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This is a graduate one-semester course. It answers the following question:
how one makes sense of the system when our knowledge is only partial? In
this case, we cannot exactly predict what happens but have to deal with
a variety of possible outcomes. The simplest approach is phenomenological
and called thermodynamics, when we deal with macroscopic manifestations
of hidden degrees of freedom. We proceed from symmetries and respective
conservation laws first to impose restrictions on possible outcomes and then
focus on the mean values (averaged over many outcomes) ignoring fluctu-
ations. This is generally possible in the limit of large number of degrees
of freedom, which is therefore called thermodynamic limit. More sophisti-
cated and detailed approach is that of statistical physics, which aspires to
derive the statistical laws governing the system by using the knowledge of the
microscopic dynamical laws and by explicitly averaging over the degrees of
freedom. Those statistical laws justify thermodynamic description of mean
values and describe the probability of different fluctuations. These are im-
portant not only for the consideration of finite and even small systems but
also because there is a class of phenomena where fluctuations are crucial -
phase transitions. The transitions are interesting since they reveal how the
competition between energy and entropy (in establishing the minimum of the
free energy) determine whether the system is disordered or have this ir that
type of order.

In the first part of the course, we start by reminding basics of thermody-
namics and statistical physics. We then briefly re-tell the story of statistical
physics using the language of information theory which shows universality of
this framework and its applicability well beyond physics. We then develop a
general theory of fluctuations and relate the properties of fluctuating fields
and random walks. We shall consider how statistical systems respond to ex-
ternal perturbations and reveal the profound relation between response and
fluctuations, including away from thermal equilibrium.

As a bridge to the second part, we briefly treat ideal gases on a level
a bit higher than undergraduate. Non-interacting system are governed by
entropy and do not allow phase transitions. However, ideal quantum gases
are actually interacting systems, which makes possible the quantum phase
transition of Bose-Enstein condensation.

In the second part of the course, we consider interacting systems of dif-
ferent nature and proceed to study phase transitions, focusing first on the
second-order transitions due to an order appearing by a spontaneous breaking
of a symmetry. Here one proceeds as follows: 1) identify broken symmetry,
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2) define an order parameter, 3) examine elementary excitations, 3) classify
topological defects. We then recognize an important difference between brea-
king discrete and continuous symmetries. In the latter case, an ordered state
allow long-wave excitations which cost very little energy - Goldstone mo-
des. In space dimensionality two or less those modes manage to destroy the
long-range order. For example, liquid-solid phase transition breaks trans-
lational invariance; the respective Goldstone mode is sound deforming the
lattice. Thermally excited sound waves make one- and two-dimensional cry-
stals impossible by destroying long-range correlations between the positions
of the atoms. The short-range order, however, could exist for sufficiently low
temperature, so that two-dimensional films can support transverse sound, as
crystals do. Moreover, even though the correlation between atom positions
decay with the distance at all temperatures, such decay is exponential at high
temperatures and power-law at low temperatures when the short-range order
exists. Between these two different regimes, there exists a phase transition
of a new nature, not related to breakdown of any symmetry. That transi-
tion (bearing names of Berezinskii, Kosterlitz and Thouless and recognized
by 2016 Nobel Prize) is related to another type of excitations, topologi-
cal defects, which proliferate above the transition temperature and provide
screening leading to an exponential decay of correlations.

To treat systematically strongly fluctuating systems, we shall develop the
formalism of renormalization group, which is an explicit procedure of coarse-
graining description by averaging over larger and larger scales wiping out
more and more information. This procedure shows how microscopic details
are getting irrelevant and only symmetries determine the universal features
that appear in a macroscopic behavior.

Small-print parts devoted to examples and also to the details that can be

omitted upon the first reading.
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1 Thermodynamics (brief reminder)

Physics is an experimental science, and laws appear usually by induction:
from particular cases to a general law and from processes to state functions.
The latter step requires integration (to pass, for instance, from Newton equa-
tion of mechanics to Hamiltonian or from thermodynamic equations of state
to thermodynamic potentials). Generally, it is much easier to differentiate
then to integrate and so deduction (or postulation approach) is usually much
more simple and elegant. It also provides a good vantage point for further
applications and generalizations. In such an approach, one starts from pos-
tulating some function of the state of the system and deducing from it the
laws that govern changes when one passes from state to state. Here such a
deduction is presented for thermodynamics following the book H. B. Callen,
Thermodynamics (John Wiley & Sons, NYC 1965).

1.1 Basic notions

We use macroscopic description so that some degrees of freedom remain hid-
den. In mechanics, electricity and magnetism we had closed description of
the explicitly known macroscopic degrees of freedom. For example, planets
are large complex bodies, and yet the motion of their centers of mass allows
for a closed description of celestial mechanics. On the contrary, in thermo-
dynamics we deal with macroscopic manifestations of the hidden degrees of
freedom. For example, to describe also the rotation of planets, which gene-
rally slows down due to tidal forces, one needs to account for many extra
degrees of freedom. When detailed knowledge is unavailable, physicists use
symmetries or conservation laws. Thermodynamics studies restrictions on
the possible properties of macroscopic matter that follow from the symme-
tries of the fundamental laws. Therefore, thermodynamics does not predict
numerical values but rather sets inequalities and establishes relations among
different properties.

The basic symmetry is invariance with respect to time shifts which gi-
ves energy conservation1. That allows one to introduce the internal energy
E. Energy change generally consists of two parts: the energy change of

1Be careful trying to build thermodynamic description for biological or social-economic
systems, since generally they are not time-invariant. For instance, living beings age and
the amount of money is not always conserved.
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macroscopic degrees of freedom (which we shall call work) and the energy
change of hidden degrees of freedom (which we shall call heat). To be able
to measure energy changes in principle, we need adiabatic processes where
there is no heat exchange. We wish to establish the energy of a given system
in states independent of the way they are prepared. We call such states equi-
librium, they are those that can be completely characterized by the static
values of extensive parameters like energy E, volume V and mole number
N (number of particles divided by the Avogadro number 6.02 × 1023). We
call something extensive if its value for a composite system is a direct sum
of the values for the components. Of course, energy of a composite system is
not generally the sum of the parts because there is an interaction energy. To
treat energy as an extensive variable we therefore must make two assump-
tions: i) assume that the forces of interaction are short-range and act only
along the boundary, ii) take thermodynamic limit V → ∞ where one can
neglect surface terms that scale as V 2/3 in comparison with the bulk terms
that scale as V . Other extensive quantities may include numbers of different
sorts of particles, electric and magnetic moments etc.

