities but negative! Indeed, for pure AB, one has
S(ρAB|ρB) = −S(ρB) < 0. Classical conditional entropy measures how many
classical bits we need to add to B to fully determine A. Similarly, we would
expect quantum conditional entropy to measure how many qubits Alice needs to
send to Bob to reveal herself. But what does it mean when S(ρAB|ρB) is negative?

The nature of that negativity is revealed by the trick of teleportation, which it
allows. Teleportation moves quantum states around without a quantum channel.
Imagine that Alice has in her possession a qubit A0. Alice would like to help Bob
create in his lab a qubit in a state identical to A0. However, she is only able
to communicate by sending a classical message. If Alice knows the state of her
qubit, there is no problem (except that communicating a complex number exactly
requires infinite number of classical bits): she tells Bob (say, over the telephone)
the state of her qubit and he creates one like it in his lab. If, however, Alice does
not know the state of her qubit, all she can do is make a measurement, which will
give some information about the prior state of qubit A0. She can tell Bob what
she learns, but the measurement will destroy the remaining information about
A0 and it will never be possible for Bob to recreate it. So she need to make a
measurement revealing no information about A0. Then what information that
measurement reveales? It must be about something else which Alice and Bob
share.

Suppose then that Alice and Bob have previously shared a qubit pair A1, B1

in a known entangled state, for example,

ψA1B1 =
1√
2

(|00〉+ |11〉)A1B1 . (183)

Bob then took B1 with him, leaving A1 with Alice. In this case, Alice can solve
the problem by making a joint measurement of her system A0A1 in a basis, that is
chosen so that no matter what the answer is, Alice learns nothing about the prior
state of A0. In that case, she also loses no information about A0. But after getting
her measurement outcome, she knows the full state of the system and she can tell
Bob what to do to recreate A0. To see how this works, let us describe a specific
measurement that Alice can make on A0A1 that will shed no light on the state of
A0. The measurement must be a projection on a state where the probability of
A0 to be in the state |0〉 is exactly equal to the probability to be in the state |1〉.
The following four states of A0A1 satisfy that property:

1√
2

(|00〉 ± |11〉)A0A1 ,
1√
2

(|01〉 ± |10〉)A0A1 . (184)

The states are chosen to be entangled, that is having A0, A1 correlated. We don’t
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use the state with |00〉 ± |10〉, which has equal probability of zero and one for A,
but no correlation between the values of A0, A1.

Denote the unknown initial state of the qubit A0 as α |0〉 + β |1〉, then the
initial state of A0A1B1 is

1√
2

(α |000〉+ α |011〉+ β |100〉+ β |111〉)A0A1B1 . (185)

Let’s say that Alice’s measurement, that is the projection on the states (184),
reveals that A0A1 is in the state

1√
2

(|00〉 − |11〉)A0A1 . (186)

That means that only the first and the last terms in (185) contribute (with equal
weights but opposite signs). After that measurement, B1 will be in the state
(α |0〉−β |1〉)B1 , whatever the (unknown) values of α, β. Appreciate the weirdness
of the fact that B1 was uncorrelated with A0 initially, but instantaneously acquired
correlation after Alice performed her measurement thousand miles away. Knowing
the state of B1, Alice can send two bits of classical information, telling Bob that
he can recreate the initial state α |0〉+ β |1〉 of A0 by multiplying the vector of his

qubit B1 by the matrix

[
1 0
0 −1

]
, that switches the sign of the second vector of

the basis. The beauty of it is that Alice learnt and communicated not what was
the state A0, but how to recreate it.

To understand the role of the quantum conditional entropy (182) in telepor-
tation, we symmetrize and purify our problem. Generally, weirdness of quantum
entropies can be traced to the purely quantum possibility of purification. Notice
that A1 and B1 are maximally entangled (come with the same weights), so that
S(ρB) = log2 2 = 1. On the other hand, A1B1 is in a pure state so its von Neumann
entropy is zero. Let us now add another system R which is maximally entangled
with A0 in a pure state A0, R, say

ψA0R =
1√
2

(|00〉+ |11〉)A0R . (187)

Neither Alice nor Bob have access to R. From this viewpoint, the combined system
RAB = RA0A1B1 starts in a pure state which is a direct product ψRA0 ⊗ ψA1B1 .
Since A0 is maximally entangled with R then also S(ρA0) = log2 2 = 1 and the
same is the entropy of the AB system S(ρA0A1B1) = S(ρA0) = 1 since A1B1 is a
pure state. Therefore, S(ρAB|ρB) = S(ρA0A1)|ρB) = S(ρA0A1B1) − S(ρB1) = 0.
One can show that teleportation only possible when S(ρAB|ρB) is non-positive.
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Recall that classically S(A|B) measures how many additional bits of informa-
tion Alice has to send to Bob after he has already received B, so that he will
have full knowledge of A. Quantum analog of this involves qubits rather than
classical bits. Suppose that S(ρAB|ρB) > 0 and Alice nevertheless wants Bob to
recreate her states. She can simply send her states. Alternative is to do tele-
portation, which requires sharing with Bob an entangled pair for every qubit of
her state. Either way, Alice must be capable of quantum communication, that is
of sending a quantum system while maintaining its quantum state. For telepor-
tation, she first creates some maximally entangled qubit pairs and sends half of
each pair to Bob. Each time she sends Bob half of a pair, S(ρAB) is unchanged
but S(ρB) goes up by 1, so S(ρAB|ρB) = S(ρAB) − S(ρB) goes down by 1. So
S(ρAB|ρB), if positive, is the number of such qubits that Alice must send to Bob
to make S(A|B) non-positive and so make teleportation possible without any furt-
her quantum communication. Negative quantum conditional entropy measures the
number of possible future qubit teleportations. We thus see that entanglement is
an important resource in quantum communications.

6.5 Black hole is a way out of our word

All things physical are information-theoretic in origin.
J Wheeler, 1990

A black hole presents a way to eliminate all uncertainty about a system by
swallowing it, thus forever eliminating from our world. No body, no uncertainty.
Our religious belief that uncertainty can only increase leads us to the entropy of
a black hole and to the ultimate restriction on the amount of information which
can be encoded in a physical system.

