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Abstract

The description of scalar and vector fields transport by a random flow hinges on methods of

statistical mechanics applied to the motion of fluid particles, i.e. to the Lagrangian dynamics.

We first present the propagators describing evolving probability distributions of different config-

urations of fluid particles. We then use those propagators to describe growth, decay and steady

states of different scalar and vector quantities transported by random flows. We discuss both prac-

tical questions like mixing and segregation and fundamental problems like symmetry breaking in

turbulence.
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In the absence of viscosity . . . the velocity field does not remain differentiable!

The ordinary formulation of the laws of motion in terms of differential equations

becomes inadequate and must be replaced by a more general description . . .

L. Onsager, May 20, 1949

I. INTRODUCTION

This lecture course is an abridged and updated version of the review [1]. Here, we try to

use intuitive arguments whenever possible and avoid most of the technicalities (but not all).

Readers interested in a more rigorous and detailed presentation are encouraged to turn to

the review [1].

The subject of the course is the combined effect of molecular diffusion and random flow

on scalar and vector fields transported by a fluid. We want to understand first when there is

mixing and when, on the contrary, inhomogeneities are created and enhanced. We want to

distinguish between cases when flow create small-scale inhomogeneities of the transported

fields which are then killed by molecular diffusion and cases when large-scale structures of

the fields appear. Our goal is to describe both temporal and spatial statistical properties of

transported fields.

A. Propagators

If we wish to describe the statistics of different fields transported by the flow we need a

formalism to describe the probabilities of different flow trajectories. Consider the evolution

of a passive scalar tracer θ(r, t) in a random flow. The mean value of the scalar tracer at a

given point is an average over values brought by different trajectories:

〈
θ(r, s)

〉
=

∫
P(r, s;R, 0) θ(R, 0) dR , (1)

Here, P(r, s;R, t) is the probability density function (PDF) to find the particle at time t at

position R given its position r at time s. That PDF is called the propagator or the Green

function. Multi-point correlation functions of the tracer

CN(r, s) ≡
〈
θ(r1 , s) . . . θ(r

N
, s)

〉
=

∫
P

N
(r, s;R, 0) θ(R1 , 0) . . . θ(R

N
, 0) dR (2)
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are expressed via the multi-particle Green functions P
N

which are the joint PDF’s of the

equal-time positions R = (R1 , . . . ,RN
) of N fluid trajectories. The next Chapter is devoted

to the analysis of the one-, two- and multi-particle Green functions. The results of Chapter II

are used then in the subsequent Chapters III and IV for the description of the transported

passive fields. Chapter V describes active tracers which influence the velocity that transports

them.

The trajectory of the fluid particle that passes at time s through the point r is described

by the vector R(t; r, s) which satisfies R(t; r, t) = r and the stochastic equation [2]

Ṙ = v(R, t) + u(t) . (3)

Here, u(t) describes the molecular Brownian motion, it has zero average and covariance

function 〈ui(t)uj(t′)〉 = 2κδijδ(t− t′). We shall also consider the macroscopic velocity v as

random with different statistical properties and different dependencies on space and time in

different cases. The molecular diffusivity κ is of order 10−1cm2s−1 for gases in gases so it

would take many hours for a smell to diffuse across the dinner table. Similarly, to diffuse

salt a kilometer depth of the ocean molecular diffusion would take 107 years. It is the motion

of fluids that provides large-scale transport and mixing in most cases. There is a clear scale

separation between the macroscopic velocity v and the molecular diffusion u which allows

one to treat them separately.

Using (3) one can write the Green function as an integral over paths that satisfy q(s) = r

and q(t) = R (see, e.g. [1, 3]):

P(r, s;R, t) =
〈∫

exp
{
−

∫ t

s
ıp(τ) ·

[
q̇(τ)− v(q(τ), τ)− u(τ)

]
dτ

}
DpDq

〉

v,u
(4)

=
〈∫

exp
{
−

∫ t

s

[
ıp(τ) ·

(
q̇(τ)− v(q(τ), τ)

)
+ κp2(τ)

]
dτ

}
DpDq

〉

v
(5)

=
〈∫

exp
{
− 1

4κ

∫ t

s

[
q̇(τ)− v(q(τ), τ)

]2
dτ

}
Dq

〉

v
= 〈P (r, s;R, t|v)〉v . (6)

The integration over the auxiliary field p in (4) enforces the delta function of (3). One passes

from (4) to (5) by averaging over the Brownian noise, and from (5) to (6) by calculating the

Gaussian integral over p.

It is sometimes useful to consider only the partial average over the molecular diffusion,

then the tracer satisfies the advection-diffusion equation:

∂θ

∂t
+ (v · ∇)θ − κ∇2θ = 0 . (7)
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The solution can be expressed via the v-dependent propagator P (r, s;R, t |v) defined by

(6). It satisfies the initial condition P (r, t;R, t |v) = δ(R− r) and the equation

[
∂t −∇R

· v(R, t)− κ∇2
R

]
P (r, s;R, t|v) = 0, (8)

for s > t. For a regular velocity with deterministic trajectories, one has at κ = 0

P (r, s;R, t|v) = δ
(
R−R(t; r, s)

)
. (9)

We shall see below that, even when the velocity field is not regular and the notion of a single

Lagrangian trajectory does not make sense, the propagators are well defined.

B. Kraichnan model

Generally, exact calculations are only possible for Gaussian random processes delta-

correlated in time like in (5). The simplest case is the Brownian motion when the advection

is absent. One then obtains from (6) the Gaussian PDF of the displacement,

P(R, t) = (4πκt)−d/2e−R2/(4κt) , (10)

which satisfies the heat equation (∂t − κ∇2)P(r, t) = 0. The short-correlated case is far

from being an exotic exception but rather presents a long-time limit of an integral of any

finite-correlated random function. Indeed, such an integral can be presented as a sum of

many independent equally distributed random numbers, the statistics of such sums is a

subject of the Central Limit Theorem. For the long-time description of the advection in

finite-correlated flows, it is useful to consider the extreme case of random homogeneous

and stationary velocities with a very short correlation time. This case may be regarded

as describing the sped-up-film view of velocity fields with temporal decay of correlations

or, more formally, as the scaling limit lim
µ→∞µ

1
2 v(r, µt). When µ → ∞ one gets a Gaussian

velocity field with the 2-point function

〈vi(r, t)vj(r
′, t′)〉 = 2δ(t− t′)Dij(r− r′). (11)

It is common to call the Gaussian ensemble with a white-noise 2-point function (11) the

Kraichnan ensemble [4]. For the Kraichnan velocities v, the Lagrangian velocity v(R, t) has

the same white noise temporal statistics as the Eulerian velocity v(r, t) for fixed r and the
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displacement along a Lagrangian trajectory R(t)−R(0) is a Brownian motion for all times.

In exactly the same way as one derives (6,10) from (4) one gets

P(R, t) = |β̂|1/2(4πt)−d/2e−βijRiRj/4t , (12)

where (β̂−1)ij = Dij(0) + κδij. We shall see that the Kraichnan ensemble of velocities

constitutes an important theoretical laboratory of the particle behavior in fluid turbulence.

C. Large Deviation Approach

One can move beyond the consideration of the previous section considering the correlation

time finite (yet small comparing to the time of evolution). Such generalization is the subject

of the Large Deviation Theory. Let us present here the basic idea which will be used

extensively in this course. Consider some quantity X which is an integral of some random

function over time t much larger than the correlation time τ . At t À τ , X behaves as a sum

of many independent equally distributed random numbers yi: X =
∑N

1 yi with N ∝ t/τ . The

generating function 〈e zX〉 of the moments of X is the product, 〈e zX〉 = eNS(z), where we have

denoted 〈e zy〉 ≡ eS(z) (assuming that the generating function 〈e zy〉 exists for all complex z).

The PDF P(X) is given by the inverse Laplace transform (2πi)−1
∫

e− z X+NS(z) dz with the

integral over any axis parallel to the imaginary one. For X ∝ N , the integral is dominated

by the saddle point z0 such that S ′(z0) = X/N and

P(X) ∝ e−NH(X/N−〈y〉) . (13)

Here H = −S(z0) + z0S
′(z0) is the function of the variable X/N − 〈y〉, it is called entropy

function as it appears also in the thermodynamic limit in statistical physics [5]. A few

important properties of H (also called rate or Cramér function) may be established inde-

pendently of the distribution P(y). It is a convex function which takes its minimum at zero,

i.e. for X equal to its mean value 〈X〉 = NS ′(0) = N〈y〉 which grows linearly with N . The

minimal value of H vanishes since S(0) = 0. The entropy is quadratic around its minimum

with H ′′(0) = ∆−1, where ∆ = S ′′(0) is the variance of y. The fluctuations X − 〈X〉 on the

scale O(N1/2) are governed by the Central Limit Theorem that states that (X − 〈X〉)/N1/2

becomes for large N a Gaussian random variable with variance 〈y2〉 − 〈y〉2 ≡ ∆ as in

(10,12). Finally, its fluctuations on the larger scale O(N) are governed by the large devia-

tion form (13). The possible non-Gaussianity of the y’s leads to a non-quadratic behavior
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of H for (large) deviations from the mean, starting from X − 〈X〉/N ' ∆/S ′′′(0). Note

that if y is Gaussian then X is Gaussian too for any t but the universal formula (13) with

H = (X −N〈y〉)2/2N∆ is valid only for t À τ .

II. PARTICLES IN FLUID TURBULENCE

As explained in the Introduction, understanding the properties of transported fields in-

volves the analysis of the behavior of fluid particles. We present here the results on the

time-dependent statistics of the Lagrangian trajectories Rn(t). In this Chapter, we sequen-

tially increase the number of particles involved in the problem. We start from a single

trajectory whose effective motion is a simple diffusion at times longer than the velocity

correlation time in the Lagrangian frame (Sect. II A). We then move to two particles. The

separation law of two close trajectories depends on the scaling properties of the velocity

field v(r, t). If the velocity is smooth, that is |v(Rn) − v(Rm)| ∝ |Rn − Rm|, then the

initial separation grows exponentially in time (Sect. II B). The smooth case can be ana-

lyzed in much detail using the large deviation arguments presented in Sect. I C. The reader

mainly interested in applications to transported fields might wish to take the final results

(23) and (28) for granted, skipping their derivation. If the velocity is non-smooth, that is

|v(Rn) − v(Rm)| ∝ |Rn − Rm|α with α < 1, then the separation distance between two

trajectories grows as a power of time (Sect. II C). We discuss important implications of

such a behavior for the nature of the Lagrangian dynamics. The difference between the in-

compressible flows, where the trajectories generally separate, and compressible ones, where

they may cluster, is discussed in Sect. II D. Finally, in the consideration of three or more

trajectories, the new issue of geometry appears. Statistical conservation laws come to light

in two-particle problem and then feature prominently in the consideration of multi-particle

configurations. Geometry and statistical conservation laws are the main subject of Sect. II E.

Although we try to keep the discussion as general as possible, much of the insight into the

trajectory dynamics for the non-smooth case is obtained by studying the Kraichnan model.
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A. Single-particle diffusion

We now consider the single Lagrangian trajectory R(t). For the pure advection with-

out noise, the displacement R(t) − R(0) =
∫ t
0 V(s)ds, with V(t) = v(R(t), t) being the

Lagrangian velocity. The properties of the displacement depend on the specific trajectory

under consideration. We shall always work in the frame of reference with no mean flow:

〈v〉 = 0. We assume statistical homogeneity of the Eulerian velocities which implies that

the stochastic process V(t) does not depend on the initial position R(0) of the trajectory. If,

additionally, the Eulerian velocities are statistically stationary, then so is V(t). This follows

by averaging the expectations involving V (t + τ) over the initial position R(0) (which they

do not depend on) and the change of variables R(0) 7→ R(τ) under the velocity ensemble

average. Note that the Jacobian of the change of variables is supposed to be unity which

requires incompressibility. For κ = 0, the mean square displacement satisfies the equation:

d

dt
〈[R(t)−R(0)]2〉 = 2

∫ t

0

〈V(0) ·V(s)〉ds. (14)

The behavior of the displacement is crucially dependent on the range of temporal correlations

of the Lagrangian velocity. Let us define the correlation time τ of V(t) by

∫ ∞

0
〈V(0) ·V(s)〉ds = 〈v2〉τ. (15)

The value of τ provides a measure of the Lagrangian velocity memory, its divergence being

symptomatic of persistent correlations. No general relation between the Eulerian and the

Lagrangian correlation times has been established, except for the case of short-correlated

velocities. For times t ¿ τ , the 2-point function in (14) is approximately equal to 〈V(0)2〉 =

〈v2〉. The fluid particle transport is then ballistic with 〈[R(t) − R(0)]2〉 ' 〈v2〉t2 and the

PDF P(R, t) is determined by the whole single-time velocity PDF. When the correlation

time of V(t) is finite (a generic situation in a turbulent flow where τ is of order of a large-

scale turnover time) an effective diffusive regime is expected to arise for t À τ with 〈(R(t)−
R(0))2〉 ' 2〈v2〉τt [2]. Indeed, the particle displacements over time segments much larger

than τ are almost independent. At long times, the displacement δR(t) behaves then as a

sum of many independent variables and falls into the class of stationary processes treated in

Sects. I B, I C. In other words, δR(t) for t À τ becomes a Brownian motion in d dimensions,

normally distributed with
〈
δRi(t)δRj(t)

〉
' Dij

e t, where the so-called eddy diffusivity tensor
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is as follows

Dij
e =

1

2

∞∫

0

〈Vi(0) Vj(s) + Vj(0) Vi(s)〉 ds . (16)

The symmetric second order tensor Dij
e is the only characteristics of the velocity which

matters in this limit of t À τ . The trace of the tensor is equal to 〈v2〉τ , i.e. to the

large-time value of the integral in (14), while its tensorial properties reflect the rotational

symmetries of the advecting velocity field. If the latter is isotropic, the tensor reduces to

a diagonal form characterized by a single scalar value De. The main problem of turbulent

diffusion is to obtain the effective diffusivity tensor given the velocity field v and the value

of the molecular diffusivity κ. A huge amount of work has been devoted to it, both from

the applied and the mathematical point of view, and exhaustive reviews of the problem are

available in the literature [6–9].

The other general issue in turbulent diffusion is the condition on the velocity v(r, t)

ensuring that the Lagrangian correlation time τ is finite and an effective diffusion regime is

taking place for large enough times. A sufficient condition valid for κ 6= 0 and both static and

time-dependent flow, is a finite vector potential variance 〈A2〉, where the three-dimensional

incompressible velocity v = ∇×A [10–12]. The correlation time is experimentally known to

be finite in developed turbulence whereas both subdiffusion (due to particle trapping) and

superdiffusion (due to infinite Lagrangian correlation time) are possible in low-Reynolds-

number flows.

B. Two-particle dispersion in a spatially smooth velocity

Even when velocity v(R, t) is a smooth function of the coordinates, Lagrangian dynamics

can be quite complicated. Indeed, d ordinary differential equations Ṙ = v(R, t) generally

produce chaotic dynamics (for d ≥ 3 already for steady flows and for d = 2 for time-

dependent flows). It is thus natural that the tools for the description of what is called chaotic

advection [13] are similar to those of the theory of dynamical systems. The description in

this Section consistently exploits two simple ideas: to single out the variables that can be

represented by the sum of a large number of independent random quantities and to separate

variables that fluctuate on different timescales.

We are interested here in the distance R12 = R1 −R2 between two fluid particles with

trajectories Ri(t) = R(t; ri) passing at t = 0 through points ri. In the absence of noise, the
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distance satisfies the equation

Ṙ12 = v(R1, t)− v(R2, t). (17)

If the distance R12 is smaller than the viscous scale of turbulence then the velocity field can

be considered smooth on such a scale and we may expand: v(R1, t)−v(R2, t) = σ(t,R1)R12

introducing the strain matrix σ which is traceless due to incompressibility. As a function

of its spatial argument, σ changes on a scale that is supposed to be much larger than R12.