For a given system, any two equilibrium states A and B can be related by
an adiabatic process either A → B or B → A, which allows to measure the
difference in the internal energy by the work W done by the system. Now,
if we encounter a process where the energy change is not equal to minus the
work done by the system, we call the difference the heat flux into the system:

dE = δQ− δW . (1)

This statement is known as the first law of thermodynamics. The energy is
a function of state so we use differential, but we use δ for heat and work,
which aren’t differentials of any function as they refer to particular forms of
energy transfer (not energy content).

The basic problem of thermodynamics is the determination of the equili-
brium state that eventually results after all internal constraints are removed
in a closed composite system. The problem is solved with the help of extre-
mum principle: there exists an extensive quantity S called entropy which is
a function of the extensive parameters of any composite system. The values
assumed by the extensive parameters in the absence of an internal constraint
maximize the entropy over the manifold of constrained equilibrium states.
Since the entropy is extensive it is a homogeneous first-order function of
the extensive parameters: S(λE, λV, . . .) = λS(E, V, . . .). The entropy is
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a continuous differentiable function of its variables. This function (called
also fundamental relation) is everything one needs to know to solve the basic
problem (and other problems in thermodynamics as well).

Since the entropy is generally a monotonic function of energy2 then S =
S(E, V, . . .) can be solved uniquely for E(S, V, . . .) which is an equivalent
fundamental relation. Indeed, assume (∂E/∂S)X > 0 and consider S(E,X)
and E(S,X). Then3

(
∂S

∂X

)
E

= 0 ⇒
(
∂E

∂X

)
S

= −∂(ES)

∂(XS)

∂(EX)

∂(EX)
= −

(
∂S

∂X

)
E

(
∂E

∂S

)
X

= 0 .

Differentiating the last relation one more time we get

(∂2E/∂X2)S = −(∂2S/∂X2)E(∂E/∂S)X ,

since the derivative of the second factor is zero as it is at constant X. We
thus see that the equilibrium is defined by the energy minimum instead of
the entropy maximum (very much like circle can be defined as the figure
of either maximal area for a given perimeter or of minimal perimeter for a
given area). On the figure, unconstrained equilibrium states lie on the curve
while all other states lie below. One can reach the state A either maximizing
entropy at a given energy or minimizing energy at a given entropy:

A

S

E

One can work either in energy or entropy representation but ought to be
careful not to mix the two.

Experimentally, one usually measures changes thus finding derivatives
(called equations of state). The partial derivatives of an extensive varia-
ble with respect to its arguments (also extensive parameters) are intensive

2This is not always so, particularly for systems with a finite phase space, as shows a
counter-example of the two-level system in the second Chapter.

3An efficient way to treat partial derivatives is to use jacobians ∂(u, v)/∂(x, y) =
(∂u/∂x)(∂v/∂y)− (∂v/∂x)(∂u/∂y) and the identity (∂u/∂x)y = ∂(u, y)/∂(x, y).
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parameters4. For example, for the energy one writes

∂E

∂S
≡ T (S, V,N) ,

∂E

∂V
≡ −P (S, V,N)

∂E

∂N
≡ µ(S, V,N) , . . . (2)

These relations are called the equations of state and they serve as definitions
for temperature T , pressure P and chemical potential µ, corresponding to
the respective extensive variables are S, V,N . From (2) we write

dE = δQ− δW = TdS − PdV + µdN . (3)

Entropy is thus responsible for hidden degrees of freedom (i.e. heat) while
other extensive parameters describe macroscopic degrees of freedom. The
derivatives (2) are defined only in equilibrium. Therefore, δQ = TdS and
δW = PdV −µdN for quasi-static processes i.e such that the system is close
to equilibrium at every point of the process. A process can be considered
quasi-static if its typical time of change is larger than the relaxation times
(which for pressure can be estimates as L/c, for temperature as L2/κ, where
L is a system size, c - sound velocity and κ thermal conductivity). Finite
deviations from equilibrium make dS > δQ/T because entropy can increase
without heat transfer.

Let us give an example how the entropy maximum principle solves the basic
problem. Consider two simple systems separated by a rigid wall which is
impermeable for anything but heat. The whole composite system is closed
that is E1 + E2 =const. The entropy change under the energy exchange,

dS =
∂S1

∂E1

dE1 +
∂S2

∂E2

dE2 =
dE1

T1
+
dE2

T2
=
(
1

T1
− 1

T2

)
dE1 ,

must be positive which means that energy flows from the hot subsystem to
the cold one (T1 > T2 ⇒ ∆E1 < 0). We see that our definition (2) is in
agreement with our intuitive notion of temperature. When equilibrium is
reached, dS = 0 which requires T1 = T2. If fundamental relation is known,
then so is the function T (E, V ). Two equations, T (E1, V1) = T (E2, V2) and
E1 + E2 =const completely determine E1 and E2. In the same way one can
consider movable wall and get P1 = P2 in equilibrium. If the wall allows for
particle penetration we get µ1 = µ2 in equilibrium.