Area law. Black hole is an object, whose size is smaller than its horizon rh =
2GM/c2, where M is the mass and G is the gravitational constant. One cannot
escape from within rh, since the speed needed for that exceeds c. The quantum
entanglement entropy (between interior and exterior) is thought to be responsible
for the entropy of black holes. To estimate it, we need an equation of state,
that is the relation between energy and temperature. The energy of the hole is
simply EBH = Mc2 = c4rh/2G. The temperature of the hole is determined by its
radiation, which is due to a purely quantum phenomenon of particle-antiparticle
pairs appearing from the vacuum fluctuations. Such pairs usually stay together
and soon annihilate each other. If, however, such a pair straddles the horizon,
then the inside part is absorbed by the hole, while the outside part can escape
and be registered as radiation (this is how the entanglement appears). The typical
wavelength of such radiation is rh and its energy/temperature is then T = h̄c/4πrh.
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Now we can obtain entropy integrating the equation of state T = dE/dS:

T =
h̄c

4πrh
=
dEBH
dSBH

=
c4

2G

drh
dSBH

⇒ SBH =
πr2

hc
3

Gh̄
.

Since any entropy is dimensionless, then h̄G/c3 must be a square of some funda-
mental length. It is called the Planck length, lp =

√
h̄G/c3 ' 10−17 cm, and it is

the only combination with that dimensionality of the three fundamental physical
constants, c, h̄, G; it is the scale where quantization of gravity is expected to be
important27. The entanglement entropy of a black hole can thus be written as
follows:

SBH =
πr2

hc
3

Gh̄
=
πr2

h

l2p
=

4πGM2

h̄c
. (188)

The area law behavior of the entanglement entropy in microscopic theories
could be related to the holographic principle — the conjecture that the information
contained in a volume of space can be completely encoded by the degrees of freedom
which live on the boundary of that region.

Bekenstein bound. We can now estimate the information capacity (not a
channel capacity!) defined as the maximal amount of information that can be en-
coded in a system by exploiting all of its degrees of freedom down to the quantum
level. Is there a universal limit on how large the entropy of a physical system can
be? The answer is given by the so-called Bekenstein bound (and its generalizati-
ons). On a dimensional ground it can be guessed as follows. The entropy must be
the total energy E (including any rest masses) divided by a temperature (in energy
units). The temperature must be determined by the system size R — the smaller
the size the higher the temperature. Indeed, confining a system to a smaller region
one increases the kinetic energy. The only combination with the dimensionality of
energy one can make out of R and the world constants h̄, c is h̄c/R. That suggests
the bound in the following form: S ≤ RE/h̄c (Bekenstein 1981, 2004; Casini 2008).
That bound was argued by exploiting the only known way to eliminate entropy
from the observable world — to drop it into a black hole. If we drop a body of
the energy E and entropy S into a black hole of large mass M � E/c2, then the
black hole’s mass will grow by E/c2. According to (188), the entropy of the hole
will then grow by 8πGME/h̄c3 plus a negligible term of order E2. Meanwhile the
entropy S has gone forever out of this world. The second law then requires that
S < 8πGME/h̄c3 = 4πrhE/h̄c. A black hole, that can absorb the body, must

27One-parameter theories: G-theory, 17th century; c-theory, 19-20 centuries; h̄-theory,
early 20th century. Two-parameter theories: c,G - general relativity, c, h̄ -quantum elec-
trodynamics, 20th century. Hopefully, c,G, h-theory will appear in the 21st century.
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have the horizon exceeding the body size, which gives the estimate for the bound
(extra numerical numerical factor 1/2 comes from the actual consideration of the
process of adiabatic lowering of the body into the hole)28:

S ≤ 2πRE

h̄c
. (189)

We assumed that the body is itself not a black hole, that is its size exceeds its
horizon, R > rh(E) = 2GE/c4, so that the entropy restriction can be formulated
solely in terms of the radius:

S ≤ πR2c3

Gh̄
. (190)

Comparing (190) and (188), we conclude that a system must be a black hole to
realize the capacity limit.

In a thermodynamic limit, the classical total entropy is extensive, that is pro-
portional to the system volume or total number of degrees of freedom. In other
words, the entropy is proportional to a volume while one can squeeze more and
more distinguishable matter into it. When there is so much matter or so little
space that the system turns into a black hole, we can see only the horizon and the
entropy is proportional to the area (like a hologram where 3d image is encoded on
2d surface).

While the gravitational constant G does not enter (189), the appearance of

gravity in the argument and in (190) deserves reflection. Via black holes, gravity

provides the gates out of the observable world, which is a source of the bound.

A counterpart to it is a Big Bang which provided a gate into this world — how

something comes out nothing could probably teach us something important about

the nature of information as well.

7 Conclusion

This Chapter attempts to compress the book to its most essential elements.

28”When I put my hot tea next to a cool tea they come to a common temperature. I
have committed a crime. I have increased the entropy of the universe. Jakob Bekenstein
came by and I said to him if a black hole comes by and I drop the cups behind it I can
conceal my crime. He was upset by this and came back in a few months to tell me that
black holes have entropy.” John Wheeler.
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7.1 Take-home lessons

1. Thermodynamics studies restrictions imposed by hidden on observable.
It deals with two extensive quantities. The first one (energy) E is conserved
for a closed system, and its changes are divided into work (due to observable
degrees of freedom) and heat (due to hidden ones). The second quantity
(entropy) S can only increase for a closed system and reaches its maximum
in thermal equilibrium, where the system entropy is a convex function of the
energy. All available states lies below this convex curve in S − E plane.

2. Convexity of the dependence E(S) allows us to introduce temperature
as the derivative of the energy with respect to the entropy. Extremum of the
entropy means that the temperatures of the connected subsystems are equal
in equilibrium. The same is true for the energy derivatives with respect to
volume and other extensive variables. The entropy increase (called the second
law of thermodynamics) imposes restrictions on thermal engine efficiency,
that is the fraction of heat used for work:

W

Q1

=
Q1 −Q2

Q1

= 1− T2∆S2

T1∆S1

≤ 1− T2

T1

.

T

Q

W

T
2

1

1

2
Q

If information processing generates ∆S, its energy price is as follows:

Q =
T2∆S +W

1− T2/T1

.
T

T
2

1

QS =Q/T
1

W
W

 − QS =(Q−W)/T
2

1

2

3. Need in statistics appear due to incomplete knowledge: We can me-
asure only part of the degrees of freedom; even if we measure them all, we
do it with a finite precision. Statistical physics defines the (Boltzmann) en-
tropy of a closed system as the log of the phase volume, S = log Γ and
assumes (for the lack of any knowledge) the uniform distribution w = 1/Γ
called microcanonical. For a subsystem, the (Gibbs) entropy is defined as the
mean phase volume: S = −∑iwi logwi; the probability distribution is then
obtained requiring maximal entropy for a given mean energy: logwi ∝ −Ei.
Information theory generalizes this approach, see 13 below.