Then, σ can be treated as independent of R12 which thus satisfies locally a linear ordinary

differential equation (we omit subscripts replacing R12 by R)

Ṙ(t) = σ(t)R(t) . (18)

This equation, with R(0) = r and the strain treated as a given function of time may be

explicitly solved for arbitrary σ(t) only in the 1D case

ln[R(t)/r] = ln W (t) =
∫ t

0
σ(s) ds ≡ X , (19)

expressing W (t) as the exponential of the time-integrated strain. When t is much larger

than the correlation time τ of the strain, the variable X is a sum of N independent equally

distributed random numbers with N = t/τ . Using (13) we get

P(r; R, t) ∝ exp
{
−tH

[
t−1 ln(R/r)− λ

]}
, (20)

Here we denoted λ = 〈X〉/t which is called the Lyapunov exponent and is the growth (or

decay) rate of the inter-particle distance R(t). The moments 〈[R(t)]p〉 behave exponentially

as exp[E(p)t]. The convexity of the entropy function leads to the convexity of E(p). This

implies, in particular, that even for λ = E ′(0) < 0, high-order moments of R may grow

exponentially in time (see Sect. IID below).

In the multidimensional case, the behavior of the vector R is determined by the product

of random matrices rather than just random numbers. Still, the main properties of the

propagator (sufficient for most physical applications) can be established for an arbitrary

strain. The basic idea is coming back to Lyapunov [14] and it found further development

in the Multiplicative Ergodic Theorem of Oseledec [15]. Introduce the evolution matrix

W such that R(t) = W (t)R(0). The modulus R is expressed via the positive symmetric

matrix W T W . The main result states that in almost every realization of the strain, the
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matrix t−1 ln W T W stabilizes at t → ∞, i.e. its eigenvectors tend to d fixed orthonormal

eigenvectors fi. To understand that intuitively, consider some fluid volume, say a sphere,

which evolves into an elongated ellipsoid at later times. As time increases, the ellipsoid is

more and more elongated and it is less and less likely that the hierarchy of the ellipsoid axes

will change. The limiting eigenvalues

λi = lim
t→∞ t−1 ln |W fi| (21)

are called Lyapunov exponents. The major property of the Lyapunov exponents is that

they are realization-independent if the flow is ergodic (that is spatial and temporal averages

coincide). We arrange the exponents in non-increasing order.

The relation (21) tells that two fluid particles separated initially by r pointing into the

direction fi will separate (or converge) asymptotically as exp(λit). The incompressibility

constraints det(W ) = 1 and
∑

λi = 0 imply that a positive Lyapunov exponent will exist

whenever at least one of the exponents is nonzero. Consider indeed

E(n) = lim
t→∞ t−1 ln〈[R(t)/r]n〉 , (22)

whose derivative at the origin gives the largest Lyapunov exponent λ1. The function E(n) ob-

viously vanishes at the origin. Furthermore, E(−d) = 0, i.e. incompressibility and isotropy

make that 〈R−d〉 is time-independent as t →∞ [16, 17]. Negative moments of orders n < −1

are indeed dominated by the contribution of directions R(0) almost aligned to the eigenvec-

tors f2, . . . fd. At n < 1− d the main contribution comes from a small subset of directions in

a solid angle ∝ exp(dλdt) around fd. It follows immediately that 〈Rn〉 ∝ exp[λd(d+n)t] and

that 〈R−d〉 is a statistical integral of motion. Apart from n = 0,−d, the convex function

E(n) cannot have other zeroes if it does not vanish identically. It follows that dE/dn at

n = 0, and thus λ1, is positive. A simple way to appreciate intuitively the existence of a

positive Lyapunov exponent is to consider the saddle-point 2D flow vx = λx, vy = −λy with

the axes randomly rotating after time interval T . A vector initially at the angle φ with the

x-axis will be stretched after time T if cos φ ≥ [1 + exp(2λT )]−1/2, i.e. the measure of the

stretching directions is larger than 1/2 [17].

A major consequence of the existence of a positive Lyapunov exponent for any random

incompressible flow is the exponential growth of the inter-particle distance R(t). In a smooth

flow, it is also possible to analyze the statistics of the set of vectors R(t) and to establish a
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multidimensional analog of (13) for the general case of a non-degenerate Lyapunov exponent

spectrum. The idea is to reduce the d-dimensional problem to a set of d scalar problems

for slowly fluctuating stretching variables excluding the fast fluctuating angular degrees

of freedom. Consider the matrix I(t) = W (t)W T (t), representing the tensor of inertia of

a fluid element like the above mentioned ellipsoid. The matrix is obtained by averaging

Ri(t)Rj(t)d/`2 over the initial vectors of length ` and I(0) = 1. Introducing the variables

that describe stretching as the lengths of the ellipsoid axis e2ρ1 , . . . e2ρd one can deduce

similarly to (13,20) the asymptotic PDF [1, 18]:

P(ρ1, . . . , ρd; t) ∝ exp [−tH(ρ1/t− λ1, . . . , ρd−1/t− λd−1)]

× θ(ρ1 − ρ2) . . . θ(ρd−1 − ρd) δ(ρ1 + . . . + ρd) . (23)

The entropy function H depends on the details of the statistics of σ and has the same

general properties as above: it is non-negative, convex and it vanishes at zero. In the

δ-correlated case, H is everywhere quadratic as in Sect. I B:

H(x) ∝ d−1
d∑

i=1

x2
i , λi ∝ d(d− 2i + 1) . (24)

For a generic initial vector r, the long-time asymptotics of ln(R/r) coincides with that of ρ1

whose PDF also takes the large-deviation form (23) at large times. The quadratic expansion

of the entropy near its minimum corresponds to the log-normal distribution for the distance

between two particles

P(r; R, t) ∝ exp
{
− [ln(R/r)− λ1t]

2 /(2t∆)
}

, (25)

with r = R(0) and ∆ = C11.

Molecular diffusion is incorporated into the above picture by replacing the differential

equation (18) by its noisy version [both independent noises of two particles contribute,

hence the change in the noise coefficient comparing to (3)]:

dR(t) = σ(t)R(t) dt +
√

2 dq(t) , 〈qi(t)qj(t′)〉 = 2κδij min(t, t′) . (26)

This is an inhomogeneous linear stochastic equation whose solution is easy to express via

the matrix W (t). The tensor of inertia of a fluid element I ij(t) = Ri(t)Rj(t)d/`2 is now

averaged both over the initial vectors of length ` and the noise, thus obtaining [1, 18]:

I(t) = W (t)W (t)T +
4 κ

`2d

t∫

0

W (t) [W (s)T W (s)]−1W (t)T ds . (27)
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The last term in (27) is essential for the directions corresponding to negative λi. The

molecular noise will indeed start to affect the motion of the marked fluid volume when the

respective dimension gets sufficiently small. If ` is the initial size, the required condition ρi <

−ρ∗i = − ln(`2|λi|/κ) is typically met for times t ' ρ∗i /|λi|. For longer times, the Brownian

motion does not allow the respective ρi to decrease much below −ρ∗i , while the negative λi

prevents it from increasing. As a result, the corresponding ρi becomes a stationary random

process with a mean of the order −ρ∗i . The relaxation times to the stationary distribution are

determined by σ̃, which is diffusion independent, and they are thus much smaller than t. On

the other hand, the components ρj corresponding to non-negative Lyapunov exponents are

the integrals over the whole evolution time t. Their values at time t are thus not sensitive to

the latest period of evolution lasting of the order of the relaxation times for the contracting

ρi. Fixing the values of ρj at times t À ρ∗i /|λi| will not affect the distribution of the

contracting ρi and the whole PDF is thus factorized [1, 18–20]. For example, there are two

positive and one negative Lyapunov exponents in 3D developed Navier-Stokes turbulence

[21]. For times t À ρ∗3/λ3 we have then

P(ρ1, ρ2, ρ3, t) ∝ exp [−tH (ρ1/t− λ1, ρ2/t− λ2)] Pst(ρ3) , (28)

with the same function H as in (23) since ρ3 is independent of ρ1 and ρ2. The account of

the molecular noise violates the condition
∑

ρi = 0 as fluid elements at scales smaller than
√

κ/|λ3| cannot be distinguished. To avoid misunderstanding, note that (28) does not mean

that the fluid is getting compressible: the simple statement is that if one tries to follow any

marked volume, the molecular diffusion makes this volume growing.

Note that we have implicitly assumed ` to be smaller than the viscous length η =
√

ν/|λ3|
but larger than the diffusion scale

√
κ/|λ3|. Even though ν and κ are both due to molecular

motion, their ratio widely varies depending on the type of material. The theory of this

section is applicable for the materials having the Schmidt number ν/κ large.

The universal forms (23) and (28) for the two-particle dispersion are basically everything

we need for physical applications. In the Chapters III and IV, we show that the most negative

Lyapunov exponent determines the small-scale statistics of a passively advected scalar in a

smooth incompressible flow. For other problems, the whole spectrum of exponents and even

the form of the entropy functions are relevant.

Generally, the Lyapunov spectrum and the entropy function cannot be derived from
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a given statistics of σ except for few limiting cases. The case of a short-correlated strain

allows for a complete solution. As far as finite-correlated strain is concerned, one can express

analytically λ1 and ∆ via the correlators of σ only in two dimensions for a long-correlated

strain and at large space dimensionality [1].

C. Two-particle dispersion in a non-smooth incompressible flow

We now assume the Reynolds number sufficiently high and study the separation between

two trajectories in the inertial interval of scales η ¿ r ¿ L, where L denotes the integral

scale at which the flow is induced and η is a viscous scale.

Let us describe first the usual phenomenology of two-particle dispersion. In the inertial

interval, the velocity differences exhibit an approximate scaling. Let us assume δv(r, t)| ∝
rα, rewriting then the equation (17) for the distance between two particles as Ṙ = δv(R, t),

we infer that dR2/dt = 2R · δv(R, t) ∝ R1+α. For α < 1, this is solved (ignoring the

proportionality constant) by

R(t)1−α −R(0)1−α ∝ t (29)

For large t, R(t) ∝ t1/(1−α) with the dependence of the initial separation quickly wiped out.

Of course, for the random process R(t), relation (29) is of the mean field type and should

pertain (if true) to the large-time behavior of the averages:

〈R(t)p〉 ∝ tp/(1−α) (30)

for p > 0 implying their super-diffusive growth, faster than the diffusive one ∝ tp/2. The

power-law scaling (30) may be amplified to the scaling behavior of the PDF of the inter-

particle distance:

P(R, t) = λP(λR, λ1−αt) . (31)

Possible deviations from a linear behavior in the order p of the exponents in (30) should be

interpreted as a signal of multiscaling of the Lagrangian velocity ∆v(R(t), t) ≡ ∆V(t). The

power-law growth (30) for p = 2 and α = 1/3, i.e. 〈R(t)2 ∝ t3, is the celebrated Richardson

dispersion relation stating that

d

dt
〈R(t)2〉 ∝ 〈R(t)2〉2/3. (32)
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The Richardson relation was the first quantitative phenomenological prediction in developed

turbulence. It seems to be confirmed by experimental data [22, 23] and by the numerical

simulations [24, 25]. The more general property of self-similarity (31) (with α = 1/3) has

been observed in the inverse cascade of two-dimensional turbulence [23]. It is likely that

(32) is exact within the inverse cascade of 2d turbulence while it may be only approximately

correct in 3d. It is important to remark that, even assuming the validity of the Richardson

relation, it is impossible to establish general large-time properties of the PDF P(R; t) such

as those for the single particle PDF in Sect. II A or for the distance between two particles in

Sect. II B . The physical reason becomes clear looking at the Lagrangian velocity difference

correlation time

τt =
∫ t

0
〈δV(t) · δV(s)〉 ds/〈(δV)2〉. (33)

The numerator coincides with d〈R2〉/dt and is thus proportional to 〈R2〉2/3, while the de-

nominator ∝ 〈R2〉1/3. It follows that τt grows as 〈R2〉1/3 ∝ t, i.e. the random process δV(t)

has a correlation time comparable with its whole span. The absence of decorrelation explains

why the Central Limit Theorem and the large deviation theory cannot be applied. There

is in fact no a priori reason to expect P(R; t) to be Gaussian with respect to a power of R

either, although we shall see that this happens to be the case in the Kraichnan ensemble.

It is instructive to contrast the exponential growth (22) of the distance between the

trajectories within the viscous range with the power-law growth (30) in the inertial range.

In the viscous regime, the closer two trajectories are initially the more time is needed to

effectively separate them. As a result, the infinitesimally close trajectories never separate and

trajectories in a fixed realization of the velocity field are continuously labelled by the initial

conditions. They depend, however, in a sensitive way on the latter due to the exponential

magnification of small deviation of the initial point. This sensitive dependence is usually

considered as the defining feature of the dynamical chaos. On the other hand, in the inertial

range the trajectories separate in a finite time independent of their initial distance R(0),

provided that the latter is also in the inertial range. For very high Reynolds numbers, the

viscous scale η is negligibly small (a fraction of a millimeter in the turbulent atmosphere) and

setting it to zero (or equivalently, setting the Reynolds number to infinity) is an appropriate

abstraction if we want to concentrate on the behavior of the fluid trajectories in the inertial

range. In such a limit, however, the power law separation extends down to infinitesimal

distances between the trajectories: the infinitesimally close trajectories still separate to
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a finite distance in a finite time. This points to a marked difference in the behavior of

trajectories in comparison to that in the chaotic regime: developed turbulence and chaos are

clearly different phenomena. This explosive separation of trajectories results in a breakdown

of the deterministic Lagrangian flow in the limit Re →∞, a rather dramatic effect [26–28].

Indeed, in this limit the trajectories cannot be labelled by the initial conditions. The sheer

existence of the Lagrangian trajectories R(t; r) depending continuously on the initial position

r would imply that lim
r1→r2

〈|R(t; r1)−R(t; r2)|p〉 = 0 and contradict the persistence of a power

law separation of the Richardson type for infinitesimally close trajectories. The breakdown

of the deterministic Lagrangian flow at Re → ∞ agrees with the fundamental theorem

stating that the ordinary differential equation Ṙ = v(R, t) has unique solution if v(r, t) is

Lipschitz in r, i.e. if |δv(r, t)| ≤ O(r). At Re = ∞, however, as first noticed by Onsager

[29], the velocities are only Hölder continuous: |δv(r, t)| ' O(rα) with the exponent α < 1

(α ' 1/3 in Kolmogorov’s phenomenology). As is shown by the example of the equation

ẋ = |x|α with two solutions x = [(1 − α)t]
1

1−α and x = 0 both starting at zero, one should

expect multiple Lagrangian trajectories starting or ending at the same point for velocity

fields with α < 1. Does then the Lagrangian description of the fluid breaks down completely

at Re = ∞?

Even though the deterministic Lagrangian description breaks down, a statistical descrip-

tion of the trajectories is still possible. As we have seen above, certain probabilistic questions

concerning the flow, like the moments of the distance between initially close trajectories,

should still have well defined answers in this limit. We expect that for typical velocity

realization at Re = ∞, one can maintain a probabilistic description of Lagrangian trajec-

tories and make sense of such objects as the propagator P (r, s;R, t|v). The mathematical

difference between the cases of smooth and rough velocities is that in the latter case the

propagators are weak solutions of (8) rather than strong ones. What happens if we turn off

molecular diffusion? If the velocity v(r, t) is Lipschitz in r then P (r, s;R, t|v) converges to

(9) (we shall call this collapse property). It has been conjectured in [28] that for a generic

Re = ∞ turbulent velocity field, P (r, s;R, t|v) at κ → 0 is a weak solution of the pure

advection equation, [∂t−∇R
· v(R, t)]P (r, s;R, t|v) = 0, that is a solution not concentrated

at a single trajectory R(t; r, s). This way the roughness of turbulent velocities resulting

in the explosive separation of the Lagrangian trajectories would assure the persistence of

stochasticity of the noisy trajectories in a fixed generic realization of the velocity field even
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in the limit κ → 0. Let us stress again that, according to this claim, in the limit of large

Reynolds numbers the Lagrangian trajectories behave stochastically already in a given ve-

locity field and for negligible molecular diffusivity and not only due to a random noise or

to random fluctuations of the velocities. This intrinsic stochasticity of fluid particles seems

to constitute an important aspect of developed turbulence, an unescapable consequence of

the Richardson dispersion law or of the Kolmogorov-like scaling of velocity differences in the

limit Re → ∞ and a natural mechanism assuring the energy flux constancy in the inertial

interval of turbulence.