4In thermodynamics we have only extensive and intensive variables, because we take
thermodynamic limit N → ∞, V → ∞ keeping N/V finite.
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Both energy and entropy are homogeneous first-order functions of its varia-
bles: S(λE, λV, λN) = λS(E, V,N) and E(λS, λV, λN) = λE(S, V,N) (here
V and N stand for the whole set of extensive macroscopic parameters). Dif-
ferentiating the second identity with respect to λ and taking it at λ = 1 one
gets the Euler equation

E = TS − PV + µN . (4)

It may seem that a thermodynamic description of a one-component sy-
stem requires operating functions of three variables. Let us show that there
are only two independent parameters. For example, the chemical poten-
tial µ can be found as a function of T and P . Indeed, differentiating (4)
and comparing with (3) one gets the so-called Gibbs-Duhem relation (in
the energy representation) Ndµ = −SdT + V dP or for quantities per mole,
s = S/N and v = V/N : dµ = −sdT + vdP . In other words, one can choose
λ = 1/N and use first-order homogeneity to get rid of N variable, for in-
stance, E(S, V,N) = NE(s, v, 1) = Ne(s, v). In the entropy representation,

S = E
1

T
+ V

P

T
−N

µ

T
,

the Gibbs-Duhem relation is again states that because dS = (dE + PdV −
µdN)/T then the sum of products of the extensive parameters and the dif-
ferentials of the corresponding intensive parameters vanish:

Ed(1/T ) + V d(P/T )−Nd(µ/T ) = 0 . (5)

One uses µ(P, T ), for instance, when considering systems in the external
field. One then adds the potential energy (per particle) u(r) to the chemical
potential so that the equilibrium condition is µ(P, T ) + u(r) =const. Par-
ticularly, in the gravity field u(r) = mgz and differentiating µ(P, T ) under
T = const one gets vdP = −mgdz. Introducing density ρ = m/v one gets
the well-known hydrostatic formula P = P0 − ρgz. For composite systems,
the number of independent intensive parameters (thermodynamic degrees of
freedom) is the number of components plus one. For example, for a mixture
of gases, we need to specify the concentration of every gas plus temperature,
which is common for all.

Processes. While thermodynamics is fundamentally about states it is
also used for describing processes that connect states. Particularly important
questions concern performance of engines and heaters/coolers. Heat engine
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works by delivering heat from a reservoir with some higher T1 via some system
to another reservoir with T2 doing some work in the process5. If the entropy
of the hot reservoir decreases by some ∆S1 then the entropy of the cold one
must increase by some ∆S2 ≥ ∆S1. The work ∆W is the difference between
the heat given by the hot reservoir ∆Q1 = T1∆S1 and the heat absorbed by
the cold one ∆Q2 = T2∆S2 (assuming both processes quasi-static). Engine
efficiency is the fraction of heat used for work that is

∆W

∆Q1

=
∆Q1 −∆Q2

∆Q1

= 1− T2∆S2

T1∆S1

≤ 1− T2
T1

.

Maximal work is achieved for minimal entropy change ∆S2 = ∆S1, which
happens for reversible (quasi-static) processes — if, for instance, a gas works
by moving a piston then the pressure of the gas and the work are less for
a fast-moving piston than in equilibrium. Similarly, refrigerator/heater is
something that does work to transfer heat from cold to hot systems. The
performance is characterized by the ratio of transferred heat to the work
done. For the cooler, the efficiency is ∆Q2/∆W ≤ T2/(T1 − T2), for the
heater it is ∆Q1/∆W ≤ T1/(T1−T2). When the temperatures are close, the
efficiency is large, as it requires almost no work to transfer heat.

A specific procedure to accomplish reversible heat and work transfer is to use
an auxiliary system which undergoes so-called Carnot cycle, where heat exchanges
take place only at two temperatures. Engine goes through: 1) isothermal expan-
sion at T1, 2) adiabatic expansion until temperature falls to T2, 3) isothermal
compression until the entropy returns to its initial value, 4) adiabatic compression
until the temperature reaches T1. The auxiliary system is connected to the reser-
voirs during isothermal stages: to the first reservoir during 1 and to the second
reservoir during 3. During all the time it is connected to our system on which it
does work during 1 and 2, increasing the energy of our system, which then decrea-
ses its energy by working on the auxiliary system during 3 and 4. The total work
is the area of the rectangle between the lines 1,3, the heat ∆Q1 is the area below
the line 1. For heat transfer, one reverses the direction.

5Imagine any real internal combustion engine or look under the hood of your car to
appreciate the level of idealization achieved in distillation of that definition.
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T

S

T

T2

P

1

1

2

3

4
4

1

3

2

Carnot cycle in T-S and P-V variables

V

Carnot cycle provides one with an operational method to measure the ratio of

two temperatures by measuring the engine efficiency6.

Summary of formal structure: The fundamental relation (in energy re-
presentation) E = E(S, V,N) is equivalent to the three equations of state
(2). If only two equations of state are given then Gibbs-Duhem relation may
be integrated to obtain the third relation up to an integration constant; al-
ternatively one may integrate molar relation de = Tds− Pdv to get e(s, v),
again with an undetermined constant of integration.

Example: consider an ideal monatomic gas characterized by two equations of
state (found, say, experimentally with R ≃ 8.3 J/moleK ≃ 2 cal/moleK ):

PV = NRT , E = 3NRT/2 . (6)

The extensive parameters here are E, V,N so we want to find the fundamental
equation in the entropy representation, S(E, V,N). We write (4) in the form

S = E
1

T
+ V

P

T
−N

µ

T
. (7)

Here we need to express intensive variables 1/T, P/T, µ/T via extensive variables.
The equations of state (6) give us two of them:

P

T
=
NR

V
=
R

v
,

1

T
=

3NR

2E
=

3R

e
. (8)

Now we need to find µ/T as a function of e, v using Gibbs-Duhem relation in
the entropy representation (5). Using the expression of intensive via extensive
variables in the equations of state (8), we compute d(1/T ) = −3Rde/2e2 and
d(P/T ) = −Rdv/v2, and substitute into (5):

d

(
µ

T

)
= −3

2

R

e
de− R

v
dv ,

µ

T
= C − 3R

2
ln e−R ln v ,

6Practical needs to estimate the engine efficiency during the industrial revolution led
to the development of such abstract concepts as entropy.
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s =
1

T
e+

P

T
v − µ

T
= s0 +

3R

2
ln

e

e0
+R ln

v

v0
. (9)

Here e0, v0 are parameters of the state of zero internal energy used to determine

the temperature units, and s0 is the constant of integration.