4. Irreversibility of the entropy growth seems to contradict Hamiltonian
dynamics, which is time-reversible and preserves the N -particle phase-space
density. However, one can obtain the equation on a one-particle density for a
dilute gas. Assuming that before every collision particles were independent,
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one obtains the Boltzmann kinetic equation, which, in particular, describes
the irreversible growth of the one-particle entropy. Since the total entropy
is concerned, while the sum of one-particle entropies grow, we conclude that
their difference must grow too. Later, we call it the mutual information. The
lesson is that if we follow precisely all the degrees of freedom, the entropy
is conserved and no information is lost. But if we follow only part of them,
the entropy of that part will generally grow as it interacts with the rest —
whatever information we had is getting less relevant with time. Similarly, the
thermalization of a quantum subsystem increases the entanglement entropy
since the information is getting encoded in interaction with the environment
and inaccessible locally.

5. Total entropy growth can appear even if we follow all the degrees of
freedom, but do it with a finite precision, that is consider evolution of finite
phase-space regions. Instability leads to separation of trajectories, which
spread over the whole phase space under a generic reversible Hamiltonian
dynamics, very much like flows of an incompressible liquid are mixing (we
may say metaphorically, that for unstable systems, any extra digit in preci-
sion adds a new degree of freedom). Spreading and mixing in phase space
correspond to the approach to equilibrium and entropy growth. On the con-
trary, to deviate a system from equilibrium, one adds external forcing and
dissipation, which makes its phase flow compressible and distribution non-
uniform.

6. Basic mathematical object we use in our discrete thinking is the sum
of independent random numbers X =

∑N
i=1 yi. Three concentric statements

were made. The weakest one is that X approaches its mean value X̄ = N〈y〉
exponentially fast in N . The next statement is that the distribution P(X) is
Gaussian in the vicinity N−1/2 of the maximum. For even larger deviations,
the distribution is very sharp: P(X) ∝ e−NH(X/N) where H ≥ 0 and
H(〈y〉) = 0. Applying this to the log of the probability of a given sequence,
limN→∞ log p(y1 . . . yN) = −NS(Y ), we learn two lessons: i) the probability
is independent of a sequence for most of them (almost all events are almost
equally probable), ii) the number of typical sequences grows exponentially
and the entropy is the rate.

7. Another simple mathematical property we use throughout is convex-
ity. We first use it in the thermodynamics to make sure that the extremum
is on the boundary of the region and to make Legendre transform of ther-
modynamic potentials. We then use convexity of the exponential function
to show that even when the mean of a random quantity is zero, its mean
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exponent is positive. That provides for an exponential separation of trajec-
tories in an incompressible flow and exponential growth of the density of an
element in a compressible flow. On the other hand, if the mean exponent is
unity, 〈e−∆S〉 = 1, then the mean itself is negative: 〈∆S〉 ≥ 0. We then use
convexity in statistics to establish hierarchies and find the distribution that
provides for an extremum.

8. Since uncertainty or the lack of knowledge plays such a prominent
role, we wish to quantify it. The measure of uncertainly is the amount of
information needed to remove it. This is consistently done in a discrete case,
for instance, by counting the number of bits, that is answers to ”yes-no”
questions. That way we realize that the information is log2 of the number
of equally probable possibilities (Boltzmann entropy) or the mean logarithm
if the probabilities are different (Shannon-Gibbs entropy). Here convexity of
the function −w logw helps us to prove that the information/entropy has its
maximum for equal probabilities (when our ignorance is maximal).

9. The point 6 above states that the number of typical sequences grows
with the rate equal to the entropy S. The number of typical binary sequences
of length N is then 2NS, which cannot exceed 2N . The efficient encoding of
the typical sequences thus involves words with lengths from unity to NS,
which is less than N if the probabilities of 0 and 1 are not equal. That
means that the entropy is both the mean and the fastest rate of the reception
of information brought by long messages/measurements. To squeeze out all
the unnecessary bits, encoding is used both in industry and in nature where
sources often bring highly redundant information, like in visual signals.

10. If the transmission channel B → A makes errors, then the message
does not completely eliminate uncertainty; what remains is the conditional
entropy S(B|A) = S(A,B)− S(A), which is the mean rate of growth of the
number of possible errors. Sending extra bits to correct these errors lowers
the transmission rate from S(B) to the mutual information I(A,B) = S(B)−
S(B|A), which is the mean difference of the uncertainties before and after
the message. The great news is that one can still achieve an asymptotically
error-free transmission if the transmission rate is lower than I. The maximum
of I over all source statistics is the channel capacity, which is the maximal
rate of asymptotically error-free transmission. In particular, to maximize the
capacity of sensory processing, the response function of a living beings or a
robot must be a cumulative probability of stimuli.

11. Very often our goal is not to transmit as much information as possible,
but to compress it and process as little as possible, looking for an encoding
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with a minimum of the mutual information. For example, the rate distor-
tion theory looks for the minimal rate I of information transfer under the
restriction that the signal distortion does not exceed the threshold D. This
is done by minimizing the functional I + βD. Another minimization task
could be to separate the signal into independent components with as little
as possible (ideally zero) mutual information between them.

12. The conditional probability allows for hypothesis testing by the Bayes’
rule: P (h|e) = P (h)P (e|h)/P (e). That is the probability P (h|e) that the
hypothesis is correct after we receive the data e is the prior probability P (h)
times the support P (e|h)/P (e) that e provide for h. Taking a log and aver-
aging we obtain familiar S(h|e) = S(h) − I(e, h). Bayes’ approach demon-
strates that there is no inference without prior assumption. If our hypothesis
concerns the probability distribution itself, then the difference between the
true distribution p and the hypothetical distribution q is measured by the
relative entropy D(p|q) = 〈log2(p/q)〉. This is yet another rate — with which
the error probability grows with the number of trials. D also measures the
decrease of the transmission rate due to non-optimal encoding: the mean
length of the codeword is not S(p) but bounded by S(p) + D(p|q). Mutual
information is a particular case of relative entropy, they are both invariant
with respect to arbitrary transformations of variables in a continuous case,
which facilitates their ever-widening area of applications.

13. Since so much hangs on getting the right distribution, how best to
guess it from the data? This is achieved by maximizing the entropy under
the given data — ”the truth and nothing but the truth”. That explains and
makes universal the approach from the point 3. It also sheds new light on
physics, telling us that on some basic level all states are constrained equi-
libria. Whenever we encounter a trade-off, free energy appears, whose two
terms quantify the opposite tendencies. Not only its (conditional) minima
describe physical systems, but are presently the most powerful technical tools
of optimization, from our Bayesian brain to machine-learning algorithms.