The general conjecture about the existence and diffuse nature of propagators is known

to be true for the Kraichnan Gaussian ensemble (11) of velocities decorrelated in time. To

model the non-smooth velocity field of turbulence, we choose Dij(r) = D0δ
ij − (1/2)dij(r)

with D0 = O(Lξ) and

dij(r) = D1[(d− 1 + ξ)δijrξ − ξrirjrξ−2] . (34)

As we discussed in Sect. II A, D0 gives the eddy diffusivity of a single fluid particle at long

times. Notice that D0 is dominated by the integral scale indicating that the effective diffusion

of a single fluid particle is driven by the velocity fluctuations at the largest scales present. On

the other hand, dij(r) describes the statistics of the velocity differences: 〈δvi(r, t)δvj(r, t′)〉 =

2δ(t− t′)dij(r). It picks up contributes of all scales.

The normalization constant D1 has the dimensionality of length2−ξtime−1. For 0 <

ξ < 2, the Kraichnan ensemble is supported on the velocities that are Hölder continuous

in space with a fixed exponent α arbitrarily close to ξ/2. It mimics this way the main

property of the infinite Reynolds number turbulent velocities characterized by fractional

Hölder exponents. The rough (distributional) behavior of Kraichnan velocities in time,

although not very physical, is not expected to modify essentially the qualitative picture of

the trajectory behavior (it is the spatial regularity, not the temporal one, of a vector field

that is crucial for the uniqueness if its trajectories).

In the Kraichnan ensemble, one can directly calculate the Gaussian integral in (5) which

gives the Gaussian single-point PDF that satisfies the heat equation [∂t−(D0+κ)∇2
r]P(r, t) =

0. That agrees with the all-time diffusive behavior of a single fluid particle in the Kraich-

nan ensemble characterized by the enhancement of the molecular diffusivity κ by the eddy

diffusivity D0 discussed at the end of Sect. II A.
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In much the same way one can examine the joint PDF of the simultaneous values of the

coordinates of two fluid particles averaged over the velocity ensemble:

P2(r1, r2, s;R1,R2, t) =
〈
P (r1, s;R1, t|v)P (r2, s;R2, t|v)

〉
. (35)

For the Kraichnan ensemble, it satisfies the equation

(∂t −M2)P2(r1, r2, s;R1,R2, t) = δ(t− s)δ(R1 − r1)δ(R − r2)

with an explicit elliptic second-order differential operator

M2 = −
2∑

n,n′=1

Dij(rn − rn′)∇ri
n
∇rj

n′
, (36)

a result which goes back to the original work of Kraichnan [4]. If we are interested only

in the separation R = R1 −R2 of two fluid particles at time t, given their separation r at

time s, then the relevant PDF P2(r, s;R, t) is obtained by averaging over the simultaneous

translations of the final (or initial) positions of the particle and is governed by the operator

M2 restricted to the translationally invariant sector. The latter is equal to −dij(r)∇ri∇rj .

Note that the eddy diffusivity D0, dominated by the integral scale, drops out in the action on

translation-invariant functions. The above result shows that the relative motion of two fluid

particles in the Kraichnan ensemble of velocities is an effective diffusion with a distance-

dependent diffusivity tensor scaling like rξ in the inertial range. This is a precise realization

of the scenario for the turbulent diffusion put up by Richardson as far back as 1926 [30].

Similarly, the PDF P2(r, s; R, t) of the distance R between two particles satisfies the equation

(∂t −M2)P2(r, s; R, t) = δ(t− s)δ(r −R) , (37)

where the restriction of M2 to the homogeneous and isotropic sector is M2 = −D1(d −
1)r1−d∂rr

d−1+ξ∂r and (37) can be readily solved [4, 31]. At r ¿ R, the PDF has particularly

simple form

lim
r→0

P2(r, s; R, t) ∝ Rd−1

|t− s|d/(2−ξ)
exp

[
−const.

R2−ξ

|t− s|

]
. (38)

That confirms the diffusive character of the limiting process describing the Lagrangian tra-

jectories in fixed non-Lipschitz velocities: the endpoints of the process stay at finite distance

when the initial points converge. If we set η = 0 but maintain finite integral scale L, then

the behavior (38) is modified for R À L and crosses over to the simple diffusion with the
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diffusivity 2D0: at distances much larger than the integral scale two fluid particles undergo

independent Brownian walks driven by the velocity fluctuations on scale L.

The PDF (38) changes from Gaussian to log-normal when ξ changes from zero to two.

The PDF has the scaling form (31) for α = ξ − 1 and implies the power law growth (30)

of the averaged powers of the distance between trajectories. The Richardson dispersion

〈R2(t)〉 ∝ t3 is reproduced for ξ = 4/3 rather than for ξ = 2/3 when the spatial Hölder

exponent of the typical Kraichnan ensemble velocities takes the Kolmogorov value 1/3. The

reason is that the velocity temporal decorrelation cannot be ignored and we should replace

the time t in the right hand side of (29) by the Brownian motion β(t). That replacement

indeed reproduces for α = ξ/2 the large-time PDF (38) up to a geometric power-law

prefactor.

Note the special case of the average 〈R2−ξ−d〉 in the Kraichnan velocities. Since M r2−ξ−d

is a contact term ∝ δ(r) for κ = 0, one has ∂t〈R2−ξ−d〉 ∝ P(r; 0; t). The latter is zero

in the smooth case so that 〈R−d〉 is a true integral of motion. In the non-smooth case,

〈R2−ξ−d〉 ∝ t1−d/(2−ξ) and is not conserved due to a nonzero probability density to find two

particles at the same place even when they started apart.

D. Two-particle dispersion in a compressible flow

Discussing the particle dispersion in incompressible fluids and exposing the different mech-

anisms of particle separation, we paid little attention to the detailed geometry of the flows,

severely restricted by the incompressibility. The presence of compressibility allows for more

flexible flow geometries with regions of compression trapping particles and counteracting

their tendency to separate. To expose this effect and gauge its relative importance for

smooth and non-smooth flows, we start from the simplest case of a time-independent 1d

flow ẋ = v(x) . In 1d, any velocity is potential: v(x) = −∂xφ(x) , and the flow is the

steepest descent in the landscape defined by the potential φ. The particles are trapped in

the intervals where the velocity has a constant sign and they converge to the fixed points

with lower value of φ at the ends of those intervals. In the regions where ∂xv is negative,

nearby trajectories are compressed together. If the flow is smooth the trajectories take an

infinite time to arrive at the fixed points (the particles might also escape to infinity in a

finite time). Let us consider now a non-smooth version of the velocity, e.g. a Brownian path
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with Hölder exponent 1/2. At variance with the smooth case, the solutions will take a finite

time to reach the fixed points at the ends of the trapping intervals and will stick to them at

subsequent times, as in the example of the equation ẋ = |x− x0|1/2. The roughness of the

velocity clearly amplifies the trapping effects leading to the convergence of the trajectories.

A time-dependence of the velocity changes somewhat the picture. The trapping regions, as

defined for the static case, start wandering and they do not enslave the solutions which may

cross their boundaries. Still, the regions of ongoing compression effectively trap the fluid

particles for long time intervals. Whether the tendency of the particles to separate or the

trapping effects win is a matter of detailed characteristics of the flow.

In higher dimensions, the behavior of potential flows is very similar to the 1d case, with

trapping totally dominating in the time-independent case, its effects being magnified by

the velocity roughness and blurred by the time-dependence. The traps might of course

have a more complicated geometry. Moreover, we might have both solenoidal and potential

components in the velocity. The dominant tendency for the incompressible component is to

separate the trajectories, as we discussed in the previous Sections. On the other hand, the

potential component enhances trapping in the compressed regions. The net result of the

interplay between the two components depends on their relative strength, spatial smoothness

and temporal rate of change.

Let us consider first a smooth compressible flow with a homogeneous and stationary

ergodic statistics. Similarly to the incompressible case discussed in Sect. II B, the stretching-

contraction variables ρi, i = 1, . . . , d, behave asymptotically as tλi with the PDF of large

deviations xi = ρi/t− λi determined by an entropy function H(x1, . . . , xd). The asymptotic

growth rate of the fluid volume is given by the sum of the Lyapunov exponents s =
d∑

i=1
λi .

Note that density fluctuations do not grow in a statistically steady compressible flow because

the pressure provides feedback from the density to the velocity field. That means that s

vanishes even though the ρi variables fluctuate. However, to model the growth of density

fluctuations in the intermediate regime, one can consider an idealized model with a steady

velocity statistics having nonzero s. This quantity has the interpretation of the opposite of

the entropy production rate, see Section III B below, and it is necessarily≤ 0 [32, 33]. Indeed,

in any statistically homogeneous flow, incompressible or compressible, the distribution of

particle displacements is independent of their initial position and so is the distribution of

the evolution matrix Wij(t; r) = ∂ Ri(t; r)/∂rj. Since the total volume V (assumed finite

20



in this argument) is conserved, the average 〈det W 〉 is equal to unity for all times and

initial positions although the determinant fluctuates in the compressible case. The average

of det W = e
∑

ρi is dominated at long times by the saddle-point x∗ giving the maximum of
∑

(λi+xi)−H(x) , which has to vanish to conform with the total volume conservation. Since
∑

xi −H(x) is concave and vanishes at x = 0, its maximum value has to be non-negative.

We conclude that the sum of the Lyapunov exponents is non-positive. The meaning of this

result is transparent: there are more Lagrangian particles in the contracting regions which

thus acquire higher weight, leading to negative average gradients in the Lagrangian frame.

Let us stress the essential difference between the Eulerian and the Lagrangian averages in

the compressible case: an Eulerian average is uniform over space, while in a Lagrangian

average every trajectory comes with its own weight determined by the local rate of volume

change.

For quantitative description we employ again the Kraichnan model. The compressible

generalization of the Kraichnan ensemble for smooth velocities has the (non-constant part

of the) pair correlation function defined as

dij(r) = D1

[
(d + 1− 2℘) δij r2 + 2(℘d− 1) rirj

]
. (39)

The degree of compressibility ℘ ≡ 〈(∇iv
i)2〉/〈(∇iv

j)2〉 is between 0 and 1 for the isotropic

case at hand, with the the two extrema corresponding to the incompressible and the potential

cases. The corresponding strain matrix σ = ∇v has the Eulerian mean equal to zero and

2-point function

〈σij(t) σk`(t
′) 〉 = 2 δ(t− t′) D1 [(d + 1− 2℘) δikδj` + (℘d− 1)(δijδk` + δi`δjk)] . (40)

The volume growth rate −
t∫
0
〈σii(t) σjj(t

′)〉 dt′ is thus strictly negative, in agreement with

the general discussion, and equal to −℘D1 d(d − 1)(d + 2) if we set
∫∞
0

δ(t) dt = 1/2. The

PDF P(ρ1, . . . , ρd; t) takes again the large deviation form (23), with the entropy function

and the Lyapunov exponents given by [1, 36, 37]

H(x) =
1

4D1(d+℘(d−2))

[ d∑

i=1

x2
i +

1−℘d

℘(d−1)(d+2)

( d∑

i=1

xi

)2]
, (41)

λi = D1 [d(d− 2i + 1)− 2℘ (d + (d− 2)i)] . (42)

Compare this expression to (24). Note how the form (41) of the entropy imposes the con-

dition
∑

xi = 0 in the incompressible limit. The inter-particle distance R(t) has the
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lognormal distribution (25) with λ̄ = λ1 = D1(d− 1)(d− 4℘) and ∆ = 2D1(d− 1)(1 + 2℘).

Explicitly, t−1 ln〈Rn〉 ∝ n[n + d + 2℘(n− 2)] [37]. The quantity R(4℘−d)/(1+2℘) is thus statis-

tically conserved. The highest Lyapunov exponent λ̄ becomes negative when the degree of

compressibility is larger than d/4 [36, 37]. Low-order moments of R, including its logarithm,

would then decrease while high-order moments would grow with time. The decrease of the

Lyapunov exponents when ℘ grows clearly signals the increase of trapping. The regime with

℘ > d/4 , with all the Lyapunov exponents becoming negative, is the one where trapping

effects dominate. The dramatic consequences for the scalar fields advected by such flow

will be discussed in Sect. IVA. Analysis of the Kraichnan model for a non-smooth case

demonstrates even stronger effects of compressibility, with an increased tendency for the

fluid particles to aggregate in a finite time [1, 38]. When the compressibility degree is large

enough, even though the velocity is non-smooth, the Lagrangian trajectories in a fixed veloc-

ity field are determined by their initial positions. Moreover, trajectories starting at a finite

distance collapse to zero distance and stay together with a positive probability growing with

time.

As was mentioned, the aggregation of fluid particles can take place only as a transient

process. The back reaction of the density on the flow eventually stops the growth of the

density fluctuations. The transient trapping should, however, play a role in the creation

of the shock structures observed in high Mach number compressible flows. That theory

describes also the aggregation of real particles suspended in the fluid. Let us consider a

small inertial particle of density ρ and radius a in a fluid of density ρ0. Its movement may

be approximated by that of a Lagrangian particle in an effective velocity field provided that

a2/ν is much smaller than the velocity time scale in the Lagrangian frame. The inertial

difference between the effective velocity v of the particle and the fluid velocity u(r, t) is

proportional to the local acceleration: v = u + (β − 1) τs du/dt, where β = 3ρ/(ρ + 2ρ0)

and τs = a2/3νβ is the Stokes time. Considering such particles distributed in the volume,

one may define the velocity field v(r, t) , whose divergence ∝ ∇[(u · ∇)u] does not vanish

even if the fluid flow is incompressible. As discussed above, this leads to a negative volume

growth rate and the clustering of the particles [33–35].
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E. Multi-particle configurations and zero modes

We describe here the time-dependent statistics of multi-particle configurations. Our main

interest is in the long-time asymptotics of propagators when final distances far exceed initial

ones. Particularly important question is what memory of initial configuration remain in

the propagators in that limit. We shall see that to answer this question one must analyze

the conservation laws of turbulent diffusion. As we have seen in the previous subsections,

the two-particle statistics is characterized by the single separation vector. In non-smooth

velocities, the length of the vector grows by a power law, while the initial separation is

forgotten. Adding extra particles brings geometry into the game. Many-particle evolution in

non-smooth velocities exhibits non-trivial statistical integrals of motion that are proportional

to the positive powers of the distances. The integrals involve geometry in such a way that

the distance growth is balanced by the decrease of the shape fluctuations. The existence

of multi-particle conservation laws indicates the presence of a long-time memory and is a

reflection of the coupling among the particles due to the simple fact that they are all in the

same velocity field. The conserved quantities may be easily built for the limiting cases. Since

the advection by a smooth velocity preserves straight lines, the d-volume εi1i2...id Ri1
12 . . . Rid

1d

is conserved for (d + 1) Lagrangian trajectories. In particular, for any three trajectories in

d = 2, the area εij Ri
12R

j
13 of the triangle defined by the three particles remains constant,

the growth of the sides being compensated by the decrease of the angle. In the opposite case

of a very irregular velocity, the fluid particles undergo a Brownian motion. The distances

between the Brownian particles grow according to 〈R2
nm(t)〉 = R2

nm(0) + Dt. The statistical

integrals of motion are 〈R2
nm − R2

pr〉, 〈2(d + 2)R2
nmR2

pr − d(R4
nm + R4

pr)〉, and an infinity

of similarly built polynomials (zero modes of Laplacian) where all powers of t cancel out.

Another trivial case is the infinite-dimensional flow where the distances between particles

do not fluctuate. The two-particle law Rnm(t)1−α − Rnm(0)1−α ∝ t, implies then that the

expectation of any function of R1−α
nm − R1−α

pr does not change with time. Away from the

degenerate limiting cases, the conserved quantities continue to exist yet they cannot be

generally constructed so easily and they depend substantially on the number of particles.