1.2 Legendre transform

Let us emphasize that the fundamental relation always relates extensive
quantities. Therefore, even though it is always possible to eliminate, say,
S from E = E(S, V,N) and T = T (S, V,N) getting E = E(T, V,N), this
is not a fundamental relation and it does not contain all the information.
Indeed, E = E(T, V,N) is actually a partial differential equation (because
T = ∂E/∂S) and even if it can be integrated the result would contain un-
determined function. Still, it is easier to measure, say, temperature than
entropy so it is convenient to have a complete formalism with intensive pa-
rameters as operationally independent variables and extensive parameters
as derived quantities. This is achieved by the Legendre transform: To pass
from the relation Y = Y (X) to that in terms of P = ∂Y/∂X it is not enough
to eliminate X and consider the function Y = Y [X(P )] = Y (P ), which
determines the curve Y = Y (X) only up to a shift along X:

X

Y Y

X

For example, the same Y = P 2/4 correspond to the family of functions
Y = (X+C)2 for arbitrary C. To fix the shift one may specify for every P the
position ψ(P ) where the straight line tangent to the curve intercepts the Y -
axis: ψ = Y −PX. In this way we consider the curve Y (X) as the envelope of
the family of the tangent lines characterized by the slope P and the intercept
ψ. The function ψ(P ) = Y [X(P )] − PX(P ) completely defines the curve;
here one substitutes X(P ) found from P = ∂Y (X)/∂X (which is possible
only when ∂P/∂X = ∂2Y/∂X2 ̸= 0). The function ψ(P ) is referred to as
a Legendre transform of Y (X). From dψ = −PdX −XdP + dY = −XdP
one gets −X = ∂ψ/∂P i.e. the inverse transform is the same up to a sign:
Y = ψ + XP . In mechanics, we use the Legendre transform to pass from
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Lagrangian to Hamiltonian description.

 

Y

XP

X

ψ

P

Y = Ψ + 

Different thermodynamics potentials suitable for different physical
situations are obtained replacing different extensive parameters by the re-
spective intensive parameters.

Free energy F = E − TS (also called Helmholtz potential) is that partial
Legendre transform of E which replaces the entropy by the temperature as
an independent variable: dF (T, V,N, . . .) = −SdT −PdV + µdN + . . .. It is
particularly convenient for the description of a system in a thermal contact
with a heat reservoir because then the temperature is fixed and we have one
variable less to care about. The maximal work that can be done under a
constant temperature (equal to that of the reservoir) is minus the differential
of the free energy. Indeed, this is the work done by the system and the thermal
reservoir. That work is equal to the change of the total energy

d(E + Er) = dE + TrdSr = dE − TrdS = d(E − TrS) = d(E − TS) = dF .

In other words, the free energy F = E − TS is that part of the internal
energy which is free to turn into work, the rest of the energy TS we must
keep to sustain a constant temperature. The equilibrium state minimizes F ,
not absolutely, but over the manifold of states with the temperature equal to
that of the reservoir. Indeed, consider F (T,X) = E[S(T,X), X]−TS(T,X),
then (∂E/∂X)S = (∂F/∂X)T that is they turn into zero simultaneously.
Also, in the point of extremum, one gets (∂2E/∂X2)S = (∂2F/∂X2)T i.e.
both E and F are minimal in equilibrium. Monatomic gas at fixed T,N
has F (V ) = E − TS(V ) = −NRT lnV+const. If a piston separates equal
amounts N , then the work done in changing the volume of a subsystem from
V1 to V2 is ∆F = NRT ln[V2(V − V2)/V1(V − V1)].

Enthalpy H = E+PV is that partial Legendre transform of E which re-
places the volume by the pressure dH(S, P,N, . . .) = TdS+V dP+µdN+. . ..

14



It is particularly convenient for situation in which the pressure is maintained
constant by a pressure reservoir (say, when the vessel is open into atmosp-
here). Just as the energy acts as a potential at constant entropy and the free
energy as potential at constant temperature, so the enthalpy is a potential for
the work done by the system and the pressure reservoir at constant pressure.
Indeed, now the reservoir delivers pressure which can change the volume so
that the differential of the total energy is

d(E +Er) = dE − PrdVr = dE + PrdV = d(E + PrV ) = d(E + PV ) = dH .

Equilibrium minimizes H under the constant pressure. On the other hand,
the heat received by the system at constant pressure (and N) is the enthalpy
change: δQ = dQ = TdS = dH. Compare it with the fact that the heat
received by the system at constant volume (and N) is the energy change since
the work is zero.

One can replace both entropy and volume obtaining (Gibbs) thermody-
namics potential G = E − TS + PV which has dG(T, P,N, . . .) = −SdT +
V dP + µdN + . . . and is minimal in equilibrium at constant temperature
and pressure. From (4) we get (remember, they all are functions of different
variables):

F = −P (T, V )V + µ(T, V )N , H = TS + µN , G = µ(T, P )N . (10)

When there is a possibility of change in the number of particles (be-
cause our system is in contact with some particle source having a fixed che-
mical potential) then it is convenient to use the grand canonical potential
Ω(T, V, µ) = E−TS−µN which has dΩ = −SdT −PdV −Ndµ. The grand
canonical potential reaches its minimum under the constant temperature and
chemical potential.

Since the Legendre transform is invertible, all potentials are equivalent
and contain the same information. The choice of the potential for a given
physical situation is that of convenience: we usually take what is fixed as a
variable to diminish the number of effective variables.

Maxwell relations. Changing order of taking mixed second derivatives of a
potential creates a class of identities known as Maxwell relations. For example,
∂2E/∂S∂V = ∂2E/∂V ∂S gives (∂P/∂S)V = −(∂T/∂V )S . That can be done for
all three combinations (SV, SN, V N) possible for a simple single-component sy-
stem and also for every other potential (F,H,G). Maxwell relations for constant
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N can be remembered with the help of the mnemonic diagram with the sides label-
led by the four common potentials flanked by their respective natural independent
variables. In the differential expression for each potential in terms of the natu-
ral variables arrow pointing away from the variable implies a positive sign while
pointing towards the variable implies negative sign like in dE = TdS − PdV :

V F T

E

S H P

V

S P

T

PS

=

G

Maxwell relations are given by the corners of the diagram, for example, (∂V/∂S)P =
(∂T/∂P )S etc. If we consider constantN then any fundamental relation of a single-
component system is a function of only two variables and therefore have only three
independent second derivatives. Traditionally, all derivatives are expressed via the
three basic ones (those of Gibbs potential), the specific heat and the coefficient of
thermal expansion, both at a constant pressure, and isothermal compressibility:

cP = T

(
∂S

∂T

)
P
= −T

(
∂2G

∂T 2

)
P

, α =
1

V

(
∂V

∂T

)
P
, κT = − 1

V

(
∂V

∂P

)
T
.