14. Information is physical: to learn ∆S = S(A) − S(A,M) one does
the work T∆S, where A is the system and M is the measuring device. To
erase information, one needs to convert TS(M) into heat. Both acts require
a finite temperature. The energetic price of a cycle is T times the mutual
information: TI(A,M). Another side of the physical nature of information
is that there is the (Bekenstein) limit on how much entropy one can squeeze
inside a given a radius; surprisingly, the limit is proportional to the area
rather than the volume and is realized by black holes — our gates outside of
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this world.
15. The Renormalization Group is a best so far known way to forget in-

formation. Apart from forgetting in the first step, it involves the second step
of renormalization. The focus is on the change of the probability distribution
and the appearance of an asymptotic distribution after many steps. We find
that the entropy of the partially averaged and renormalized distribution is
the proper measure of forgetting in simple cases, like adding random num-
bers on the way to the central limit theorem. In physical systems with many
degrees of freedom, it can be the mutual information defined in two ways:
either between remaining and eliminated degrees of freedom or between dif-
ferent parts of the same system. In particular, it shows us examples of the
area law, when I is sub-extensive.

16. That area law was the initial motivation for the quantum information
theory, since the entropy of a black hole is proportional to its area rather than
volume. Nowadays, of course, it is also driven by the quest for a quantum
computer. Already quantum mechanics has a natural entropic formulation.
Quantum statistics appears when we treat subsystems and must deal with
the density matrix and its von Neumann entropy. The quantum entropy of
the whole can be less than the entropy of a part. In particular, the whole
system can be in a pure state with zero entropy, then all the entropy of
a subsystem comes from entanglement — such is a quantum sibling of the
mutual information, since it also measures the degree of correlation.

17. The last lesson is two progressively more powerful forms of the second
law of thermodynamics, which originally was 〈∆S〉 ≥ 0. The first new form,
〈e−∆S〉 = 1, is the analog of a Liouville theorem. The second form relates
the probabilities of forward and backward process: ρ†(−∆S) = ρ(∆S)e−∆S.

7.2 Epilogue

The central idea of this course is that learning about the world means building
a model, which is essentially finding an efficient representation of the data.
Optimizing information transmission or encoding may seem like a technical
problem, but it is actually the most important task of science, engineering
and survival. Science works on more and more compact encoding of the
strings of data, which culminates in formulating a law of nature, potentially
describing infinity of phenomena. The mathematical tool we learnt here is
an ensemble equivalence in the thermodynamic limit, its analog is the use
of typical sequences in communication theory. The result is two roles of
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entropy: it defines maximum transmission and minimum compression.
Another central idea is that entropy is not a property of the physical

world, but is an information we lack about it. And yet the information is
physical — it has an energetic value and a monetary price. Indeed, the
difference between work and heat is that we have information about the
former but not the later. That means that one can turn information into
work and one needs to release heat to erase information. We also have learnt
that one not only pays for information but can turn information into money
as well. The physical nature of information is manifested in the universal
limit on how much of it we can squeeze into a space restricted by a given
area.

The panoramic view accepted here works on different levels. Natural
scientists see analogies between phenomena. One analogy discussed above
is that measurements, predictions, recording retrievals, etc can all be trea-
ted and described uniformly as different forms of communication. Another
analogy is between finding optimal strategy in economics (proportional gam-
bling), biology (phenotype switching), engineering, data processing, percep-
tual inference, etc. On a higher level mathematicians see analogies between
analogies. For the above two analogies, the unifying mathematical notions
are the relative entropy and free energy. Convexity is another example of a
recurring mathematical notion unifying different approaches to the classes of
phenomena, rather than phenomena themselves.

Reader surely recognized that no rigorous proofs were given in this book,
replaced instead by plausible hand-waving argument or even a particular
example. Those interested in proofs for Chapter 2 can find them in Dorf-
man ”An Introduction to Chaos in Nonequilibrium Statistical Mechanics”.
Detailed information theory with proofs can be found in Cowen & Thomas
”Elements of Information Theory”, whose Chapter 1 gives a concise over-
view. More practical and problem-oriented approach with numerous exerci-
ses can be found in MacKay ”Information Theory, Inference and Learning
algorithms”. I wish also to stress that the examples given in this book are
representative of the ever-widening avalanche of applications; more biological
applications can be found in ”Biophysics” by Bialek, others in original articles
and reviews. On quantum information the comprehensive books are those
by Preskill and Nielsen&Chuang. Numerous references scattered through
the text, like (Zipf 1949), give you the most compact encoding of what is to
google to find details.

Mention briefly several important subjects left out of this course. Our
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focus was largely (though not entirely) on finding a data description that
is good on average. Yet there exists a closely related approach that focuses
on finding the shortest description and ultimate data compression for a gi-
ven string of data. The Kolmogorov complexity is defined as the shortest
binary computer program able to compute the string. It allows us to quan-
tify how much order and randomness is in a given sequence — truly random
sequence cannot be described by an algorithm shorter than itself, while any
order allows for compression. Complexity is (approximately) equal to the
entropy if the string is drawn from a random distribution, but is actually
a more general concept, treated in courses on Computer Science. Another
fundamental issue not treated here is the dramatic difference between the
classical and quantum classifications of computational complexity. Entropy
as a measure of irreversibility also finds beautiful applications in geometry
(see e.g. Perelman 2002).

Taking a wider view, I invite you to reflect on the history of our attempts
to realize limits of possible, from heat engines through communication chan-
nels to computations. Will the next step be to study the natural limits of
thinking and feeling?

Looking back one may wonder why accepting the natural language of in-
formation took so much time and was so difficult for physicists and engineers.
Generations of students (myself including) were tortured by ”paradoxes” in
the statistical physics, which disappear when information language is used. I
suspect that the resistance was to a large extent caused by the misplaced de-
sire to keep scientist out of science. A dogma that science must be something
”objective” and only related to the things independent of our interest in them
obscures the simple fact that science is a form of human language. True, we
expect it to be objectively independent of personality of this or that scien-
tist as opposite, say, to literature, where we celebrate the difference between
languages (and worlds) of Tolstoy and Chekhov. However, science is the lan-
guage designed by and for humans, so that it necessarily reflects both the
way body and mind operate and the restrictions on our ability to obtain and
process the data. Presumably, omnipresent and omniscient being would have
no need in the statistical information approach described here. One may also
wonder to what extent essential presence of scientist in science may help us
understand the special status of measurement in quantum mechanics.

As we learnt here, better understanding must lead to a more compact
presentation; hopefully, the next version of these lecture notes will be shorter.

156



8 Appendix

8.1 Central limit theorem and large deviations

The true logic of this world is to be found in the theory of probability.
Maxwell

A bridge from statistical physics to information theory is a simple techni-
cal tool used in both. Mathematics, underlying most of the statistical physics
in the thermodynamic limit, comes from universality, which appears upon ad-
ding independent random numbers. The weakest statement is the law of large
numbers: the sum approaches the mean value exponentially fast. The next
level is the central limit theorem, which states that majority of fluctuations
around the mean have Gaussian probability distribution. Consideration of
large rare fluctuations requires the so-called large-deviation theory. Here we
briefly present all three at the physical (not mathematical) level.