We thus see that the very existence of conserved quantities is natural. What is nontrivial in

a general case is their precise form and their scaling. The intricate statistical conservation

laws of multi-particle dynamics were first discovered for the Kraichnan velocities [39, 40].
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The discovery has led to a new qualitative and quantitative understanding of intermittency

of advected fields as will be described in Chapter IV. It has also revealed the aspects of

the multi-particle evolution that seem both present and relevant in generic turbulent flows

[1, 41].

As for many-body problems in other branches of physics (e.g. in kinetic theory or in

quantum mechanics), the multi-particle dynamics may bring about new aspects due to the

cooperative behavior of particles. In turbulence, such behavior is mediated by the velocity

fluctuations correlated at large scales. If the velocities are statistically homogeneous, it is

convenient to separate the absolute motion of particles from the relative one, as in the other

many-body problems with spatial homogeneity. For N particles, we define the absolute

motion as the one of the mean position R =
∑

Rn/N ; as for any single particle, that

motion is also expected to be diffusive on time scales longer that the Lagrangian correlation

time (Sect. II A). Since for such time scales the particles may be considered as moving

independently then the diffusivity of the absolute motion is N times smaller than that of a

single particle. The statistics of the relative motion of N particles is described by the joint

PDF averaged over rigid translations ρ = (ρ, . . . , ρ):

Prel
N

(r, s;R, t) =
∫
P

N
(s, r;R + ρ, t)dρ, (43)

The PDF Prel
N

describes the distribution of the separations Rnm = Rn −Rm or the relative

positions Rrel = (R1 −R, . . . , .R
N
−R).

The PDF P
N

are again expected to show a different short-distance behavior for smooth

and non-smooth velocities. For smooth velocities, the existence of deterministic trajectories

leads for κ = 0 to the collapse property

lim
r

N
→r

N−1

P
N
(r; R; t) = P

N−1
(r′; R′; t) δ(R

N−1
−R

N
), (44)

where R′ = (R1 , . . . ,RN−1
) and similarly for the relative PDF’s. If all the distances between

the particles are much less than the viscous length, one may consider velocity smooth and

approximate the velocity field differences by linear expressions:

Prel
N

(r, 0;R, t) =
∫ 〈 N∏

n=1

δ(Rn + ρ−W (t)rn)
〉
dρ . (45)

Clearly, the above PDF depend only on the statistics of the evolution matrix W (t) that has

been discussed in Sect. II B. Under the evolution governed by W (t), all distances between
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points grow exponentially for large times while their ratios Rnm/Rkl tend to a constant.

For whatever initial positions, asymptotically in time, the points tend to be situated on the

line. This behavior and its dramatic consequences for passive scalar statistics are further

discussed at the end of Sect. IVA.

The long-time asymptotics of the propagators in the non-smooth case can be found

explicitly for the Kraichnan ensemble of velocities. The great simplification of the Kraichnan

model consists in the Markov character of the effective N -trajectory processes which is due

to the time decorrelation of the velocities. In other words, the PDF P
N
(s, r;R, t) and the

relative version (43) satisfy the 2nd order differential equations which can be derived by a

straightforward generalization of the arguments employed for two particles, see (36):

(∂t −MN
)P

N
(r, s;R, t) = δ(t− s)δ(R− r), (46)

M
N

= −
N∑

n,m=1

Dij(rnm)∇ri
n
∇rj

m
, (47)

where, Dij(r) = D0δ
ij − 1

2
dij(r) is the spatial part of the velocity 2-point function. For the

relative process,

(∂t + M
N
)Prel

N
(r, s;R, t) = δ(t− s)δ(R− r) (48)

M
N

=
∑
n<m

dij(rnm)∇ri
n
∇rj

m
. (49)

Note the multi-body structure of M
N

and M
N
.

Since M
N

scales as lengthξ−2 then time should scale as length2−ξ and

Prel
N

(r, 0;R, t) = λ(N−1)dPrel
N

(λr, 0; λR, λ2−ξt). (50)

Therefore, the asymptotics of the propagator is the same when initial points get close

or final points get far apart and time gets large. We expect the multi-particle PDF to be

factorized in that limit:

lim
λ→0

Prel
N

(λr, 0;R, t) =
∑

β

λζβfβ(r)gβ(R, t) . (51)

Here we presume the functions to be scale invariant: fβ(λr) = λζβfβ(r). To find fβ, gβ

consider the composition of two PDFs [26]:

∫
Prel

N
(λx, t;y, 0)Prel

N
(z, 0;x, τ) dx = λd(1−N)

∫
Prel

N
(x, t;y, 0)Prel

N
(z, 0; λx, τ) dx (52)

=
∫
Prel

N
(x, t;y, 0)Prel

N
(λz, 0; λx, τλ2−ξ) dx = Prel

N
(y, t + λ2−ξτ ; z, 0) . (53)
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In deriving (53) we have used the scaling relation (50) and the composition property of

propagators
∫ P(x, t1; y, t2)P(y, t2; z, t3) dy = P(x, t1; z, t3). Further, one makes Taylor ex-

pansion of (53) in τ and then applies the expansions (51) and compare it order-by-order

with the straightforward expansion (51) of (52). As a result one can see that fβ must be

taken as zero modes of M †
N

and its powers while ∂tgβ = −M
N
gβ.

The first term in the expansion is r-independent with the constant f0 = 1 and g0(R, t) =

Prel
N

(0, 0;R, t) being the PDF of N initially overlapping particles. The zero mode of M †
N

with

the lowest positive scaling dimension ζ gives the first nonvanishing r-dependence in the prop-

agator. The remarkable feature of the zero modes of M †
N

can be appreciated by considering

the Lagrangian average of an arbitrary translation-invariant functions F of the simultaneous

positions of the particles (we assume that R(0) = r and set R′ ≡ (R1 , . . . R
N−1

) ):

〈F (R(t))〉 =
∫

F (R) Prel
N

(r, 0;R, t) dR′ (54)

When F is taken as a zero mode of M †
N

it is conserved in mean by the Lagrangian evolution.

Indeed, the time derivative of 〈f(t)〉 vanishes since it brings down M †
N

acting on f on the

right hand side of (54):

∂t 〈f(R(t))〉 =
∫

f(R)M
N
Prel

N
(r, 0;R, t) dR′

=
∫
Prel

N
(r, 0;R, t)M †

N
f(R) dR′

The importance of the scale-invariant conserved modes for the transport properties of short

correlated velocities has been recognized independently in [39, 40, 42].

To understand how one can have conserved quantities in turbulent diffusion think about

the evolution of N fluid particles as of that of a discrete cloud of marked points in the

physical space. There are two elements in the relative evolution of the cloud: the growth

of its size and the change of its shape. We shall define the overall size of the cloud as

R = [(2N)−1 ∑
R2

nm]1/2 and its “shape” as R̂ = Rrel/R. For example, 3 particles form

a triangle in the space, with labelled vertices, and the notion of shape that we are using

includes the orientation of the triangle. To get convinced that zero modes do exist, let

us first consider the limiting case ξ → 0 of very rough velocity fields. In this limit, the

operator M
N

becomes proportional to ∇2, the (Nd)-dimensional Laplacian restricted to the

translation-invariant sector (note that for an incompressible flow, the operator is always

self-adjoint: M †
N

= M
N
). The relative motion of particles becomes pure diffusion. With R
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denoting the size-of-the-cloud variable,

∇2 = R−d
N

+1 ∂
R

R d
N
−1 ∂

R
+ R−2 ∇̂2

, (55)

where d
N
≡ (N − 1)d and ∇̂2

is the angular Laplacian on the (d
N
− 1)-dimensional unit

sphere of shapes R̂. The spectrum of the latter may be analyzed using the properties of

the rotation group. Its eigenfunctions φ` have eigenvalues −`(` + d
N
− 2) where ` = 0, 1, . . .

is the angular momentum. The averages of the angular eigenfunctions decay as follows:

〈φ`(R̂)〉 ∝ t−`/2. To compensate for the decay, we introduce the functions f`,0 = R`φ`(R̂)

which are zero modes of the Laplacian with the scaling dimension ` — the contributions

coming from the radial and the angular parts in (55) indeed cancel out. The averages 〈f`,0〉
are thus conserved. All the scale-invariant zero modes of the Laplacian are of that form.

The polynomials invariant under d-dimensional translations, rotations and reflections can

be reexpressed as polynomials in R2
nm. For even N , the irreducible O(d)-invariant zero mode

with the lowest scaling dimension has then the form

f
N
(R) = R2

12
R2

34
. . . R2

(N−1)N
+ [. . .] (56)

where [. . .] denotes a combination of terms that depend on positions of (N − 1) or less

particles. E.g. for four points, the zero mode is R2
12R

2
34 − d

2(d+2)
(R4

12 + R4
34), the example

already mentioned before. The terms [. . .] are not uniquely determined since we may add

to them degree N zero modes for smaller number of points. Besides, the functions differing

from f
N

by a permutation of points are also zero modes so that we may symmetrize the

above expressions and look only at the permutation invariant modes. Clearly, the scaling

dimension ζ
N

= N . The linear in N growth of the dimension signals the absence of the

extra attractive effect between the particles diffusing with a constant diffusivity (no particle

binding in the shape evolution for ξ = 0). As we shall see in Sect. IVA, this leads to

the disappearance of intermittency in the advected scalar which becomes a Gaussian field

in the limit ξ → 0. For small but positive ξ, the scaling dimension of the irreducible 4-

point zero mode f4 was first calculated to the linear order in ξ by Gawȩdzki and Kupiainen

[40]. Parallelly, a similar calculation in the linear order in 1/d was performed by Chertkov,

Falkovich, Kolokolov and Lebedev [39]. Those two papers present the first ever analytic

calculations of the anomalous exponents in turbulence. A generalization for larger N has
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been achieved in [43, 44]:

ζ
N

=
N

2
(2− ξ) − N(N − 2)

2(d + 2)
ξ (57)

giving the leading correction ∝ ξ to the scaling dimension of the lowest irreducible zero

mode. Note that, to that order, the scaling dimension ζ
N

is a concave function of N . This

can be interpreted as a result of particle interaction. From the form (49) of the generator

of the process Rrel(t) we infer that, in the Kraichnan model, N fluid particles undergo

an effective diffusion with the diffusivity depending on the inter-particle distances. In the

inertial interval of distances η ¿ r ¿ L, where dij(r) ∝ rξ, the effective diffusivity grows as

the power ξ of the distance. It should be intuitively clear that, in comparison to the standard

diffusion with constant diffusivity, the particles will tend to spend longer time together when

they are close and to separate faster when they become distant.

Let us stress that (51) is not a spectral decomposition of the resolvent M−1
N

(since M
N

is

positive with a continuous spectrum, such decomposition would be a continuous integral in-

volving eigenfunctions). The scaling zero modes that govern the small-scale asymptotics are

rather analogous to resonances in many-body systems with the scaling dimension ζ playing

the role of energy. It is thus instructive to compare the shape-versus-size stochastic evolu-

tion of the Lagrangian cloud to the imaginary-time evolution of the quantum-mechanical

many-particle systems governed by the Hamiltonians H
N

=
∑

n p2
n/2m +

∑
n<kV (rnk). An

attractive potential between the particles may lead to the creation of bound states at the

bottom of the spectrum of H
N
. Those states determine the decomposition of the (Hermi-

tian) imaginary-time evolution operators exp(−tH
N
) in the translation-invariant sector with

lowest levels determining the asymptotics at t →∞:
∑

a exp(−tE
N,a

)|ψ
N,a
〉〈ψ

N,a
|. Breaking

the system into subsystems of Ni particles by removing the potential coupling between them

one raises the ground state energy: E
N

<
∑
i

E
Ni

. A very similar phenomenon occurs in the

stochastic shape evolution in the Kraichnan model. For simplicity, let us only consider the

case of even number of particles and of the isotropic sector. Let ζ
N

be the lowest value of

the scaling dimension of the irreducible (i.e. dependent on positions of all N particles) zero

mode invariant under d-dimensional translations, rotations and reflections. For N = 2, the

expansion starts from r2−ξ which is the zero mode of M2 so that ζ2 = 2 − ξ. Suppose now

that we break the system into subsystems of Ni particles (with even Ni) by removing in

M
N

the derivative terms d(rnm)∇rn∇rm coupling the subsystems, see (49). The recalculation
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of the smallest dimension of the invariant irreducible zero modes gives now the value
∑
i

ζ
Ni

.

Indeed, if Ni ≥ 4, the lowest irreducible zero mode for the broken system is the product of

such modes for the subsystems. The crucial observation, confirmed by (57) is that the break-

ing of the system raises the minimal dimension of the irreducible zero modes: ζ
N

<
∑
i

ζ
Ni

.

In particular, ζ
N

< N
2
(2− ξ). Generally, one expects ζ

N
to be a concave function of (even)

N . Interesting that for N À d, the dependence of ζ
N

on N saturates that is adding extra

particles does not change the energy at all [31]. By analogy with the many-body quantum

mechanics we may say that the irreducible zero modes are bound states of the shape evo-

lution of the Lagrangian cloud. It is a cooperative phenomenon exhibiting a short-distance

attraction of close Lagrangian trajectories diffusing with the diffusivity proportional to a

power of the distance, superposed on the overall repulsion of the trajectories. The effective

short-distance attraction slowing down the separation of close particles is a robust phe-

nomenon that should be present also in time-correlated and non-Gaussian velocity fields.

The effect is at the root of the anomalous scaling of the structure functions of the passive

scalar advected by non-smooth Kraichnan velocities, as we shall see in Sect. IVA. We believe

that it is responsible for intermittency in the transport of scalars by high Reynolds number

flows.

To conclude, one is able to build statistically conserved quantities by compensating the

growth of inter-particle distances by the decrease of the shape fluctuations of the particle

configurations. The size of the cloud increases with time while the average of a generic

functions of shape relaxes to a constant as a combination of negative powers (of R or t).

The scaling exponents of the zero modes depend in a nontrivial way of the number N of the

particles which is the manifestation of particle interaction.

III. UNFORCED EVOLUTION OF PASSIVE FIELDS

The qualification “passive” means that we disregard the back reaction of the advected

fields on the advecting velocity. The first section of this chapter is devoted to the statistical

initial value problem: how an initially created distribution of a passive scalar evolves in a

statistically steady turbulent environment? The simplest question to address is which fields

have their amplitudes decaying in time and which growing, assuming the velocity field to be

statistically steady.
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We consider the tracer (scalar density per unit mass) which satisfies the advection-

diffusion equation:
∂θ

∂t
+ (v · ∇)θ = κ∇2θ (58)

and the scalar density per unit volume, n (to be called concentration) whose evolution is

governed by the continuity equation

∂tn +∇ · (nv) = κ∇2n . (59)

For incompressible flows, (58) and (59) obviously coincide. A tracer field always decays

because of dissipative effects, with the law of decay depending on the velocity properties.

The fluctuations of a passive density may grow in a compressible flow, with this growth

saturated by diffusion after some time. We shall also briefly consider vector fields advected

by the flow. A potential vector field can be considered as the gradient of a tracer ω = ∇θ,

obeying

∂tω +∇(v · ω) = κ∇2ω . (60)

Solenoidal vector field (e.g. magnetic field) evolves in an incompressible flow according to

∂tB + v · ∇B−B · ∇v = κ∇2B . (61)

The fluctuations of both ω and B may grow exponentially as long as diffusion is unimportant.

After diffusion comes into play, their destinies are different : ω decays, while the magnetic

field continues to grow. This growth is known as dynamo process and it continues until

saturated by the back-reaction of the magnetic field on the velocity.

Another important issue here is the presence or absence of a dynamic self-similarity : for

example, is it possible to present the time-dependent PDF P(θ; t) as a function of a single

argument? In other words, does the form of the PDF remain invariant in time apart from

a rescaling of the field? We shall show that for large times the scalar PDF tends to a self-

similar limit when the advecting velocity is non-smooth, while self-similarity is broken in

smooth velocities.