In particular, the specific heat at constant volume is as follows:

cV = T

(
∂S

∂T

)
V
= cP − TV α2

NκT
. (11)

That and similar formulas form a technical core of thermodynamics and the
art of deriving them ought to be mastered. It involves few simple rules in treating
partial derivatives:(
∂X

∂Y

)
Z
=

(
∂Y

∂X

)−1

Z
,

(
∂X

∂Y

)
Z

(
∂Y

∂W

)
Z
=

(
∂X

∂W

)
Z
,

(
∂X

∂Y

)
Z

(
∂Y

∂Z

)
X

(
∂Z

∂X

)
Y
=−1.

An alternative (and more general) way to manipulate thermodynamic deriva-
tives is to use jacobians and identity ∂(T, S)/∂(P, V ) = 1. Taking, say, S, V as
independent variables,

∂(T, S)

∂(P, V )
=
∂(T, S)

∂(S, V )

∂(S, V )

∂(P, V )
= −(∂T/∂V )S

(∂P/∂S)V
=
ESV

EV S
= 1 .
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1.3 Stability of thermodynamic systems

Consider the entropy representation. Stationarity of equilibrium requires
dS = 0 while stability requires d2S < 0. In particular, that means conca-
vity of S(E,X). Indeed, for all ∆E one must have S(E +∆E,X) + S(E −
∆E,X) ≤ 2S(E,X) otherwise our system can break into two halves with
the energies E±∆E thus increasing total entropy. For ∆E → 0 the stability
requirement means (∂2S/∂E2)X ≤ 0 ⇒ (∂T/∂E)X ≥ 0 — increase of the
energy must increase temperature. For the case X = V this can be also
recast into (∂T/∂E)V = [∂(TV )/∂(EV )][∂(SV )/∂(SV )] = T−1(∂T/∂S)V =
1/cv ≥ 0 (adding heat to a stable system increases temperature). The same
concavity requirement is true with respect to changes in other parameters X,
in particular, (∂2S/∂V 2)E ≤ 0 ⇒ (∂P/∂V )T ≤ 0 that is isothermal expan-
sion must reduce pressure for the stable system. Considering both changes
together we must require SEE(∆E)

2 + 2SEV∆E∆V + SV V (∆V )2 ≤ 0. This
quadratic form, SEE(∆E)

2 + 2SEV∆E∆V + SV V (∆V )2 = S−1
EE(SEE∆E +

SEV∆V )2 + (SV V − S2
EV S

−1
EE)(∆V )2, has a definite sign if the determinant

is positive: SEESV V − S2
EV ≥ 0. Manipulating derivatives one can show

that this is equivalent to (∂P/∂V )S ≤ 0. Alternatively, one may consi-
der the energy representation, here stability requires the energy minimum
which gives ESS = T/cv ≥ 0, EV V = −(∂P/∂V )S ≥ 0. Considering both
variations one can diagonalize d2E = ESS(dS)

2 + EV V (dV )2 + 2ESV dSdV
by introducing the temperature differential dT = ESSdS + ESV dV so that
2d2E = E−1

SS(dT )
2 + (EV V − E2

SVE
−1
SS)(dV )2. It is thus clear that EV V −

E2
SVE

−1
SS = (∂2E/∂V 2)T = −(∂P/∂V )T and we recover all the same ine-

qualities. Note that the pressure must decrease under both isothermal and
adiabatic expansion.

EE

∆

∆

V

Lines of constant entropy in unstable and stable cases

∆ V

∆

The physical content of those stability criteria is known as Le Chätelier’s
principle: perturbation deviating the system from a stable equilibrium indu-
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ces spontaneous processes that reduce the perturbation.
Phase transitions happen when some stability condition is not satisfied

like in the region with (∂P/∂V )T > 0 as at the lower isotherm in the below
figure. When the pressure corresponds to the level NLC, it is clear that
L is an unstable point and cannot be realized. But which stable point is
realized, N or C? To get the answer, one must minimize the thermodynamic
potential. Since we have T and P fixed, we use the Gibbs potential. For one
mole, it is the chemical potential which can be found integrating the Gibbs-
Duhem relation, dµ(T, P ) = −sdT + vdP , under the constant temperature:
G = µ =

∫
v(P )dP . The chemical potential increases up to the point (after

E) with infinite dV/dP . After that we move along the isotherm back having
dP < 0 so that the integral decreases and then passes through another point
of infinite derivative and starts to increase again. In other words, the third
graph below represents three branches of the function µ(P ) that has its
derivative the function v(P ) shown in the second graph. It is clear that
the intersection point D corresponds to equal areas below and above the
horizontal line on the first graph. The pressure that corresponds to this
point separates the absolute minimum at the left branch marked Q (solid-
like) from that on the right one marked C (liquid-like). The dependence of
volume on pressure is discontinuous along the isotherm.

P

V

V

P P

Q

N C
D

EJ

L N
Q

C
E

D

JL

C

D

E
J

L

N
Q

µ
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2 Basic statistical physics (brief reminder)

Here we introduce microscopic statistical description in the phase space and
describe three principal ways (microcanonical, canonical and grand canoni-
cal) to derive thermodynamics from statistical mechanics.

2.1 Distribution in the phase space

We consider macroscopic bodies, systems and subsystems. We define pro-
bability for a subsystem to be in some ∆p∆q region of the phase space as
the fraction of time it spends there: w = limT→∞∆t/T . Assuming that the
probability to find the subsystem within the volume dpdq is proportional to
this volume, we introduce the statistical distribution in the phase space as
density: dw = ρ(p, q)dpdq. By definition, the average with the statistical
distribution is equivalent to the time average:

f̄ =
∫
f(p, q)ρ(p, q)dpdq = lim

T→∞

1

T

∫ T

0
f(t)dt . (12)

The main idea is that ρ(p, q) for a subsystem does not depend on the initial
states of this and other subsystems so it can be found without actually sol-
ving equations of motion. We define statistical equilibrium as a state where
macroscopic quantities equal to the mean values. Assuming short-range for-
ces we conclude that different macroscopic subsystems interact weakly and
are statistically independent so that the distribution for a composite system
ρ12 is factorized: ρ12 = ρ1ρ2.