Consider the variable X which is a sum of many independent identically
distributed (iid) random numbers X =

∑N
1 yi. Its mean value 〈X〉 = N〈y〉

grows linearly with N . Here we show that its fluctuations X−〈X〉 not excee-
ding O(N1/2) are governed by the Central Limit Theorem: (X − 〈X〉)/N1/2

becomes for large N a Gaussian random variable with variance 〈y2〉− 〈y〉2 ≡
∆. The quantities yi that we sum can have quite arbitrary statistics, the only
requirements are that the first two moments, the mean 〈y〉 and the variance
∆, are finite. Finally, the fluctuations X −〈X〉 on the larger scale O(N) are
governed by the Large Deviation Theorem that states that the PDF of X
has asymptotically the form

P(X) ∝ e−NH(X/N) . (191)

P(X) −lnP/N

N1

N2

<X>X /N X/N

To show this, we write

P(X) =
∫
δ
(∑N

i=1 yi −X
)
P(y1)dy1 . . .P(yN) dyN

=
∫∞
−∞ dp

∫
exp

[
ıp
(∑N

i=1 yi −X
)]
P(y1)dy1 . . .P(yN) dyN

157



=
∫∞
−∞ dpe

−ıpX ∏N
i=1

∫
eıpyiP(yi)dyi =

∫∞
−∞ dpe

−ıpX+NG(ıp) . (192)

Here we introduced the generating function 〈e zy〉 ≡ eG(z). The derivatives of
the generating function with respect to z at zero are equal to the moments
of y, while the derivatives of its logarithm G(z) are called cumulants (see
exercise).

For large N , the integral (192) is dominated by the saddle point z0 such
that G′(z0) = X/N . This is similar to representing the sum (19) above by
its largest term. If there are several saddle-points, the result is dominated by
the one giving the largest probability. We assume that contour of integration
can be deformed in the complex plane z to pass through the saddle pint
without hitting any singularity of G(z). We now substitute X = NG′(z0)
into −zX +NG(z), and obtain the large deviation relation (191) with

H = −G(z0) + z0G
′(z0) . (193)

We see that −H and G are related by the ubiquitous Legendre transform
(which always appear in the saddle-point approximation of the integral Fou-
rier or Laplace transformations). Note that NdH/dX = z0(X) and

N2d2H/dX2 = Ndz0/dX = 1/G′′(z0) .

The function H of the variable X/N − 〈y〉 is called Cramér or rate function
since it measures the rate of probability decay with the growth of N for every
X/N . It is also sometimes called entropy function since it is a logarithm of
probability.

Several important properties of H can be established independently of
the distribution P(y) or G(z). It is a convex function as long as G(z) is
a convex function since their second derivatives have the same sign. It is
straightforward to see that the logarithm of the generating function has a
positive second derivative (at least for real z):

G′′(z) =
d2

dz2
ln
∫
ezyP(y) dy

=

∫
y2ezyP(y) dy

∫
ezyP(y) dy − [

∫
yezyP(y) dy]2

[
∫
ezyP(y) dy]2

≥ 0 . (194)

This uses the Cauchy-Bunyakovsky-Schwarz inequality which is a generali-
zation of 〈y2〉 ≥ 〈y〉2. Also, H(z0) takes its minimum at z0 = 0, i.e. for X
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taking its mean value 〈X〉 = N〈y〉 = NG′(0). The maximum of probability
does not necessarily coincides with the mean value, but they approach each
other when N grows and maximum is getting very sharp — this is called the
law of large numbers. Since G(0) = 0 then the minimal value of H is zero,
that is the probability maximum saturates to a finite value when N → ∞.
Any smooth function is quadratic around its minimum with H ′′(0) = ∆−1,
where ∆ = G′′(0) is the variance of y. Quadratic entropy means Gaussian
probability near the maximum — this statement is (loosely speaking) the
essence of the central limit theorem. In the particular case of Gaussian P(y),
the PDF P(X) is Gaussian for any X. Non-Gaussianity of the y’s leads to
a non-quadratic behavior of H when deviations of X/N from the mean are
large, of the order of ∆/G′′′(0).

One can generalize the central limit theorem and the large-deviation approach
in two directions: i) for non-identical variables yi, as long as all variances are
finite and none dominates the limit N → ∞, it still works with the mean and
the variance of X being given by the average of means and variances of yi; ii) if
yi is correlated with a finite number of neighboring variables, one can group such
”correlated sums” into new variables which can be considered independent.

The above figure and (191,193) show how distribution changes upon adding

more numbers. Is there any distribution which does not change upon averaging,

that is upon passing from yi to
∑N
i=1 yi/N? That can be achieved for H ≡ 0, that is

for G(z) = kz, which corresponds to the Cauchy distribution P(y) ∝ (y2 + k2)−1.

Since the averaging decreases the variance, it is no surprise that the invariant

distribution has infinite variance. Distributions invariant under summation of

variables are treated in considering Renormalization Group in Section 4.3.

8.2 Continuous distributions

For the sake of completeness, we generalize (58) for a continuous distribution
by dividing into cells (that is considering a limit of discrete points). Denote
pi = ρ(xi)∆xi, then the entropy at the limit consists of two parts:

−
∑
i

pi log pi → −
∫
dxρ(x) log ρ(x)− log(∆x) . (195)

The second part is an additive constant depending on the resolution. When
interested in the functional form of the distribution, we usually focus on
the first term, which is called differential entropy S(x). It is the difference
between the entropies of the coarse-grained distribution and of the uniform
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distribution; when ∆x→ 0 both diverge but their difference may stay finite.
The entropy defined in such a way can be both positive, and negative, and
can even be −∞. In distinction from a discrete case, it is invariant with
respect to shifts but not re-scaling of the variables: S(ax+ b) = S(x) + log a.
Different choices of variables to define equal cells give different answers. It
is in such a choice that physics (or other specific knowledge) enters. Physics
(quantum mechanics) requires that for Hamiltonian system the equal volumes
in phase space contain equal number of states, so the measure is uniform in
canonical coordinates; we then write entropy in terms of the phase space
density ρ(P,Q, t):

S(P,Q) = −
∫
ρ log ρ dPdQ . (196)

It is maximal for the uniform distribution ρ = 1/Γ = 1/
∫
dPdQ, I = ln Γ.