A. Decay of tracer fluctuations

For practical applications, e.g. in the diffusion of pollution, the most relevant quantity

is the average 〈θ(r, t)〉. It follows from (2) that the average concentration is related to the
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single particle propagation discussed in Sect. II A. For times longer than the Lagrangian

correlation time, the particle diffuses and 〈θ〉 obeys the effective heat equation

∂t

〈
θ(r, t)

〉
=

(
Dij

e + κδij

)
∇i∇j

〈
θ(r, t)

〉
, (62)

with the eddy diffusivity Dij
e given by (16). The simplest decay problem is that of a uniform

scalar spot of size ` released in the fluid. Its averaged spatial distribution at later times

is given by the solution of (62) with the appropriate initial condition. On the other hand,

the decay of the scalar in the spot is governed by the multi-point Lagrangian propagators.

Another relevant situation is that where a homogeneous statistics with correlations decaying

on the scale ` is initially prescribed. Taking the point of measurement inside the spot or

averaging over space for a homogeneous statistics, consider the single-point moment 〈θN〉(t)
described by (2):

〈
θN

〉
(t) =

∫
P

N
(0, t;R, 0)θ(R1 , 0) . . . θ(R

N
, 0) dR . (63)

If there is no molecular diffusion and the trajectories are unique, particles that end at

the same point remained together throughout the evolution and all the moments 〈θN〉(t)
are preserved. From what we have learnt in Chapter II we expect the preservation at

the limit κ → 0 when velocity field either is smooth or has its non-smoothness overcame

by compressibility. Note that the conservation laws are statistical: the moments are not

dynamically conserved in every realization, but their averages over the velocity ensemble

are. On the contrary, when velocity field is non-smooth and the propagator is diffusive we

expect the decay of the tracer moments even at the limit κ → 0. This is an example of the

so-called dissipative anomaly which we shall discuss more below. One calls anomaly a finite

effect of symmetry breaking even when the symmetry-breaking factor goes to zero. Here,

the symmetry broken by molecular diffusion is time reversibility.

i) Smooth velocity. Let us start from the simplest problem: consider a small spherical

spot of the tracer θ released in a spatially smooth incompressible 3d velocity field with

λ1 > λ2 > 0 > λ3. Physically, we imply the Schmidt number Sc = ν/κ to be large that is

the viscous scale of the flow η is much larger than the diffusion scale of the scalar defined

as rd =
√
−κ/λ3. The initial size of the spot L is assumed to satisfy η À L À rd. The spot

is stretched and contracted by the velocity field. As we have shown in Sect.II B, during the

time less than td = |λ3|−1 ln(L/rd), diffusion is unimportant and θ inside the spot does not
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change. At larger time, the dimensions of the spot with negative Lyapunov exponents are

frozen at rd, while the rest keep growing exponentially, resulting in an exponential growth of

the total volume exp(ρ1+ρ2). That leads to an exponential decay of scalar moments averaged

over velocity statistics: 〈[θ(t)]α〉 ∝ exp(−γαt). The decay rates γα can be expressed via the

PDF (28) of stretching variables ρi. Since θ decays as the inverse volume then

〈[θ(t)]α〉 ∝
∫

dρ1dρ2 exp [−tH(ρ1/t− λ1, ρ2/t− λ2)− α(ρ1 + ρ2)] . (64)

At large t, the integral is determined by the saddle point. At small α, the saddle-point lies

within the parabolic domain of H so γα increases with α quadratically. At large α, the main

contribution is due to the realization with smallest possible spot which has the volume L3

so γα is independent of α [18, 19, 45, 46].

Let us consider now an initial random distribution of θ(0, r) statistically homogeneous in

space. We pass to the reference frame which moves with the Lagrangian point R(t|T, r0)

coming to r0 at T . Such θ(t, r) = θ̃(t, r−R(t|T, r0)) satisfies

∂tθ̃ + σ̃αβrβ∇αθ̃ = κ∇2θ̃ . (65)

Since the correlation functions of θ and θ̃ coincide at the moment of observation we omit

the tilde sign in what follows. One may treat diffusion in two equivalent ways: either by

introducing Brownian motion or by making Fourier transform in (65). Here for a change

we choose the second way defining the time-dependent wavevector k(t′) = W T (t, t′)k(t) and

solving (65) as follows

θ(t,k) = θ0

(
W T (t)k

)
exp [−Qµνkµkν ] , (66)

Q(t) = κ
∫ t

0
dt′ W (t)W−1(t′)

[
W (t)W−1(t′)

]T
. (67)

The moments of θ(t, 0) =
∫

dk(2π)−3θ(t,k) are to be averaged both over velocity statistics

and over the initial statistics of the scalar. As the long-time limit is independent of the

statistics of θ(0, r) [18], we take it Gaussian with 〈θ(0, r)θ(0, 0)〉 = χ(r) = χ0 exp[−r2/(8L2)].

Then the moments of θ are as follows

〈[θ(t)]α〉 ∝
∫

dρ1dρ2 exp [−tH − α(ρ1 + ρ2)/2] . (68)

Notice that in (68) the scalar amplitude is proportional to the square root of the volume

factor as distinct from (64). This difference can be intuitively understood by imagining
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initially different blobs of size L with uncorrelated values of θ. At time t those blobs overlap.

Mutual cancellations of θ from different blobs leads to the law of large numbers with initial

statistics forgotten and the rms value of θ being proportional to the square root of the number

of blobs. The number of blobs is inversely proportional to the volume exp(ρ1+ρ2). Similarly

to (64), the same qualitative conclusions about the decay rates γα = limt→∞ t−1 ln{〈[θ(t)]α〉}
can be drawn from (68). In particular, for the Kraichnan model γα ∝ α(1− α/8) for α < 4

and γα = const for α > 4 [18].

Note that in both cases (single spot and random homogeneous distribution) γα is not a

linear function of α so that the scalar decay is not self-similar in a smooth velocity. Note

also that, in the presence of large-scale cutoffs, the picture is modified at late times when

blobs are stretched up to the size of the cutoffs (see iv below).

ii) Non-smooth velocity. For the decay in incompressible non-smooth flow, we shall

specifically consider the case of a time reversible Kraichnan velocity field. The comments

on the general case are reserved to the end of the subsection. The simplest objects to

investigate are the single-point moments
〈
θ2n(t)

〉
and we are interested in their long-time

behavior t À `2−ξ/D1. Here, ` is the correlation length of the random initial field and D1

enters the velocity 2-point function as in (34). Using (2) and the scaling property (50) of

the Green function we obtain

〈
θ2n(t)

〉
=

∫
P2n (0; R;−1) C2n

(
t

1
2−ξ R, 0

)
dR. (69)

There are two universality classes for this problem, corresponding to either non-zero or

vanishing value of the so-called Corrsin integral J0 =
∫

C2(r, t) dr. Note that the integral is

generally preserved in time by the passive scalar dynamics.

We concentrate here on the case J0 6= 0 and refer the interested reader to the original

paper [47] for more details. For J0 6= 0, the function t
d

2−ξ C2(t
1

2−ξ r, 0) tends to J0 δ(r) in

the long-time limit and (69) is reduced to

〈θ2n(t)〉 ≈ (2n− 1)!! Jn
0 t

nd
ξ−2

∫
P2n (0; R1,R1, . . .Rn,Rn;−1) dR, (70)

for a Gaussian initial condition. A few remarks are in order. First, the previous formula

shows that the behavior in time is self-similar. In other words, the single point PDF P(t, θ)

takes the form t
d

2(2−ξ) Q(t
d

2(2−ξ) θ). That means that the PDF of θ/
√

ε̄ is asymptotically time-

independent with ε̄(t) = κ〈(∇θ)2〉 being time-dependent (decreasing) dissipation rate. This
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should be contrasted with the lack of self-similarity found previously for the smooth case.

Second, the result is asymptotically independent of the initial statistics (of course, within

the universality class J0 6= 0). As in the previous subsection, this follows from the fact

that the connected non-Gaussian part of C2n depends on more than n separation vectors.

Its contribution is therefore decaying faster than t−
nd
2−ξ . Third, it follows from (70) that the

long-time PDF, although universal, is generally non-Gaussian. Its Gaussianity would indeed

imply the factorization of the probability for the 2n particles to collapse in pairs at unit time.

Due to the correlations existing among the particle trajectories, this is generally not the case,

except for ξ = 0 where the particles are independent. The degree of non-Gaussianity is thus

expected to increase with ξ [47]. And last but not least, notice the dissipative anomaly as

the decay laws are independent of κ.

Other statistical quantities of interest are the structure functions S2n(r, t) = 〈[θ(r, t) −
θ(0, t)]2n〉 related to the correlation functions by

S2n(r, t) =
∫ 1

0
. . .

∫ 1

0
∂µ1

. . . ∂µ2n
C2n(µ1r, . . . , µ2nr, t)

∏
dµ

i
≡ ∆(r) C2n(·) . (71)

To analyze their long-time behavior, we proceed similarly as in (69) and use the asymptotic

expansion (51) to obtain

S2n(r, t) =
∫

∆(t−
1

2−ξ r)P2n( · ; R;−1) C2n(t
1

2−ξ R, 0) dR

≈ ∆(r)f2n(·)t ζ2n
ξ−2

∫
g2n,0(R,−1) C2n(t

1
2−ξ R, 0) dR ∝

(
r

`(t)

)ζ2n

〈θ2n〉(t) . (72)

Here, f2n is the irreducible zero mode in (51) with the lowest dimension and the scalar

integral scale `(t) ∝ t
1

2−ξ . As we shall see in Sect. IV, the scaling dimensions of the zero

modes, ζ2n, give also the scaling exponents of the structure function in the stationary state

established in the forced case.

Let us briefly discuss the scalar decay for velocity fields having finite correlation times.

The key ingredient for the self-similarity of the scalar PDF is the rescaling (50) of the

propagator. Such property is generally expected to hold (at least for large enough times) for

self-similar velocity fields regardless of their correlation times. This has been confirmed by

the numerical simulations in [47]. For an intermittent velocity field the presence of various

scaling exponents makes it unlikely that the propagator possesses a rescaling property like

(50). The self-similarity in time of the scalar distribution might then be broken.
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iii) Scalar decay with both viscous and inertial interval of scales present. Even

when the Schmidt/Prandtl number is large and the initial scale of the scalar field l is smaller

than the viscous scale η, separation of initially close particles brings their distance eventually

into the inertial interval. Until the time of order λ−1 ln(η/l) the sizes of scalar blobs are

contained within the viscous interval and the decay proceeds as described in the subsection

i) above. After that time, however, large-scale structures of passive field are created with

sizes in the inertial interval. The number of such structures overlapping after time t now

grows as power of t as in the subsection ii) above. As a result, the structure function decays

by a power law (that is slower than exponential) even in the viscous interval [48]:

S2(r, t) ' t−2−d/(2−ξ) ln(r/rd) at rd ¿ r ¿ η , t À λ−1 ln(η/l) . (73)

Logarithmic r-dependence corresponds to a steady cascade of a scalar in a smooth ve-

locity according to (86) below. One can interpret (73) as describing a cascade with a

time-dependent flux, such interpretation is meaningful since the the flux changes (due to

inertial-interval dynamics) much more slowly than the cascade proceeds below the viscous

scale. At late times, the inertial interval thus serves as a reservoir of passive scalar. Note

that the large-time law of decay of the single-point moments 〈θ2n(t)〉 is unknown in this

case.

iv) Scalar decay in a finite box. Finiteness of the flow restricts the time when the

above description (based on the separation of fluid particles) is valid. Consider the behavior

of the average concentration 〈θ(r, t)〉 in a spatially smooth chaotic flow in a finite box of size

L. Until time of order λ−1 ln(L/rd), scalar decay proceeds exponentially as described in the

section i) above. After the average size of the scalar blob reaches the box size, scalar decay

in the bulk is getting generally non-universal that is depending on the large-scale structure

of the flow [49, 50]. According to Chertkov and Lebedev [48], the main remaining scalar

field is however concentrated near solid boundaries where stretching is suppressed since

flow incompressibility and no-slip condition require zero velocity gradient perpendicular to

the boundary. At the distance q from the boundary, normal velocity is thus proportional

to q2 while tangential to q. Scalar diffusion is determined by the normal velocity while

the correlation time by the (inverse) gradient of the normal velocity. That makes mixing

short-correlated at q ¿ L with the eddy diffusivity (16) proportional to q4. Considering

the equation (62) with D ∝ q4 one can readily establish that the width of the boundary
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region where the scalar is preserved shrinks as t−1/2. During that stage the leakage from

the boundary regions makes the scalar concentration in the bulk decreasing by a power law

〈θ(r, t)〉 ∝ t−3/2. After the regions shrink down to the size of the diffusive boundary layer

where D ' κ (the width of the layer is proportional to κ1/4), 〈θ〉 decays exponentially with

the rate proportional to κ1/2 (this was also verified experimentally [51]). Recent work in [52]

indicates that large-scale cutoffs strongly affect the decay of magnetic fields as well. It is in

particular to be noted that the decay at late times is numerically found to be self-similar.

B. Growth of density fluctuations in compressible flow

The evolution of a passive density field n(r, t) is governed by the equation (59). Con-

sider smooth velocities and neglect diffusion. The density n changes along the tra-

jectory as the inverse of the volume contraction factor. Let us introduce the matrix

W̃ (t; r) = W (t;R(0; r, t)) , where W (t; r) describes the forward evolution of small separa-

tions of the Lagrangian trajectories starting at time zero near r. The volume contraction

factor is det(W̃ (t; r)) and

n(r, t) = [det(W̃ (t; r))]−1 n(R(0; r, t), 0) . (74)

Note that the matrix W̃ (t; r) is the inverse of the backward-in-time evolution matrix

W ′(t; r) with the matrix elements ∂Ri(0; r, t)/∂rj. This is indeed implied by the iden-

tity R(t;R(0; r, t), 0) = r and the chain rule for differentiation. We shall take the initial

field on the right hand side of (74) to be uniform. This gives n(r, t) = [det(W̃ (t; r))]−1.

Performing the velocity average and recalling the long-time asymptotics of the W̃ statistics,

we obtain

〈nα(t)〉 ∝
∫

exp

[
(1− α)

∑

i

ρi − tH(ρ1/t− λ1, . . . , ρd/t− λd)

] ∏
dρi . (75)

The moments at long times may be calculated by the saddle-point method and they generally

behave as ∝ exp(γαt). The growth rate function γα is convex, due to Hölder inequality, and

vanishes both at the origin and for α = 1 (by the total mass conservation). This leads to the

conclusion that γα is negative for 0 < α < 1 and is otherwise positive: low-order moments

decay, whereas high-order and negative moments grow. For a Kraichnan velocity field, the

large deviations function H is given by (41) and the density field becomes lognormal with
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γα ∝ α(α − 1) [34]. Note that the asymptotic rate 〈n ln n〉/t is given by the derivative

at unity of γα and it is equal to −∑
λ̃i ≤ 0. On the other hand, the derivative at zero

of γα is negative and it determines the decay of the Eulerian average 〈ln n〉. We thus

conlcude that if the sum of the Lyapunov exponents is nonzero then density decays in

almost any point in space and grows for almost any Lagrangian trajectory. The growth

of high moments is due to density concentration in some (smaller and smaller) regions.

The amplification of negative moments is due to the expansion of low density regions and

density decay there. The positive quantity −∑
λi has the interpretation of the mean (Gibbs)

entropy production rate per unit volume. Indeed, if we define the Gibbs entropy S(n) as

− ∫
(ln n)n dr =

∫
ln det(W (t; r)) dr then the entropy transferred to the environment per

unit time and unit volume is − ln det(W )/t = −∑
ρi/t and it is asymptotically equal to

−∑
λi > 0 [32].

The behavior of the density moments discussed above is the effect of a linear but random

hyperbolic stretching and contracting evolution of the trajectory separations. In a finite

volume, the linear evolution is eventually superposed with non-linear bending and folding

effects. In order to capture the combined impact of the linear and the non-linear dynamics

at long times, one may observe at fixed time t the density produced from an initially uniform

distribution imposed at much earlier times t0. When t0 → −∞ and if λ1 > 0, the density

approaches weakly, i.e. in integrals against test functions, a realization-dependent fractal

density n∗(r, t) in almost all the realizations of the velocity. The resulting density field is the

so-called SRB (Sinai-Ruelle-Bowen) measure. The fractal dimension of the SRB measures

may be read from the values of the Lyapunov exponents. For the Kraichnan ensemble of

smooth velocities, the SRB measures have a fractal dimension equal to 1+ 1−2℘
1+2℘

if 0 < ℘ < 1
2

in 2d. In 3d, the dimension is 2 + 1−3℘
1+2℘

if 0 < ℘ ≤ 1
3

and 1 + 3−4℘
5℘

if 1
3
≤ ℘ < 3

4
, where ℘

is the compressibility degree [36].