Now, we take the ensemble of identical systems starting from different
points in phase space. In a flow with the velocity v = (ṗ, q̇) the density
changes according to the continuity equation: ∂ρ/∂t + div (ρv) = 0. If the
motion is considered for not very large time, it is conservative and can be
described by the Hamiltonian dynamics: q̇i = ∂H/∂pi and ṗi = −∂H/∂qi.
Here the Hamiltonian generally depends on the momenta and coordinates of
the given subsystem and its neighbors. Hamiltonian flow in the phase space
is incompressible, it conserves area in each plane pi, qi and the total volume:
div v = ∂q̇i/∂qi + ∂ṗi/∂pi = 0. That gives the Liouville theorem: dρ/dt =
∂ρ/∂t+(v ·∇)ρ = −ρdiv v = 0. The statistical distribution is thus conserved
along the phase trajectories of any subsystem. As a result, equilibrium ρ is
an integral of motion and it must be expressed solely via the integrals of
motion. Since ln ρ is an additive quantity then it must be expressed linearly
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via the additive integrals of motions which for a general mechanical system
are momentum P(p, q), the momentum of momentum M(p, q) and energy
E(p, q) (again, neglecting interaction energy of subsystems):

ln ρa = αa + βEa(p, q) + c ·Pa(p, q) + d ·M(p, q) . (13)

Here αa is the normalization constant for a given subsystem while the seven
constants β, c,d are the same for all subsystems (to ensure additivity of
integrals) and are determined by the values of the seven integrals of motion
for the whole system. We thus conclude that the additive integrals of motion
is all we need to get the statistical distribution of a closed system (and any
subsystem), those integrals replace all the enormous microscopic information.
Considering system which neither moves nor rotates we are down to the single
integral, energy, which corresponds to the Gibbs’ canonical distribution:

ρ(p, q) = A exp[−βE(p, q)] . (14)

It was obtained for any macroscopic subsystem of a very large system, which
is the same any system in the contact with thermostat. Note one subtlety:
On the one hand, we considered subsystems weakly interacting to have their
energies additive and distributions independent. On the other hand, preci-
sely this weak interaction leads to a complicated evolution of any subsystem
which makes it visiting all regions of the phase space thus making statistical
description possible. See Landau & Lifshitz, Sects 1-4.

2.2 Microcanonical distribution

Consider now a closed system with the energy E0. Boltzmann assumed that
all microstates with the same energy have equal probability (ergodic hypot-
hesis) which gives the microcanonical distribution:

ρ(p, q) = Aδ[E(p, q)− E0] . (15)

Usually one considers the energy fixed with the accuracy ∆ so that the mi-
crocanonical distribution is

ρ =
{
1/Γ for E ∈ (E0, E0 +∆)
0 for E ̸∈ (E0, E0 +∆) ,

(16)

where Γ is the volume of the phase space occupied by the system

Γ(E, V,N,∆) =
∫
E<H<E+∆

d3Npd3Nq . (17)

20



For example, for N noninteracting particles (ideal gas) the states with the
energy E =

∑
p2/2m are in the p-space near the hyper-sphere with the

radius
√
2mE. Remind that the surface area of the hyper-sphere with the

radius R in 3N -dimensional space is 2π3N/2R3N−1/(3N/2− 1)! and we have

Γ(E, V,N,∆) ∝ E3N/2−1V N∆/(3N/2− 1)! ≈ (E/N)3N/2V N∆ . (18)

To link statistical physics with thermodynamics one must define the fun-
damental relation i.e. a thermodynamic potential as a function of respective
variables. It can be done using either canonical or microcanonical distribu-
tion. We start from the latter and introduce the entropy as

S(E, V,N) = ln Γ(E, V,N) . (19)

This is one of the most important formulas in physics7 (on a par with F =
ma ,E = mc2 and E = h̄ω).

Noninteracting subsystems are statistically independent. That means
that the statistical weight of the composite system is a product - indeed,
for every state of one subsystem we have all the states of another. If the
weight is a product then the entropy is a sum. For interacting subsystems,
this is true only for short-range forces in the thermodynamic limit N → ∞.
Consider two subsystems, 1 and 2, that can exchange energy. Assume that
the indeterminacy in the energy of any subsystem, ∆, is much less than the
total energy E. Then

Γ(E) =
E/∆∑
i=1

Γ1(Ei)Γ2(E − Ei) . (20)

We denote Ē1, Ē2 = E− Ē1 the values that correspond to the maximal term
in the sum (20). To find this maximum, we compute the derivative of it,
which is proportional to (∂Γ1/∂Ei)Γ2+(∂Γ2/∂Ei)Γ1 = (Γ1Γ2)[(∂S1/∂E1)Ē1

−
(∂S2/∂E2)Ē2

]. Then the extremum condition is evidently (∂S1/∂E1)Ē1
=

(∂S2/∂E2)Ē2
, that is the extremum corresponds to the thermal equilibrium

where the temperatures of the subsystems are equal. The equilibrium is
thus where the maximum of probability is. It is obvious that Γ(Ē1)Γ(Ē2) ≤
Γ(E) ≤ Γ(Ē1)Γ(Ē2)E/∆. If the system consists of N particles and N1, N2 →
∞ then S(E) = S1(Ē1)+S2(Ē2)+O(logN) where the last term is negligible
in the thermodynamic limit.

7It is inscribed on the Boltzmann’s gravestone.
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Identification with the thermodynamic entropy can be done considering
any system, for instance, an ideal gas. The problem is that the logarithm
of (18) contains non-extensive term N lnV . The resolution of this contro-
versy is that we need to treat the particles as indistinguishable, otherwise
we need to account for the entropy of mixing different species. We however
implicitly assume that mixing different parts of the same gas is a reversi-
ble process which presumes that the particles are identical. For identical
particles, one needs to divide Γ (18) by the number of transmutations N !
which makes the resulting entropy of the ideal gas extensive in agreement
with (9): S(E, V,N) = (3N/2) lnE/N +N ln eV/N+const. Note that quan-
tum particles (atoms and molecules) are indeed indistinguishable, which is
expressed by a proper symmetrization of the wave function. One can only
wonder at the genius of Gibbs who introduced N ! long before quantum me-
chanics (see, L&L 40 or Pathria 1.5 and 6.1). Defining temperature in a usual
way, T−1 = ∂S/∂E = 3N/2E, we get the correct expression E = 3NT/2.
We express here temperature in the energy units. To pass to Kelvin de-
grees, one transforms T → kT and S → kS where the Boltzmann constant
k = 1.38 ·1023 J/K. The value of classical entropy (19) depends on the units.
Proper quantitative definition comes from quantum physics with Γ being the
number of microstates that correspond to a given value of macroscopic pa-
rameters. In the quasi-classical limit the number of states is obtained by
dividing the phase space into units with ∆p∆q = 2πh̄.