If the density of the discrete points in the continuous limit is inhomoge-
neous, say m(x), then the proper generalization is

S = −
∫
ρ(x) ln[ρ(x)/m(x)] dx .

It is invariant with respect to an arbitrary change of variables x → y(x)
since ρ(y)dy = ρ(x)dx and m(y)dy = m(x)dx while (196) was invariant
only with respect to canonical transformations (including a time evolution
according to a Hamiltonian dynamics) that conserve the element of the phase-
space volume. If we introduce the normalized distribution of points ρ′(x) =
m(x)/Γ, then

S = ln Γ−
∫
ρ(x) ln[ρ(x)/ρ′(x)] dx . (197)

The last term in (197) is the relative entropy between the distributions. Both
the relative entropy and the mutual information are invariant with respect
to invertible transformations of variables.

Since statistics and information is ultimately about counting, it must be
discrete. Continuous treatment is just an approximation often convenient for
analytic treatment; to avoid infinities and divergencies (like log of zero) it is
convenient to work with differentials.
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8.3 On Zipf law

Empirical law for the frequency of the r-th most frequent word in English is
well approximated by the Zipf law:

pr =
{

(10r)−1 for r=1,. . . ,12367
0 for r >12367

. (198)

Incidentally, if words were independent, then the entropy per word can be
computed from (198) to be 9.7 bits. With the average word length 4.7 letters,
that would give approximately 2 bits per letter.

Probably the simplest model that gives such a distribution is random
typing: all letters plus the space are taken with equal probability (Wentian
Li 1992). Then any word with the length L is flanked by two spaces and has
the probability Pi(L) = (M + 1)−L−2/Z, where i = 1, 2, . . . ,ML and M is
the alphabet size. The normalization factor is Z =

∑
LM

L(M + 1)−L−2 =
(M + 1)2/M . On the other hand, the rank r(L) of any L-word satisfies the
inequality

M(ML−1 − 1)/(M − 1) =
L−1∑
i=1

M i < r(L) ≤
L∑
i=1

M i = M(ML − 1)/(M − 1) ,

which can be written as Pi(L) < C[r(L) + B]−α ≤ Pi(L − 1) with α =
logM(M + 1), B = M/(M − 1) and C = Bα/M . In the limit of large
alphabet size, M � 1, we obtain

P (r) = (r + 1)−1 . (199)

This asymptotic actually takes place for wide classes of letter distributions,
not necessarily equiprobable. Closely related way of interpreting statistical
distributions is to look for variational principle it satisfies. What we mostly
did in this course and what most of statisticians do most of the time is minimi-
zing a two-term functionals and looking for a conditional entropy maximum.
In this case, one may require maximal information transferred with the least
effort. The rate of information transfer is S = −∑r P (r) logP (r). The effort
must be higher for less common words, that is to grow with the rank. Such
growth can be logarithmic (for instance, when the effort is proportional to
the word length). The mean effort is then W =

∑
r P (r) log r. Looking for

the minimum of S − λW , we obtain P (r) ∝ r−λ. Zipf law corresponds to
λ = 1, when goals and mean are balanced. In what follows
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Does then the Zipf law trivially appear because both number of words (in-
verse probability) and rank increase exponentially with the word size? The
answer is negative because the number of distinct words of the same length
in real language is not exponential in length and is not even monotonic. It
is reassuring that our texts are statistically distinguishable from those pro-
duced by an imaginary monkey with a typewriter. Moreover, words have
meaning. The number of meanings (counted, for instance, from the number
of dictionary entries for a word) grows approximately as the square root of
the word frequency: mi ∝

√
Pi. Meanings correspond to objects of reference

having their own probabilities, and it seems that the language combines these
objects into groups whose sizes are proportional to the mean probability of
the group pi, so that Pi = mipi ∝ m2

i . It is tempting to suggest that the dis-
tributions appeared due to the balance between minimizing efforts of writers
and readers, speakers and listeners. Writers and speakers would minimize
their effort by having one word meaning everything and appearing with the
probability one. On the other end, difficulty of perception is proportional
to the depth of the memory keeping the context, needed, in particular, for
choosing the right meaning. Readers and listeners then prefer a lot of single-
meaning words. So far, no convincing optimization scheme giving different
features of word statistics was found29.

8.4 Landauer bound experiment

Despite its fundamental importance for information theory and computer
science, the erasure bounds (92,93,94) has not been verified experimentally
until recently, the main obstacle being the difficulty of doing single-particle
experiments in the low-dissipation regime (dissipation in present-day silicon-
based computers still exceeds the Landauer limit by a factor 102 ÷ 103 but
goes down fast). The experiment realized erasure of a bit by treating colloidal
particle in a double-well potential as a generic model of a one-bit memory
(Berut et al, Nature 2012; Jun, Gavrilov, Bechhoefer, PRL 2014). The initial
entropy of the system is thus ln 2. The procedure is to put the particle into
the right well irrespective of its initial position, see Figure below. It is done
by first lowering the barrier height (Fig. b) and then applying a tilting force
that brings the particle into the right well (Fig ce). Finally, the barrier is

29Maybe, the statistical laws of language can be better understood by viewing conver-
sation not as an exchange of information but as a mating game with multiple synonyms
and meanings as a verbal plumage.
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increased to its initial value (Fig f). At the end of this reset operation,
the information initially contained in the memory has been erased and the
entropy is zero.
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The heat/work was determined by experimentally observing the particle
trajectory x(t) and computing the integral of the power using the known
potential U(x, t):

W = Q(τ) = −
∫ τ

0
ẋ(t)

∂U(x, t)

∂x
dt . (200)

This heat was averaged over 600 realizations. According to the second law
of thermodynamics,

〈Q〉 ≥ −T∆S = T ln 2 . (201)

One can see in the right panel of the figure above how the limit is approached
as the duration of the process increases. We shall return to the Brownian
particle in a potential in Section 5.3 where we present a generalization of
(92,93).

8.5 Unsupervised learning and infomax principle

The maximal-capacity approach described in Section 4.4 turns out quite use-
ful in image and speech recognition by computers using unsupervised lear-
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ning. That can be done by considering the ”training set” of x-s to approxi-
mate the density ρ(x). We then choose some form of the response function
y = g(x,w) characterized by the parameter w and find optimal value of w
using an ”online” stochastic gradient ascent learning rule giving the change
of the parameter:

∆w ∝ ∂

∂w
ln

(
∂g(x,w)

∂x

)
. (202)

For example, the form of the response function y(u) popular for its flexibility
is the two-parametric asymmetric generalized logistic function defined impli-
citly by dy/du = yp(1 − y)r. Symmetric examples are given in the Figure,
choosing p 6= r one can work with skewed distributions as well.
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After choosing the form of g, we need to properly center and normalize the
output signal u = wx+w0. Using (202) one trains computer to optimize the data
processing with respect to all the parameters.