The above considerations show that, as long as one can neglect diffusion, the passive

density fluctuations grow in a random compressible flow. One particular case of the above

phenomena is the clustering of inertial particles in an incompressible turbulent flow, see

[33, 35] where the theory for a general flow and the account of the diffusion effects that

eventually stops the density growth were presented.
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C. Vector fields in a smooth velocity

i) Gradients of the passive scalar . For the passive scalar gradients ω = ∇θ in an

unforced incompressible situation, we solve (60) by simply taking the gradient of the scalar

expression (66). The initial distribution is assumed statistically homogeneous with a finite

correlation length. The long-time limit is independent of the initial scalar statistics [18]

and it is convenient to take it Gaussian with the 2-point function ∝ exp[− 1
2d

(r/`)2]. The

averaging over the initial statistics for the generating function Z(y) = 〈exp [iy · ω]〉 reduces

then to Gaussian integrals involving the matrix I(t) determined by (27). The inverse Fourier

transform is given by another Gaussian integral over y and one finally obtains for the PDF

of ω :

P(ω) ∝
〈
(det I)d/4+1/2 exp

[
−const.

√
det I (ω, Iω)

]〉
. (76)

As may be seen from (27), during the initial period t < td = |λ−1
d | ln(`/rd), the diffusion is

unimportant, the contribution of the matrix Q to I is negligible, the determinant of the

latter is unity and ω2 grows as the trace of I−1. In other words, the statistics of ln ω and

of −ρd coincide in the absence of diffusion. The statistics of the gradients can therefore

be immediately taken over from Section II B. The growth rate (2t)−1〈ln ω2〉 approaches |λd|
while the gradient PDF depends on the entropy function. For the Kraichnan model, the

PDF is lognormal with the average ∝ d(d− 1)t and the variance ∝ 2(d− 1)t read directly

from (24). This result was obtained by Kraichnan [53] using the fact that, without diffusion,

ω satisfies the same equation as the distance between two particles, whose PDF is (25).

As time increases, the wavenumbers (evolving as k̇ = σTk ) reach the diffusive scale r−1
d

and the diffusive effects start to modify the PDF, propagating to lower and lower values

of ω. High moments first and then lower ones will start to decrease. The law of decay at

t À td can be deduced from (76). Considering this expression in the eigenbasis of the matrix

I, we observe that the dominant component of ω coincides with the largest eigendirection

of the I−1 matrix, i.e. the one along the ρd axis. Recalling from the Section II B that the

distribution of ρd is stationary, we infer that
〈
|ω|α(t)

〉
∝

〈
(det I)−α/4

〉
. The comparison

with (68) shows that the decay laws for the scalar and its gradients coincide [18, 45]. This

is qualitatively understood by estimating ω ∼ θ/`min, where `min is the smallest size of the

spot. Noting that θ and `min are independent and that `min ≈ e ρd ` at large times has a

38



stationary statistics concentrated around rd, it is quite clear that the decrease of ω is due

to the decrease of θ.

ii)Small-scale magnetic dynamo

The magnetic fields of stars and galaxies are thought to have their origin in the turbulent

dynamo action. In this problem, the magnetic field can be treated as passive. Furthermore,

the viscosity-to-diffusivity ratio is often large enough for a sizable interval of scales between

the viscous and the diffusive cut-offs to be present. That is the region of scales with the

fastest growth rates of the magnetic fluctuations. In this Section, we consider the generation

of inhomogeneous magnetic fluctuations below the viscous scale of incompressible turbulence.

The dynamo process is caused by the stretching of fluid elements already extensively

discussed above and the major new point to be noted is the role of diffusion. In an ideal

conductor, when the diffusion is absent, the magnetic field satisfies the same equation as the

infinitesimal separation between two fluid particles (18): dB/dt = σ B. Any chaotic flow

would then produce dynamo, with the growth rate

γ̄ = lim
t→∞(2t)−1〈ln B2〉, (77)

equal to the highest Lyapunov exponent λ1. Recall that the gradients of a scalar grow

with the growth rate −λ3 during the diffusionless stage. If the initial scale of magnetic

fluctuations is l then for time less than td = |λ3| ln(l/rd) the growth rate is insensitive to

diffusion. The long-standing problem solved in [55] was whether the presence of a small, yet

finite, diffusivity could stop the dynamo growth process at t > td (as it is the case for the

gradients of a scalar).

In a smooth flow, the magnetic field can be expressed in terms of the stretching matrix

W and the backward Lagrangian trajectory: B(r, t) = W (t; r) B(R(0; r, t), 0). The realiza-

tions contributing to the moments of B are those with the inter-particle separations almost

orthogonal to the (backward) expanding direction ρ3 of W−1, the share of such realizations

decreases as the angle ∝ exp(ρ3). As a result, moments of the magnetic field are to be

obtained by averaging moments of B2 ∝ exp(2ρ1 +ρ3) [1, 55]. In particular, the growth rate

is now λ1 + λ3/2 that is less than in a perfect conductor.

Note that the gradients of a scalar field are stretched by the same W−1 matrix that governs

the growth of the Lagrangian separations. It is therefore impossible to increase the stretching

factor of the gradient and keep the particle separation within the correlation length ` at the
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same time. That is why diffusion eventually kills all the gradients while the component

Bi that points into the direction of stretching survives and grows with ∇Bi perpendicular

to it. This simple picture also explains the absence of dynamo in 2d incompressible flow,

where the stretching in one direction necessarily means the contraction in the other one.

The consequences of these mechanisms for the curvature of magnetic fields lines have been

explored in [54].

To conclude the Chapter III, note that an important lesson to learn is that the limits

κ → 0 and t → ∞ do not commute for a smooth flow. Growth/decay rates of scalars and

vectors are different before and after time td ∼ λ−1 ln(l/rd). Note that this difference is

independent of diffusivity.

IV. CASCADES OF A PASSIVE TRACER

This Chapter describes forced turbulence of the passive scalar θ under the action of

pumping which is statistically stationary in time and statistically homogeneous in space. To

the advection-diffusion equation

∂tθ + (v · ∇)θ = κ∇2θ + ϕ (78)

we added the pumping ϕ, characterized by the variance 〈ϕ(t, r)ϕ(0, 0)〉 = Φ(r)δ(t) with

Φ(r) constant at r < L and decaying fast at r > L. The below consideration is valid for a

finite-correlated pumping too, as long as the pumping correlation time in Lagrangian frame

is much smaller than the time of stretching from a given scale to the pumping correlation

scale L. In most physical situations the sources do not move with the fluid so that the

Lagrangian correlation time of the pumping is either its Eulerian correlation time or L/V ,

depending on which one is smaller, here V is the typical fluid velocity.

The scalar field along the Lagrangian trajectories R(t) changes as

d

dt
θ(R(t), t) = ϕ(R(t), t). (79)

The N -th order scalar correlation function 〈θ(r1, t) . . . θ(rN , t)〉 is therefore given by

∫ t

0
. . .

∫ t

0

〈
ϕ(R1(s1), s1) . . . ϕ(RN(sN), sN)

〉
ds1 . . . dsN , (80)

with the Lagrangian trajectories satisfying the final conditions Ri(t) = ri. For the sake of

simplicity we have written down the expression for the case where the scalar field was absent
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at t = 0. Averaging (80) over the Gaussian pumping we get for N = 2:

〈θ(r1, t)θ(r2, t)〉 =
〈∫ t

0
Φ (R12(s)) ds

〉
. (81)

Higher-order correlations are obtained similarly to (81) by using the Wick rule to average

over the Gaussian forcing statistics and the remaining average is made over the ensemble of

Lagrangian trajectories:

〈θ(t, r1) . . . θ(t, r2n)〉 =
∫ t

0
dt1 . . . dtn

×〈Φ(R(t1|T, r12)) . . . Φ(R(tn|T, r2n−1,2n))〉+ . . . , (82)

The functions Φ in (81,82) restrict integration to the time intervals where Rij < L. If the

Lagrangian trajectories separate, the correlation functions reach at long times the stationary

form for all rij. Such steady states correspond to a direct cascade of the tracer (i.e. from

large to small scales) and are considered in Sect. IVA. As we have seen in Section IID,

particles cluster in flows with high enough compressibility. In this case, the correlation

functions acquire parts which are independent of r and grow proportional to time: when

Lagrangian particles cluster rather than separate, tracer fluctuations grow at larger and

larger scales — phenomenon that can be loosely called an inverse cascade of a passive tracer

[56, 57] and which is considered in Sect. IV B.

A. Direct cascade

Here we consider incompressible (and weakly compressible) flows where particles separate

and the steady state exists. Let us first present the standard flux phenomenology. Assuming

stationarity, one derives the flux relation of θ2

〈
(v1 · ∇1 + v2 · ∇2) θ1θ2

〉
+ 2 κ

〈
∇1θ1 · ∇2θ2

〉
= Φ(r12) , (83)

where indices designate spatial points. The relative strength of the two terms on the left

hand side depends on the distance. At some rd (called the diffusion scale) the advection is

comparable to diffusion. In the “diffusive interval” r12 ¿ rd , the diffusion term dominates

in the left hand side of (83). Taking the limit of vanishing separations, we infer that the

mean dissipation rate is equal to the mean injection rate ε̄ ≡ 〈κ(∇θ)2〉 = 1
2
Φ(0). This

illustrates the aforementioned phenomenon of the “dissipative anomaly”: the limit κ → 0
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of the mean dissipation rate is non-zero despite the explicit κ factor in its definition. In

the “convective interval” rd ¿ r12 ¿ L, one can drop the diffusive term in (83) while still

neglect r-dependence in Φ:

〈
(v1 · ∇1 + v2 · 2) θ1θ2

〉
≈ Φ(0) . (84)

The relation (84) states that the mean flux of θ2 stays constant within the convective interval

and expresses analytically the downscale scalar cascade. The physical picture is that stretch-

ing and contraction by an inhomogeneous velocity provides for a cascade of a scalar from

the pumping scale L (where it is generated) to the diffusion scale rd (where it is dissipated).

For velocity fields scaling as δv ∝ rα , dimensional arguments suggest that [58, 59]

δθ ∝ r(1−α)/2 . (85)

This relation gives a proper qualitative understanding that the degrees of roughness of the

scalar and the velocity are complementary, yet it suggests a wrong scaling for the scalar

structure functions of order higher than two (see Sect. IVA below). For smooth velocity,

(84) correctly suggests 〈θ1θ2〉 ∝ ln r12 [60].

i) Direct cascade in a smooth velocity. In this subsection, all the scales are supposed

to be much smaller than the viscous scale of turbulence so that the velocity field can be

assumed spatially smooth and we may use the Lagrangian description developed in Sect. II B.

We restrict ourselves by the incompressible case when λ3 < 0 so that particles do separate

and the steady state exists. We first treat the interval of scales between the diffusion scale

rd and the pumping scale L, which is called convective interval. Formula (81) simply tells us

that the stationary pair correlation function of a tracer is twice the flux [i.e. Φ(0)] times the

average time that two particles spent in the past within the correlation scale of the pumping:

〈θ(0, t)θ(r, t)〉 = −λ−1
3 Φ(0) ln(L/r) , 〈θ2〉 = −λ−1

3 Φ(0) ln(L/rd)

S2(r) = −λ−1
3 Φ(0) ln(r/rd) . (86)

Deep inside the convective interval when r ¿ L, the statistics of passive scalar approaches

Gaussian. Indeed, when we average (82) over P(ρ) and perform summation over all sets of

the pairs of the points ri, the reducible part in

〈Φ[r12e
ρd(t1)] . . . Φ[r2n−1,2neρd(tn)]〉
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prevails for n less that the ratio between the transfer time |λd|−1 ln(L/r) and the correlation

time τs of the stretching rate fluctuations. The reason is that the irreducible contributions

have less large logarithmic factors than the reducible ones [61]. Therefore, for n ¿ ncr '
(λdτs)

−1 ln(L/r), the statistics of the passive tracer is Gaussian. Since L À r, then ncr À 1.

The single-point statistics is Gaussian up to ncr ' (λdτs)
−1 ln(L/rd). Larger n correspond

to the exponential tails of tracer’s pdf. The physics behind this is transparent and most

likely valid also for a non-smooth velocity (even though the consistent derivation is absent

in the non-smooth case). Indeed, large values of the scalar can be achieved only if during a

large time the pumping works uninterupted by advection (which eventually brings diffusion

into play). When the time in question is much larger than the typical stretching time

from rd to L then the stretching events can be considered as a Poisson process and the

probability that no stretching occurs during time t is exp(−ct). Integrating that with a

pumping-produced distribution we get: P(θ) ∝ ∫
dt exp(−ct − θ2/2Φt) ∝ exp(−θ

√
2c/Φ).

The detailed derivation for a smooth case can be found in [18, 19, 26, 61].

From a general physical viewpoint, it is of interest to understand the properties of turbu-

lence at scales larger than the pumping scale, i.e. at r > L. If only direct cascade exists, one

may expect equilibrium equipartition at large scales with the effective temperature deter-

mined by small-scale turbulence [62, 63]. The peculiarity of our problem is that we consider

scalar fluctuations at the scales that are larger than the scale of excitation yet smaller than

the correlation scale of the velocity field, which provides for mixing of the scalar. In a smooth

flow, the statistics at large scales lacks scale invariance and is very far from Gaussian [64].

The probability for two points separated by r12 to belong to the same blob of scalar orig-

inated from the pumping scale L is (L/r12)
d. Therefore, the pair correlation function is

proportional to r−d
12 . Since an advection by a smooth velocity preserves straight lines then

the same answer is true for the correlation function of arbitrary order if all the points lie on

a line (when the largest distance between points was within L then all other distances were

as well): Cn ∝ r−d. The fact that for collinear geometry C2n/Cn
2 ∼ (r/L)(n−1)d À 1 is due

to strong correlation of the points along the line.

When we consider a non-collinear geometry, the opposite takes place, namely the stretch-

ing of different non-parallel vectors is generally anti-correlated because of incompressibil-

ity and volume conservation. Consider two-dimensional case and the contribution from
∫

dt1dt2〈Φ[R12(t1)]Φ[R34(t2)]〉 into the fourth-order correlation function. Since the area
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|R12×R34| is conserved, the answer is crucially dependent on the relation between |r34×r12|
and L2. When |r34 × r12| ¿ L2 we have a collinear answer C4 ∝ r−2. Let us now consider

the case of non-collinear geometry and find the probability of an event that during evolution

R12 became of the order L, and then, at some other moment of time, R34 reached L (only

such events will contribute into C4). There is a reducible part in pumping, which makes

C4 nonzero (decaying as power of rij) even when |r34 × r12| À L2. The probability that

R12 came to L is L2/r2
12. Due to area conservation, there is an anti-correlation between

R12 and R34: if R12 ∼ L, than R34 ∼ r12r34/L. So probability for R34 to come back to L

is L2/(r12r34/L)2 = L4/r2
12r

2
34. Therefore, the total probability can be estimated as L6/r6,

which is much smaller than the naive Gaussian estimation L4/r4 while the collinear answer

L2/r2 is much larger than Gaussian. Wee that the breakdown of scale invariance is related

to the Lagrangian conservation laws. More details can be found in [1, 64].

ii) Anomalies of tracer statistics in a non-smooth velocity. In this subsection we

shall analyze the steady cascade of a scalar in the inertial interval of scales where the veloc-

ities are effectively non-smooth. Here the main fundamental issue, as in any turbulence, is

the degree of universality of scalar statistics [say, the PDF P(δθ, r) of the scalar difference

δθ measured at two points distance r apart] in the convective interval that is at L À r À rd.