The same definition (entropy as a logarithm of the number of states)
is true for any system with a discrete set of states. For example, consider
the set of N two-level systems with levels 0 and ϵ. If energy of the set is
E then there are L = E/ϵ upper levels occupied. The statistical weight is
determined by the number of ways one can choose L out of N : Γ(N,L) =
CL

N = N !/L!(N −L)!. We can now define entropy (i.e. find the fundamental
relation): S(E,N) = ln Γ. Considering N ≫ 1 and L ≫ 1 we can use the
Stirling formula in the form d lnL!/dL = lnL and derive the equation of
state (temperature-energy relation),

T−1 = ∂S/∂E = ϵ−1 ∂

∂L
ln

N !

L!(N − L)!
= ϵ−1 ln

N − L

L
,

and specific heat C = dE/dT = N(ϵ/T )22 cosh−2(ϵ/T ). Note that the ratio
of the number of particles on the upper level to those on the lower level is
L/(N − L) = exp(−ϵ/T ) (Boltzmann relation).
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The derivation of thermodynamic fundamental relation S(E, . . .) in the
microcanonical ensemble is thus via the number of states or phase volume.

2.3 Canonical distribution

Let us re-derive the canonical distribution from the microcanonical one which
allows us to specify β = 1/T in (13,14). Consider a small subsystem or
a system in a contact with the thermostat (which can be thought of as
consisting of infinitely many copies of our system— this is so-called canonical
ensemble, characterized by N, V, T ). Here our system can have any energy
and the question arises what is the probability W (E). Let us find first the
probability of the system to be in a given microstate a with the energy E.
Since all the states of the thermostat are equally likely to occur, then the
probability should be directly proportional to the statistical weight of the
thermostat Γ0(E0 − E), where we assume E ≪ E0, expand Γ0(E0 − E) =
exp[S0(E0 − E)] ≈ exp[S0(E0)− E/T )] and obtain

wa(E) = Z−1 exp(−E/T ) , (21)

Z =
∑
a

exp(−Ea/T ) . (22)

Note that there is no trace of the thermostat left except for the temperature.
The normalization factor Z(T, V,N) is a sum over all states accessible to the
system and is called the partition function.

The probability to have a given energy is the probability of the state (21)
times the number of states i.e. the statistical weight of the subsystem:

W (E) = Γ(E)wa(E) = Γ(E)Z−1 exp(−E/T ) . (23)

Here the weight Γ(E) grows with E very fast for large N . But as E → ∞
the exponent exp(−E/T ) decays faster than any power. As a result, W (E)
is concentrated in a very narrow peak and the energy fluctuations around
Ē are very small (see Sect. 2.4 below for more details). For example, for
an ideal gas W (E) ∝ E3N/2 exp(−E/T ). Let us stress again that the Gibbs
canonical distribution (21) tells that the probability of a given microstate
exponentially decays with the energy of the state while (23) tells that the
probability of a given energy has a peak.

An alternative and straightforward way to derive the canonical distribution
is to use consistently the Gibbs idea of the canonical ensemble as a virtual set,
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of which the single member is the system under consideration and the energy of
the total set is fixed. The probability to have our chosen system in the state a
with the energy Ea is then given by the average number of systems n̄a in this
state divided by the total number of systems N . Any set of occupation numbers
{na} = (n0, n1, n2 . . .) satisfies obvious conditions∑

a

na = N ,
∑
a

Eana = E = ϵN . (24)

Any given set is realized in W{na} = N !/n0!n1!n2! . . . number of ways and the
probability to realize the set is proportional to the respective W :

n̄a =

∑
naW{na}∑
W{na}

, (25)

where summation goes over all the sets that satisfy (24). We assume that in
the limit when N,na → ∞ the main contribution into (25) is given by the most
probable distribution that is maximum of W (we actually look at the maximum
of lnW which is the same yet technically simpler) under the constraints (24).
Using the method of Lagrangian multipliers we look for the extremum of lnW −
α
∑

a na − β
∑

aEana. Using the Stirling formula lnn! = n lnn − n we write
lnW = N lnN−

∑
a na lnna. We thus need to find the value n∗a which corresponds

to the extremum of
∑

a na lnna−α
∑

a na−β
∑

aEana. Differentiating we obtain:
lnn∗a = −α− 1− βEa which gives

n∗a
N

=
exp(−βEa)∑
a exp(−βEa)

. (26)

The parameter β is given implicitly by the relation

E

N
= ϵ =

∑
aEa exp(−βEa)∑
a exp(−βEa)

. (27)

Of course, physically ϵ(β) is usually more relevant than β(ϵ). (Pathria, Sect 3.2.)

To get thermodynamics from the Gibbs distribution one needs to define
the free energy because we are under a constant temperature. This is done
via the partition function Z (which is of central importance since macroscopic
quantities are generally expressed via the derivatives of it):

F (T, V,N) = −T lnZ(T, V,N) . (28)

To prove that, differentiate the identity Z = exp(−F/T ) = ∑
a exp(−Ea/T )

with respect to temperature, which gives

F = Ē + T

(
∂F

∂T

)
V

,
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equivalent to F = E − TS in thermodynamics.
One can also relate statistics and thermodynamics by defining entropy.