Of course, eye or camera provide not a single input signal, but the whole
picture. Let us consider N inputs and outputs (neurons/channels). Consider a
network with an input vector x = (x1, . . . , xN ) which is transformed into the
output vector y(x) monotonically, that is det[∂yi/∂xk] 6= 0. The multivariate
probability density function of y is as follows:

ρ(y) =
ρ(x)

det[∂yi/∂xk]
, (203)

Making it flat (distribute outputs uniformly) for maximal capacity is not straig-
htforward now. In one dimension, it is enough to follow the gradient to arrive at
an extremum, but there are many possible paths to the mountain summit. Max-
imizing the total mutual information between input and output, which requires

164



maximizing the output entropy, is often (but not always) achieved by minimizing
first the mutual information between the output components. For two outputs we
may start by maximizing S(y1, y2) = S(y1) + S(y2) − I(y1, y2), that is minimize
I(y1, y2). If we are lucky and find encoding in terms of independent components,
then we choose for each component the transformation (100), which maximizes
its entropy making the respective probability flat. For a good review and specific
applications to visual sensory processing see Atick 1992.

Finding least correlated components can be a practical first step in maximizing
capacity. Note how to maximize the mutual information between input and out-
put, we minimize the mutual information between the components of the output.
This is particularly true for natural signals where most redundancy comes from
strong correlations (like that of the neighboring pixels in visuals). In addition,
finding an encoding in terms of least dependent components is important by it-
self for its cognitive advantages. For example, such encoding generally facilitates
pattern recognition. In addition, presenting and storing information in the form
of independent (or minimally dependent) components is important for associative
learning done by brains and computers. Indeed, for an animal or computer to learn
a new association between two events, A and B, the brain should have knowledge
of the prior joint probability P (A,B). For correlated N -dimensional A and B one
needs to store N ×N numbers, while only 2N numbers for quantities uncorrelated
(until the association occurs).

Another cognitive task is the famous ”cocktail-party problem” posed by spies:
N microphones (flies on the wall) record N people speaking simultaneously, and
we need the program to separate them — so-called blind separation problem. Here
we assume that uncorrelated sources s1, . . . , sN are mixed linearly by an unknown
matrix Â. All we receive are the N superpositions of them x1, . . . , xN . The
task is to recover the original sources by finding a square matrix Ŵ which is the
inverse of the unknown Â, up to permutations and re-scaling. Closely related is
the blind de-convolution problem also illustrated in the Figure below (from Bell
and Sejnowski, 1995): a single unknown signal s(t) is convolved with an unknown
filter giving a corrupted signal x(t) =

∫
a(t− t′)s(t′) dt′, where a(t) is the impulse

response of the filter. The task is to recover s(t) by integrating x(t) with the inverse
filter w(t), which we need to find by learning procedure. Upon discretization, s, x
are turned into N -vectors and w into N × N matrix, which is lower triangular
because of causality: wij = 0 for j > i and the diagonal values are all the same
wii = w̄. The determinant in (203) is simplified in this case. For y = g(ŵx)
we have det[∂y(ti)/∂x(tj)] = det ŵ

∏N
i y
′(ti) = w̄N

∏N
i y
′(ti). One that applies

some variant of (202) to minimize mutual information. What was described is a
single-layer processing. More powerful are multi-layer nonlinear schemes, where
computing determinants and formulating learning rules is more complicated.
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Ideally, we wish to find the (generally stochastic) encoding y(x) that achieves
the absolute minimum of the mutual information

∑
i S(yi) − S(y). One way to

do that is to minimize the first term while keeping the second one, that is under
condition of the fixed entropy S(y) = S(x). In general, one may not be able to find
such encoding without any entropy change S(y)−S(x). In such cases, one defines
a functional that grades different codings according to how well they minimize both
the sum of the entropies of the output components and the entropy change. The
simplest energy functional for statistical independence is then

E =
∑
i

S(yi)− β[S(y)− S(x)] =
∑
i

S(yi)− β ln det[∂yi/∂xk] . (204)

A coding is considered to yield an improved representation if it possesses a smaller
value of E. The choice of the parameter β reflects our priorities — whether
statistical independence or increase in indeterminacy is more important.

Maximizing information transfer and reducing the redundancy between the
units in the output is applied practically in all disciplines that analyze and process
data, from physics and engineering to biology, psychology and economics. So-
metimes it is called infomax principle, the specific technique is called independent
component analysis (ICA). More sophisticated schemes employs not only mutual
information, but also interaction information (85). Note that the redundancy re-
duction is usually applied after some procedure of eliminating noise. Indeed, our
gain function provides equal responses for probable and improbable events, but the
latter can be mostly due to noise, which thus needs to be suppressed. Moreover,
if input noises were uncorrelated, they can get correlated after coding. And more
generally, it is better to keep some redundancy for corrections and checks when
dealing with noisy data.
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8.6 Analogy between quantum mechanics and statisti-
cal physics

Many aspects of quantum world are bizarre and have no classical analog. And
yet there are certain technical similarities between descriptions of quantum rand-
omness and thermal noise, related to the necessity of summing over different pos-
sibilities. One can see one such similarity using the formalism of the path inte-
gral, where one sums over different trajectories, — that is briefly discussed in the
Section 5.1. Here we describe the similarity in using the formalism of the trans-
fer matrix for the systems with nearest neighbor interaction, which we shall also
need in the next subsection. Indeed, in a simplest setting, quantum mechanics is
done by specifying two sets of states |m〉 and 〈n|, which have ortho-normality and
completeness: 〈m|n〉 = δmn and

∑
n |n〉〈n| = 1. Physical quantities are represen-

ted by operators, and measurement corresponds to taking a trace of the operator
over the set of states: traceP=

∑
n〈n|P |m〉. One special operator, called Hamil-

tonian H, determines the temporal evolution of all other operators according to
P (t) = exp(iHt)P (0) exp(−iHt). The operator T (t) = exp(iHt) is called time
translation operator or evolution operator. The quantum-mechanical average of
any operator Q is calculated as a trace with the evolution operator normalized by
the trace of the evolution operator:

〈Q〉 =
traceT (t)Q

Z(t)
, Z(t) = traceT (t) =

∑
a

e−itEa . (205)

The normalization factor is naturally to call the partition function, all the more if
we formally consider it for an imaginary time t = iβ

Z(β) = traceT (iβ) =
∑
a

e−βEa . (206)

If the inverse ”temperature” β goes to infinity then all the sums are dominated by
the ground state, Z(β) ≈ exp(−βE0) and the average in (206) are just expectation
values in the ground state.