One may ask, in particular, what symmetries exist in the convective interval. Finite-scale

pumping breaks scale invariance while diffusion breaks time reversibility. Are those symme-

tries restored when L →∞ and rd → 0? As discussed in Sect. II C, in non-smooth velocities

an explosive separation of trajectories separates however close particles in a finite time. That

provides for the dissipation of the single-point moments of the scalar when κ → 0. We called

this phenomenon dissipative anomaly which tells that time-reversibility remains broken even

when symmetry-breaking factor tends to zero. We shall see in this subsection that the same

phenomenon of an explosive separation generally breaks the scale invariance of P(δθ, r). In-

deed, N -th moment of P(δθ, r), the structure function S
N
(r), is expressed via the N -particle

propagator which generally cannot be reduced to the two-particle propagator even though all

particles end up in two points. We shall see that the structure functions are proportional to

the respective zero modes which, as we learnt, have non-trivial scaling exponents ζ
N
. When

ζ
N

is not a linear function of N it is called anomalous scaling since the scale invariance of

P(δθ, r) is not restored even at the limit L → ∞. Explosive separation of trajectories is

necessary but not sufficient condition of anomalous scaling; as we have seen in Sect. II E
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the turbulent diffusivity that govern interparticle separation must be scale-dependent which

requires velocity field to have power correlation in space. Indeed, anomalous scaling disap-

pears both for smooth and for extremely rough white-in-space velocity (respectively, cases

ξ = 2 and ξ = 0 in the Kraichnan model).

In a non-smooth flow with δv ∝ rα the time to separate is proportional to L1−α −
r1−α. Similarly, the pair structure function S2(r) = 〈(θ1 − θ2)

2〉 is proportional to the time

it takes for two coinciding particles to separate to a distance r. For δv ∝ rα, one gets

S2 ∝ r1−α in agreement with (85). The analytic treatment of the multi-point correlation

functions of the tracer is possible for the Kraichnan model (11, 34). Making a straightforward

Gaussian averaging of (78) over the statistics of pumping and velocity one gets the following

equation for the n-point simultaneous correlation function of the scalar Cn(t, r1 . . . rn) =

〈θ(t, r1) . . . θ(t, rn)〉 [19]

∂tCn + MnCn =
∑

k,l

Φ(rkl)Cn−2 . (87)

Here the operator Mn is given by (49) and, of course, (87) can be derived in a Lagrangian

way by using the propagator (46) [26, 65]. The great simplification of scalar description in

the Kraichnan model is due to the fact that the set of (87) for different n presents a recursive

problem since the rhs is expressed in terms of lower-order correlation functions. There is no

closure problem and any correlation function satisfies closed equation after the lower-order

functions are found. We consider steady state and drop the time derivative.

One starts from the pair correlation function that depends on a single variable and satisfies

an ordinary differential equation M2C2(r) = Φ(r) [4] which is the Yaglom flux relation (84)

for the Kraichnan model. This equation with two boundary conditions (zero at infinity and

finiteness at zero) can be explicitly integrated

r1−d∂r

[
(d− 1)D1r

d−1+ξ + 2κrd−1
]
∂rC2(r) = Φ(r), (88)

C2(r) =
∫ ∞

r

x1−ddx

xξ + rξ
d

∫ x

0
Φ(y)yd−1dy ,

where we introduced the diffusion scale rξ
d = 2κ/D1(d− 1). Let us remind that we consider

the pumping correlated on the scale L assumed to be much larger than rd. There are

thus three intervals of the distinct behavior. At (D0/D1)
1/ξ À r À L the pair correlation

function is given by the zero mode of M2(κ = 0): C2(r) = r2−ξ−dΦ̄/d(d − 1)(d + ξ − 2)D1

which may be thought of as Rayleigh-Jeans equipartition 〈θkθk′〉 = δ(k + k′)Φ̄/ωk with
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the temperature Φ̄ =
∫

Φ(x)xd−1dx and ωk = k2−ξd(d − 1)(d + ξ − 2)D1 being an inverse

stretching rate. At the convective interval, L À r À rd, C2 is equal to a constant (another

zero mode of M2) plus the inhomogeneous part (zero mode of M2
2 ): S2(r) = 〈[θ(r)−θ(0)]2〉 =

2C2(0) − 2C2(r) = r2−ξΦ(0)/d(d − 1)(d + ξ − 2)(2 − ξ)D1. Note that in the convective

interval the degrees of roughness of the scalar and velocity are indeed complementary, a

smooth velocity corresponds to a roughest scalar and vice versa. And finally, S2(r) ≈
r2Φ(0)/4κd at the diffusive interval. Note though that S2(r) is not analytic at zero since it

expansion contains noninteger powers r2n+ξ, n = 1, 2, . . . . This is an artefact of extending

velocity nonsmoothness to the smallest scales that is setting the viscous scale to zero (i.e.

Schmidt/Prandtl number to infinity).

Consider now high-order correlation functions in the convective interval. Solving recur-

sively the stationary version of (87) one finds that Cn generally contains powers from r2−ξ

to rn(2−ξ) plus a constant and other zero modes of Mn [39, 40, 43, 44]. Note that one cannot

satisfy the boundary conditions at large scales without the zero modes. In the structure

function, Sn(r) = 〈[θ(r)− θ(0)]n〉, all the terms cancel except for the irreducible zero mode.

We thus conclude that Sn(r) = Anr
ζn . Note that only S2 is universal (that is determined

by the flux only), all the other An depend on the pumping statistics [1]. As we have seen

in Sect. II E, the anomalous exponents ∆2n = nζ2 − ζ2n = n(2 − ξ) − ζ2n are positive for

any d < ∞ and ξ 6= 0, 2. That means an anomalous scaling and small-scale intermittency

of the scalar field: the ratio S2n/Sn
2 grows as r decreases. In the perturbative domain,

nξ/d(2 − ξ) ¿ 1, the scaling exponents are given by (57). At n À d(2 − ξ)/ξ, the de-

pendence ζ(n) saturates which means that the sharp fronts of the scalar determine high

moments. The saturation value has been calculated for large d: ζn → d(2− ξ)2/8ξ [31].

It is instructive to discuss the limits ξ = 0, 2 and d = ∞ from the viewpoint of the scalar

statistics. Since the scalar field at any point is the superposition of fields brought from d

directions then it follows from a central limit theorem that scalar’s statistics approaches

Gaussian when space dimensionality d increases. In the case ξ = 0, an irregular velocity

field acts like Brownian motion so that turbulent diffusion is much like linear diffusion:

scalar statistics is Gaussian provided the input is Gaussian. What is general in both limits

d = ∞ and ξ = 0 is that the degree of Gaussianity (say, flatness S4/S
2
2) is independent

of the ratio r/L. Quite contrary, we have seen in Sect. IV A that ln(L/r) is the parameter

of Gaussianity in the Batchelor limit so that statistics is getting Gaussian at small scales
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whatever the input statistics. At ξ = 2 the mechanism of Gaussianity is temporal rather

than spatial: since the stretching is exponential in a smooth velocity field then the cascade

time grows logarithmically as the scale decreases. That leads to the essential difference: at

small yet nonzero ξ/d, the degree of non-Gaussianity increases downscales while at small

(2 − ξ) the degree of non-Gaussianity first decreases downscales until ln(L/r) ' 1/(2 − ξ),

and then starts to increase, the first region grows with ξ approaching 2. Already that

simple reasoning shows that the perturbation theory is singular at the limit ξ = 2, which

formally is manifested by the many-point correlation functions having singularity (smeared

by molecular diffusion only) at the collinear geometry [66].

Note that the dependence ∆n(ξ) has to be nonmonotonic since ∆n(0) = ∆n(2) = 0. There

is a transparent physics behind the nonmonotonic dependence ∆(ξ) because the influence of

velocity nonsmoothness (measured by ξ) on scalar intermittency is twofold: if one considers

scalar fluctuation of some scale then velocity harmonics with comparable scales produce

intermittency while small-scale harmonics act like diffusivity and smooth it out. At ξ∗ <

ξ < 2 the first mechanism is stronger while at 0 < ξ < ξ∗ the second one takes over. Still,

our understanding is only qualitative here, we don’t know how the maximum position ξ∗

depends on n and d.

The anomalous exponents determine also the moments of the dissipation field ε = κ|∇θ|2.
By a straightforward analysis of (87) one can show that 〈εn〉 = cn〈ε〉n(L/rd)

∆2n [39, 43]. Here

the mean dissipation 〈ε〉 = Φ(0) while the dimensionless constants cn are determined by the

fluctuations of dissipation scale, most likely they are of the form nqn with yet unknown q. In

the perturbative domain, n ¿ d(2− ξ)/ξ, the main factor is (L/rd)
∆2n and the dissipation

PDF is close to lognormal since ∆2n is a quadratic function of n [43], the form of the distant

PDF tails are unknown.

The scalar correlation functions decay by power laws at scales r larger than that of the

pumping. Remind that the time two particles spent within L is less than the time they

spent within r by the small volume factor (L/r)d. Therefore, the pair correlation function

is proportional to r1−α−d
12 for δv ∝ rα or to r2−ξ−d in the Kraichnan model. Note that

M2r
2−ξ−d ∝ δ(r). The analysis of higher-order correlation functions is simplified in a non-

smooth case since straight lines are not preserved and no strong angular dependencies of the

type encountered in the smooth case are thus expected. To determine the scaling behavior

of the correlation functions, it is therefore enough to focus on a specific geometry. Consider
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for instance the equation M4C4 =
∑

χ(rij)C2(rkl) for the fourth order correlation function.

A convenient geometry to analyze is that with one distance among the points, say r12, much

smaller than the other distances which are of order R. At the dominant order in r12/R,

the solution of the equation is C4 ∝ C2(r12)C2(R) ∼ (r12 R)2−ξ−d. Similar arguments apply

to arbitrary orders. We conclude that the scalar statistics at r À ` is scale-invariant, i.e.

C2n(λr) = λn(2−ξ−d) C2n(r) as λ → ∞. Note that the statistics is generally non-Gaussian

when the distances between the points are comparable. As ξ increases from zero to two, the

deviations from the Gaussianity starts from zero and reach their maximum for the smooth

case described in Sect. IVA.

The results for spatially non-smooth flows have mostly been derived within the frame-

work of the Kraichnan model with the white forcing. The conditions on the forcing are

not crucial and may be easily relaxed since the scaling properties of the scalar correlation

functions are universal with respect to the forcing, i.e. independent of its details, while

the constant prefactors are not [1]. The situation with the velocity field is more interesting

and nontrivial. Even though a short-correlated flow might in principle be produced by an

appropriate forcing, all the cases of physical interest have a finite correlation time. The very

existence of closed equations of motion for the particle propagators, which we heavily relied

upon, is then lost. The existing numerical and experimental evidence is that the basic mech-

anisms for scalar intermittency are quite robust: anomalous scaling is still associated with

statistically conserved quantities and the expansion (51) for the multiparticle propagator

seems to carry over. The specific statistics of the advecting flow affects only quantitative

details, such as the numerical values of the exponents [1].

B. Inverse cascade in a compressible flow

If the trajectories are unique, particles that start from the same point will remain together

throughout the evolution. That means that advection preserves all the single-point moments

〈θN〉(t). Note that the conservation laws are statistical: the moments are not dynamically

conserved in every realization, but their average over the velocity ensemble are. In the

presence of pumping, the moments are the same as for the equation ∂tθ = ϕ in the limit

κ → 0 (nonsingular now). It follows that the single-point statistics is Gaussian, with 〈θ2〉
coinciding with the total injection Φ(0)t by the forcing. That growth is produced by the

48



flux of scalar variance toward the large scales. As explained in Section IVA, correlation

functions at very large scales are related to the probability for initially distant particles to

come close. In a strongly compressible flow, the trajectories are typically contracting, the

particles tend to approach and the distances will reduce to the forcing correlation length L

(and smaller) for long enough times. On a particle language, the larger the time the large

the distance starting from which particle come within L. As afar as the field θ is concerned,

strong correlations at larger and larger scales are therefore established as time increases,

signaling the inverse cascade process [37, 38].

The uniqueness of the trajectories greatly simplifies the analysis of the PDF P(δθ, r).

Indeed, the structure functions involve initial configurations with just two groups of particles

separated by a distance r. The particles explosively separate in the incompressible case and

we are immediately back to the full N -particle problem. Conversely, the particles that are

initially in the same group remain together if the trajectories are unique. The only relevant

degrees of freedom are then given by the intergroup separation and we are reduced to a two-

particle dynamics. It is therefore not surprising that the scaling behaviors at the various

orders are simply related in the inverse cascade regime [37, 38].

V. ACTIVE TRACERS

As we have have learnt in the previous Chapters, the most fundamental property of the

propagators is whether they describe particles separating or clustering backwards in time.

That property alone determines the direction of the cascade for the passive tracer. Another

important distinction is whether the propagators possess the collapse property (44) at the

limit κ → 0. The absence of the property makes anomalies possible for the passive tracer.

Here we consider the Lagrangian invariants (conserved along the fluid trajectories without

pumping and diffusion) which are active that is related to the velocity that transports them.

We shall see that the correlation between the Lagrangian tracer and velocity field makes

it impossible to derive the direction of the cascade solely from the behavior of trajectories.

In some situations, passive and active tracers cascade in opposite directions in the same

velocity field. In Sect. VA we first describe Burgers turbulence which has clustering for the

majority of trajectories (going to full measure in the inviscid limit) and collapse property

for propagators, a passive tracer then undergoes inverse cascade in such velocity. On the

49



contrary, powers of velocity (active tracers) have their dissipation determined by the minor-

ity of trajectories that separate. Velocity statistics thus corresponds to the direct cascade

with both dissipation anomaly and anomalous scaling. We then consider 2d magnetohydro-

dynamics where velocity is non-smooth (separation of trajectories and no collapse) so that

passive scalar must have direct cascade and dissipative anomaly. On the contrary, magnetic

vector potential (active scalar) influences velocity field via Lorentz force in such a way that

only those trajectories can come to the same point that carry the same value of the potential.

As a result, the potential cascades upscales and there are no anomalies in the magnetic field

statistics. In Sect. VB we consider 2d incompressible turbulence and describe the relations

between passive tracer and active tracers (vorticity). We argue that in the domain of the

direct vorticity cascade, both tracers cascade downscales in a very similar way. On the con-

trary, in the domain of the inverse energy cascade, passive scalar undergoes direct cascade

while vorticity has some kind of equipartition and no flux.

A. Activity changing cascade direction

i) Burgers turbulence. We start from the simplest case of Burgers turbulence whose

inviscid version describes a free propagation of fluid particles with velocity being Lagrangian

invariant, while viscosity provides for a local interaction:

∂tv + vvx − νvxx = f (89)

Without force, the evolution described by (89) conserves total momentum
∫

v dx. Burgers

equation describes one-dimensional acoustics and many other systems. Under the action of

a large-scale forcing (or in free decay of large-scale initial data) a cascade of kinetic energy

towards the small scales takes place. The nonlinear term provides for steepening of negative

gradients and the viscous term causes energy dissipation in the fronts that appear this way.

In the limit of vanishing viscosity, the energy dissipation stays finite due to the appearance

of velocity discontinuities called shocks. The Lagrangian statistics is peculiar in such an

extremely non-smooth flow and can be closely analyzed even though it does not correspond

to a Markov process. Forward and backward Lagrangian statistics are different, as it has to

be in an irreversible flow. Lagrangian trajectories stick to the shocks. That provides for a

strong interaction between the particles and results in an extreme anomalous scaling of the
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velocity field. A tracer field passively advected by such a flow undergoes an inverse cascade.

Here we briefly describe the picture of Burgers turbulence at the limit of small viscosity

(see [1, 67] and the references therein for the details). At vanishing viscosity, the Burgers

equation may be considered as describing a gas of particles moving in a force field. Indeed, in

the Lagrangian frame defined for a regular velocity by Ẋ = v(X, t), relation (89) becomes the

equation of motion of non-interacting unit-mass particles whose acceleration is determined

by the force:

Ẍ = f(X, t) . (90)

In order to find the Lagrangian trajectory X(t; x) passing at time zero through x it is

then enough to solve the second order equation (90) with the initial conditions X(0) = x

and Ẋ(0) = v(x, 0). For sufficiently short times such trajectories do not cross and the

Lagrangian map x 7→ X(t; x) is invertible. One may then reconstruct v at time t from the

relation v(X(t), t) = Ẋ(t). At longer times, however, the particles collide creating velocity

discontinuities, i.e. shocks. Once created shocks never disappear but they may merge so

that they form a tree branching backward in time. The crucial question for the Lagrangian

description of the Burgers velocities is what happens with the fluid particles after they

reach shocks where their equation of motion ẋ = v(x, t) becomes ambiguous. The question

may be easily answered by considering the inviscid case as a limit of the viscous one where

shocks become steep fronts with large negative velocity gradients. It is easy to see that

the Lagrangian particles are trapped within such fronts and keep moving with them. In

other words, the two particles arriving at the shock from the right and the left at a given

moment aggregate upon the collision. Momentum is conserved so that their velocity after

the collision is the mean of the incoming ones (recall that the particles have unit mass) and

is equal to the velocity of the particles moving with the shock that have been absorbed at

earlier times. The shock speed is thus the mean of the velocities on both sides of the shock.

Note that in the presence of shocks the Lagrangian map becomes many-to-one, compressing

whole space-intervals into the shock locations.

The Lagrangian picture of the Burgers velocities allows for a simple analysis of advection

of scalar quantities carried by the flow. In the inviscid and diffusionless limit, the advected

tracer satisfies the evolution equation

∂tθ + v̄ ∂xθ = ϕ , (91)
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where ϕ represents an external source. As usual, the solution of the initial value problem is

given in terms of the PDF P (x, t; y, 0 | v) to find the backward Lagrangian trajectory at y at

time 0, given that at later time t it passed by x. Except for the discrete set of time t shock

locations, the backward trajectories are uniquely determined by x. As a result, a smooth

initial scalar will develop discontinuities at shock locations but no stronger singularities.

Since a given set of points (x1 , . . . , xN
) ≡ x avoids the shocks with probability 1, the joint

backward PDF’s of N trajectories P
N
(x; y;−t) should be regular for distinct xn and should

possess the collapse property (44). This leads to the conservation of 〈θ2〉 in the absence

of scalar sources and to the linear pumping of the scalar variance when a stationary source

is present. Such behavior corresponds to an inverse cascade of the passive scalar as in

Sect. IVB.

As usual in compressible flows, the advected density n satisfies the continuity equation

∂tn + ∂x(v̄n) = ϕ (92)

different from (91) for the tracer. The solution of the initial value problem is given by the

forward Lagrangian PDF: n(x, t) =
∫

p(y, 0; x, t|v)n(y, 0)dy. Since the trajectories collapse,

a smooth initial density will become singular under the evolution, with δ-function contribu-

tions concentrating all the mass from the regions compressed to shocks by the Lagrangian

flow. Since the trajectories are determined by the initial point y, the joint forward PDF’s

P
N
(y; x; t) should have the collapse property (44) but they will also have contact terms in

xn’s when the initial points yn are distinct. Such terms signal a finite probability of the

trajectories to aggregate in the forward evolution, the phenomenon that we have already

met in the strongly compressible Kraichnan model discussed in Sect. (IID). The velocity

gradient ∂xv is an example of an (active) density satisfying equation (92) with ϕ = ∂xf .

The behavior of the Lagrangian PDF’s and the advected scalars summarized above have

been established by a direct calculation in freely decaying Burgers velocities with random

Gaussian finitely-correlated initial potentials φ [68].

The Burgers velocity itself and all its powers constitute an example of advected scalars.

Indeed, the equation of motion (89) may be also rewritten as

(∂t + v̄ ∂x − λ f) eλ v = 0 (93)

from which the relation (91) for θ = vn and ϕ = nfvn−1 follows. Of course, vn are active

scalars so that in the random case their initial data, the source terms, and the Lagrangian
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trajectories are not independent, contrary to the case of passive scalars. That correlation

makes the unlimited growth of 〈v2〉 impossible: the larger the value of local velocity, the

faster it creates a shock and dissipates the energy. The difference between active and passive

tracers is thus substantial enough to switch the direction of the energy cascade from inverse

for the passive scalar to direct for the velocity. Indeed, in the presence of the force,

v(x, t) = v(x(0), 0) +

t∫

0

f(x(s), s) ds , (94)

along the Lagrangian trajectories. The velocity is an active scalar and the Lagrangian tra-

jectories are evidently dependent on the force that drives the velocity. One cannot write a

formula like (81) obtained by two independent averages over the force and over the trajec-

tories. Nevertheless, the main contribution to the distance-dependent part of the 2-point

function 〈v(x, t) v(x′, t)〉 is due, for small distances, to realizations with a shock in between

the particles. It is insensitive to a large-scale force and hence approximately proportional to

the time that the two Lagrangian trajectories ending at x and x′ take to separate backwards

to the injection scale L. With a shock in between x and x′ at time t, the initial backward

separation is linear so that the second order structure function becomes proportional to ∆x.

Other structure functions may be analyzed similarly and give the same linear dependence

on the distance (all terms involve at most two trajectories):

〈|∆v|p〉 ∝ ∆x , p ≥ 1 . (95)

In particular, one can obtain the exact relations 〈|∆v|2n+1〉 = −4(2n+1)εnx/(2n−1) where

εn are the mean dissipation rates of the inviscid integrals
∫

v2n dx/2 which stay finite in the

inviscid limit (consider, for instance, the shock-wave solution v=2u{1+exp[u(x−ut)/ν]}−1).

We thus see that the same velocity field of forced Burgers equation gives no dissipative

anomaly and inverse cascade for a passive tracer while provides for a dissipative anomaly

and direct cascade of the active tracers (powers of velocity itself).

ii) Two-dimensional magnetohydrodynamics. Another example of an active tracer

having its cascade opposite to that of a passive one is that of the magnetic vector potential

in 2d MHD [69]. Magnetic vector potential a in 2d is related to the magnetic field as follows

B = (−∂xa, ∂ya). It satisfies the advection-diffusion equation with forcing:

∂ta + (v · ∇)a = κ∆a + fa . (96)
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Magnetic field acts on velocity by the Lorentz force:

∂tv + (v · ∇)v = ν∆v −∇p−∆a∇a + fv . (97)

Numerics show that the velocity field is non-smooth so that the passive scalar must undergo

a direct cascade and dissipation stays finite when diffusivity tends to zero. On the contrary,

vector potential a undergoes inverse cascade [69]. The Lagrangian explanation for that

remarkable fact is that even though different trajectories may come to the same point they

must all bring the same value of a (otherwise Lorentz force would be infinite). That type of

correlation between the trajectory and the value of active scalar that it carries provides for

the absence of anomalies in a statistics even for a non-smooth velocity [70]. The PDF P(a, t)

is Gaussian with a variance linearly growing with time, the PDF P(δa, r) of the increments

is self-similar [69, 70].

B. Two-dimensional incompressible turbulence

Taking curl of two-dimensional Navier-Stokes equation and using incompressibility

divv = 0 one obtains the advection-diffusion equation for the vorticity ω = curl v:

∂tω + (v · ∇)ω = κ∆a + ϕ . (98)

The vorticity and all its powers are thus scalar Lagrangian invariants of the inviscid dynamics

in two dimensions. In the presence of an external pumping ϕ injecting energy and enstrophy

(squared vorticity), it is clear that both quantities may flow throughout the scales. If both

cascades are present, they cannot go in the same direction: the different dependence of

the energy and the enstrophy on the scale prevents their fluxes to be both constant in the

same interval of scales. Since one cannot provide a turbulent cascade by a potential flow

(completely determined by boundaries in 2d) then energy cannot flow to small scales where a

finite energy dissipation would mean an infinite vorticity dissipation at the limit ν → 0. The

natural conclusion is that, given a single pumping at some intermediate scale, the energy

and the vorticity flow towards the large and the small scales, respectively [71–74].

i) Direct vorticity cascade in 2D. The basic knowledge of the Lagrangian dynamics

presented in the Sections II B and IV is essentially everything one needs for understanding

the direct cascade. The vorticity in 2D is a scalar and the analogy between the cascades of
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the vorticity and the passive scalar was noticed by Batchelor and Kraichnan already in the

sixties. The vorticity is not passive though and such analogies may be very misleading as

shown in the previous Section (another misleading analogy is that between the vorticity and

the magnetic field in 3D which would wrongly suggest that dynamo is absent when viscosity

equals magnetic diffusivity).

The basic flux relation for the enstrophy cascade is analogous to (84):

〈(v1 · ∇1 + v2 · ∇2)ω1ω2〉 = 〈ϕ1ω2 + ϕ2ω1〉 = P2 . (99)

The subscripts indicate the spatial points r1 and r2 and the pumping is assumed to be

Gaussian with 〈ϕ(r, t)φ(0, 0)〉 = δ(t)Φ̃(r/L) decaying rapidly for r > L. The constant

P2 ≡ Φ̃(0), of dimensionality time−3, is the input rate of the enstrophy ω2. Equation

(99) states that the enstrophy flux is constant in the inertial range, that is for r12 much

smaller than L and much larger than the viscous scale. A simple power counting suggests

that the velocity difference scales as the first power of r12. That roughly fits the idea of a

scalar cascade in a spatially smooth velocity: as was discussed in Sect. IV, passive scalar

correlation functions are logarithmic in that case and we expect the same of vorticity. Of

course, logarithm means that velocity is actually (weakly) non-smooth which provides for a

nonzero vorticity dissipation in the inviscid limit. Hypothetical power-law vorticity spectra

[75–77] must be structurally unstable [78].

The physics of the enstrophy cascade is basically the same as that for a passive scalar: a

fluid blob embedded into a larger-scale velocity shear is stretched along one direction and

compressed along another; that provides for the vorticity flux toward the small scales, with

the rate of transfer proportional to the strain. One can show that the vorticity correlation

functions at a given scale are indeed solely determined by the influence of larger scales (that

give exponential separation of the fluid particles) rather than smaller scales (that would lead

to a diffusive growth as the square root of time). The subtle differences from the passive

scalar case come from the active nature of the vorticity. The stretching of a blob depends

on the vorticity it carries. Note that the relation is nontrivial here since the transfer rate

is related to the strain (the symmetric part of the tensor of velocity derivatives) rather

than to vorticity (the antisymmetric part). The analysis of the relations between the strain

and the vorticity correlation functions shows however that in average the active nature

of the vorticity accelerates the cascade as it goes downscales [78]. As far as the dominant
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logarithmic scaling of the correlation functions is concerned, the active nature of the vorticity

simply amounts to the following: the field can be treated as a passive scalar, but the strain

and the vorticity acting on it must be renormalized with the scale [71, 72, 78]. The law of

renormalization is then established as follows: From (18), one has the dimensional relation

that time behaves as ω−1 ln(L/r) while the vorticity correlation function is 〈ω ω〉 ∝ P2×time

according to (81). That gives the scaling ω ∼ [P2 ln(L/r)]1/3. The consequences are that

the distance between two fluid particles satisfies: ln(R/r) ∼ P
1/2
2 t3/2, and that the pair

correlation function 〈ω1ω2〉 ∼ [P2 ln(L/r12)]
2/3. Experiments and numerics are compatible

with that conclusion [79–81].

ii) Inverse energy cascade in 2d.

The energy is not a Lagrangian tracer and we cannot relate its inverse cascade to the

behavior of trajectories. Still, we can get some important Lagrangian insight into the

properties of the inverse energy cascade. If one assumes (after Kolmogorov) that ε̄ is

the only pumping-related quantity that determines the statistics then the separation be-

tween the particles R12 = R(t; r1) − R(t; r2) has to obey the already mentioned Richard-

son law: 〈R2
12〉 ∝ ε̄t3. The equation for the separation follows from the Euler equation:

∂2
t R12 = f(R(t; r1)) − f(R(t; r2)) − ∇(P1 − P2). In the inertial range, R12 is much larger

than the forcing correlation length. The forcing can therefore be considered short-correlated

both in time and in space. Was the pressure term absent, one would get the separation

growth: 〈R2
12〉/ε̄t3 = 4/3. The experimental data give a smaller numerical factor ' 0.5 [82],

which is quite natural since the incompressibility constrains the motion. What is however

important to note is that already the forcing term prescribes the law 〈R2
12〉 ∝ t3 consistent

with the scaling of the energy cascade. Another amazing aspect of the 2d inverse energy

cascade can be inferred if one considers it from the viewpoint of vorticity. First, there is

no dissipative anomaly for enstrophy in the inertial interval of scales of the inverse cascade.

Moreover, enstrophy is transferred toward the small scales and its flux at the large scales

(where the inverse energy cascade is taking place) vanishes. By analogy with the passive

scalar behavior at the large scales discussed in Sect. IVA ii, one may expect the behavior

〈ω1ω2〉 ∝ r1−α−d
12 , where α is the scaling exponent of the velocity. The self-consistency of the

argument dictated by the relation ω = ∇×v requires 1−α−d = 2α− 2 which indeed gives

the Kolmogorov scaling α = 1/3 for d = 2. Experiments and numerical simulations indicate

that the inverse energy cascade has a normal Kolmogorov scaling for all measured correlation
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functions [83–85]. No consistent theory is available yet, but the previous arguments based

on the enstrophy equipartition might give an interesting clue. Since Kolmogorov scaling

correspond to a non-smooth velocity (in the limit of pumping scale going to zero) then the

passive scalar in such velocity field undergoes direct cascade with both dissipative anomaly

and anomalous scaling while the active scalar (vorticity) has neither dissipative anomaly nor

anomalous scaling.

From another perspective it is likely that the scale-invariance of inverse cascades is phys-

ically associated to the growth of the typical times with the scale. As the cascade proceeds,

the fluctuations have indeed time to get smoothed out contrary to direct cascades with

typical time decreasing in the direction of the cascade.

To conclude this Chapter, we note that what matters for the direction of the cascade

of active tracers is the correlation between the tracer value and the type of trajectory it

tracers.

VI. CONCLUSION

We hope that the reader have absorbed by now the two main lessons: the power of the

Lagrangian approach to fluid turbulence and the importance of statistical integrals of motion

for systems far from equilibrium.

The Lagrangian approach allows the analytical description of most important aspects of

the statistics of particles and fields for velocity fields either spatially smooth or temporally

decorrelated (or both). In a spatially smooth flow, the Lagrangian chaos with the ensuing

exponentially separating trajectories is generally present. The respective statistics of passive

scalar and vector fields is related to the statistics of the stretching and contraction rates in

a way that is well understood. The theory finds a natural physical domain of application

in the viscous range of scales. The most important open problem here seems to be the

understanding of the back reaction of the advected field on the velocity. That would include

an account of the buoyancy force in inhomogeneously heated fluids, the saturation of the

small-scale magnetic dynamo and the polymer drag reduction. In non-smooth velocities,

pertaining to the inertial interval of developed turbulence, the main Lagrangian phenomenon

is the intrinsic stochasticity of the fluid particle trajectories that accounts for the dissipation

at short distances. These phenomena are fully captured in the Kraichnan ensemble of non-
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smooth time-decorrelated velocities. It is an open problem to exhibit them for more realistic

non-smooth velocities and to relate them to hydrodynamical evolution equations obeyed by

the latter. The spontaneous stochasticity of Lagrangian trajectories enhances the interaction

between fluid particles leading to intricate multi-particle stochastic conservation laws. There

are open problems already in the framework of the Kraichnan model. First, there is the

issue of whether one can build an operator product expansion, classifying the zero modes

and revealing their possible underlying algebraic structure, both at large and small scales.

The second class of problems is related to a consistent description of high-order moments

of scalar, vector and tensor fields, especially in the situations where their amplitudes are

growing, in a further attempt to describe feedback effects. Another major open problem

is to identify the appropriate statistical integrals of motion for the active and the nonlocal

cases. One sees there the potential direction of progress: coupling analytical, experimental

and numerical studies to investigate the geometrical statistics of fluid turbulence with the

primary aim to identify the underlying conservation laws.
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