That quantum mechanical description can be compared with the transfer-
matrix description of the Ising model (which was formulated by Lenz in 1920
and solved in one dimension by his student Ising in 1925). It deals with the dis-
crete spin variable σi = ±1 at every lattice site. The energy includes interaction
with the external field and between nearest neighbors (n.n.):

H =
J

2

N−1∑
i=1

(1− σiσi+1) . (207)
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It is better to think not about spins but about the links between spins. Starting
from the first spin, the state of the chain can be defined by saying whether the
next one is parallel to the previous one or not. If the next spin is opposite it gives
the energy J and if it is parallel the energy is zero. There are N − 1 links. The
partition function is that of the N − 1 two-level systems:

Z = 2[1 + exp(−βJ)]N−1 . (208)

Here 2 because there are two possible orientations of the first spin.
To avoid considering the open ends of the chain (which must be irrelevant in

the thermodynamic limit), we consider it on a ring so that σN+1 = σ1 and write
the partition function as a simple sum over spin value at every cite:

Z =
∑
{σi}

exp

[
−βJ

2

N−1∑
i=1

(1−σiσi+1)

]
(209)

=
∑
{σi}

N−1∏
i=1

exp

[
−βJ

2
(1−σiσi+1)

]
(210)

Every factor in the product can have four values, which correspond to four different
choices of σi = ±1, σi+1 = ±1. Therefore, every factor can be written as a matrix
element of 2 × 2 matrix: 〈σj |T̂ |σj+1〉 = Tσjσj+1 = exp[−βJ(1 − σiσi+1)/2]. It is
called the transfer matrix because it transfers us from one cite to the next.

T =

(
T1,1 T1,−1

T−1,1 T−1,−1

)
(211)

where T11 = T−1,−1 = 1, T−1,1 = T1,−1 = e−βJ . For any matrices Â, B̂ the
matrix elements of the product are [AB]ik = AijBjk. Therefore, when we sum
over the values of the intermediate spin, we obtain the matrix elements of the
matrix squared:

∑
σi Tσi−1σiTσiσi+1 = [T 2]σi−1σi+1 . The sum over N −1 spins gives

TN−1. Because of periodicity we end up with summing over a single spin which
corresponds to taking trace of the matrix:

Z =
∑
{σi}

Tσ1σ2Tσ2σ3 . . . TσNσ1 =
∑

σ1=±1

〈σ1|T̂N−1|σ1〉 = traceTN−1 . (212)

The eigenvalues λ1, λ2 of T are given by

λ1,2 = 1± e−βJ . (213)

The trace is the sum of the eigenvalues

Z = λN−1
1 + λN−1

2 . (214)
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Therefore

F = −T log(λN−1
1 + λN−1

2 ) = −T
[
(N − 1) log(λ1)

+ log

(
1 +

(
λ2

λ1

)N−1
)]
→ −NT log λ1 as N →∞ (215)

Note that the partition functions (214) and (208) give the same free energies only
at the thermodynamics limit when a ring is indistinguishable from a chain with
open ends.

We thus see that taking the sum over two values of σ at every cite in the Ising

model is the analog of taking trace in quantum-mechanical average. If there are

m values on the cite, then T is m×m matrix. For a spin in n-dimensional space

(described by so-called O(n) model), trace means integrating over orientations.

The translations along the chain are analogous to quantum-mechanical translations

in (imaginary) time. This analogy is not restricted to 1d systems, one can consider

2d strips that way too.

8.7 Quantum thermalization

Is there any quantum analog of chaos which underlies thermalization the
same way that dynamical chaos underlies mixing and thermalization in the
classical statistics, as described in Sect. 2.2? Writing the classical formula of
exponential separation, δx(t) = δx(0)eλt as ∂x(t)/∂x(0) = eλt and replacing
quantum-mechanically the space derivative by the momentum operator, one
naturally comes to consider the commutator of x̂(t) and p̂(0). Indeed,

∂x(t)

∂x(0)
=
∂x(t)

∂x(0)

∂p(0)

∂p(0)
− ∂x(t)

∂p(0)

∂p(0)

∂x(0)
= {x(t), p(0)} → h̄−1[x̂(t), p̂(0)] .

That corresponds to the Heisenberg representation, where operators are time-
dependent. The commutator measures the effect of having at t = 0 the value
of p̂ on the later measurement of x̂(t). The average value of this commuta-
tor over Gibbs distribution with a finite temperature T is zero. Averaging
the square, C(t) = 〈[x(t)p(0)]2)〉, brings the concept of a so-called out-of-
time-order correlation function like 〈x(t)p(0)x(t)p(0)〉. Such quantities are
found to grow exponentially in time in some quantum systems (complicated
enough to allow chaos and simple enough to allow for analytic solvability):
C(t) = h̄2e2λt, where uncertainty relation gives the starting value at t = 0.
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The commutator squared is bounded, so that the exponential growth satu-
rates when C(t) is getting comparable with 〈p2〉〈x2〉 - that value is supposed
to be much larger than h̄2, which requires quasi-classical limit. Respective
Lyapunov exponent dimensionally must be energy (temperature) divided by
h̄ and indeed λ = 2πT/h̄ was shown to be a universal upper limit. To ap-
preciate this, note that for a particle with the mass m, the time of effective
scattering λ−1 could not be less than the de Broglie wavelength h̄/

√
mT di-

vided by the thermal velocity
√
T/m (and the mass drops out!). The limit is

reached, for instance, by black holes, which scramble quantum information
at the greatest possible rate.

When there are many interacting particles, then the growth of the many-
particle version, Cij = 〈[xi(t)pj(0)]2)〉 describes how entanglement of more
and more distant particles appears on the way to thermalization. Indeed,
the evolution of the operators in the Heisenberg representation is governed
by the Hamiltonian H{x̂i, p̂i}:

x̂i(t) = eıHtx̂i(0)e−ıHt =
∞∑
j=0

(ıt)j

j!
[H . . . [Hx̂i(0)] . . .] . (216)

Since the Hamiltonian describes interaction between particles, then the sub-
sequent terms of the expansion will involve more and more particles, which
describes the growth of entanglement with time.

Take for example, the chain with harmonic interaction described by the Ha-
miltonian H{x̂i, p̂i} = K + U =

∑
i p̂

2
i /2m + (x̂i − x̂i+1)2 and consider the one-

particle creation operator at some point i. Commutator with the kinetic energy
just moves it to another point without increasing the number of particles involved:
[K, c†i ] = c†i−1 + c†i+1. But each commutator with the potential energy increases

the number of the operators involved: [U, c†i ] ∝ c
†
i−1c

†
ic
†
i+1.
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