Remind that for a closed system we defined S = lnΓ while the probability
of state was wa = 1/Γ. In other words, the entropy was minus the log of
probability. For a subsystem at fixed temperature both energy and entropy
fluctuate. What should be the thermodynamic entropy: mean entropy or
entropy at a mean energy? For a system that has a Gibbs distribution, lnwa

is linear in E, so that the entropy at a mean energy is the mean entropy, and
we recover the standard thermodynamic relation:

S(Ē) = − lnwa(Ē) = −⟨lnwa⟩ = −
∑

wa lnwa (29)

=
∑

wa(Ea/T + lnZ) = E/T + lnZ = (E − F )/T .

Even though we derived the formula for entropy, S = −∑wa lnwa, for
an equilibrium, this definition can be used for any set of probabilities wa,
since it provides a useful measure of our ignorance about the system, as we
shall see later.

See Landau & Lifshitz (Sects 31,36).

2.4 Grand canonical ensemble and fluctuations

Let us now repeat the derivation we did in Sect. 2.3 but in more detail
and considering also the fluctuations in the particle number N . Consider a
subsystem in contact with a particle-energy reservoir. The probability for a
subsystem to have N particles and to be in a state EaN can be obtained by
expanding the entropy S0 of the reservoir. Let us first do the expansion up
to the first-order terms as in (21,22)

waN = A exp[S0(E0 − EaN , N0 −N)] = A exp[S0(E0, N0) + (µN − EaN)/T ]

= exp[(Ω + µN − EaN)/T ] . (30)

Here we used ∂S0/∂E = 1/T , ∂S0/∂N = −µ/T and introduced the grand ca-
nonical potential which can be expressed through the grand partition function

Ω(T, V, µ) = −T ln
∑
N

exp(µN/T )
∑
a

exp(−EaN)/T ) . (31)

That this is equivalent to the thermodynamic definition, Ω = Ē − T S̄ − µN̄
can be seen calculating the mean entropy of the subsystem similar to (29):

S̄ = −
∑
a,N

waN lnwaN = (µN̄ + Ω− Ē)/T . (32)
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The grand canonical distribution must be equivalent to canonical if one
neglects the fluctuations in particle numbers. Indeed, when we put N = N̄
the thermodynamic relation gives Ω + µN̄ = F so that (30) coincides with
the canonical distribution wa = exp[(F − Ea)/T ].

Generally, there is a natural hierarchy: microcanonical distribution neg-
lects fluctuations in energy and number of particles, canonical distribution
neglects fluctuations in N but accounts for fluctuations in E, and eventu-
ally grand canonical distribution accounts for fluctuations both in E and N .
The distributions are equivalent only when fluctuations are small. In des-
cribing thermodynamics, i.e. mean values, the distributions are equivalent,
they just produce different fundamental relations, S(E,N) for microcano-
nical, F (T,N) for canonical, Ω(T, µ) for grand canonical, which are related
by the Legendre transform. How operationally one checks, for instance, the
equivalence of of canonical and microcanonical energies? One takes an isola-
ted system at a given energy E, measures the derivative ∂E/∂S, then puts it
into the thermostat with the temperature equal to that ∂E/∂S; the energy
now fluctuates but the mean energy must be equal to E (as long as system
is macroscopic and all the interactions are short-range).

To describe fluctuations one needs to expand the respective thermodyna-
mic potential around the mean value, using the second derivatives ∂2S/∂E2

and ∂2S/∂N2 (which must be negative for stability). That will give Gaus-
sian distributions of E − Ē and N − N̄ . A straightforward way to find the
energy variance (E − Ē)2 is to differentiate with respect to β the identity

E − Ē = 0. For this purpose one can use canonical distribution and get

∂

∂β

∑
a

(Ea − Ē)eβ(F−Ea)=
∑
a

(Ea − Ē)
(
F + β

∂F

∂β
− Ea

)
eβ(F−Ea) − ∂Ē

∂β
= 0 ,

(E − Ē)2 = −∂Ē
∂β

= T 2CV . (33)

Magnitude of fluctuations is determined by the second derivative of the re-
spective thermodynamic potential:

∂2S

∂E2
=

∂

∂E

1

T
= − 1

T 2

∂T

∂E
= − 1

T 2CV

.

This is natural: the sharper the extremum (the higher the second derivative)
the better system parameters are confined to the mean values. Since both Ē
and CV are proportional to N then the relative fluctuations are small indeed:
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(E − Ē)2/Ē2 ∝ N−1. Note that any extensive quantity f =
∑N

i=1 fi which is
a sum over independent subsystems (i.e. fifk = f̄if̄k) have a small relative
fluctuation:

(f 2 − f̄ 2)

f̄ 2
=

∑
(f 2

i − f̄ 2
i )

(
∑
fi)2

∝ 1

N
.

Let us now discuss the fluctuations of particle number. One gets the
probability to have N particles by summing (30) over a:

W (N) ∝ exp{β[µ(T, V )N − F (T, V,N)]}

where F (T, V,N) is the free energy calculated from the canonical distribu-
tion for N particles in volume V and temperature T . The mean value N̄
is determined by the extremum of probability: (∂F/∂N)N̄ = µ. The se-
cond derivative determines the width of the distribution over N that is the
variance:

(N − N̄)2 = 2T

(
∂2F

∂N2

)−1

= −2TNv−2

(
∂P

∂v

)−1

∝ N . (34)

Here we used the fact that F (T, V,N) = Nf(T, v) with v = V/N so that
P = (∂F/∂V )N = ∂f/∂v, and substituted the derivatives calculated at
fixed V : (∂F/∂N)V = f(v)− v∂f/∂v and (∂2F/∂N2)V = N−1v2∂2f/∂v2 =
−N−1v2∂P (v)/∂v. As we discussed in Thermodynamics, ∂P (v)/∂v < 0
for stability. We see that generally the fluctuations are small unless the
isothermal compressibility is close to zero which happens at the first-order
phase transitions. Particle number (and density) strongly fluctuate in such
systems which contain different phases of different densities. This is why one
uses grand canonical ensemble in such cases.

Let us repeat this important distinction: all thermodynamics potential
are equivalent for description of mean values but respective statistical distri-
butions are different. System that can exchange energy and particles with a
thermostat has its extensive parameters E and N fluctuating and the grand
canonical distribution describes those fluctuations. The choice of description
is dictated only by convenience in thermodynamics because it treats only
mean values. But in statistical physics, if we want to describe the whole
statistics of the system in thermostat, we need to use canonical distribution,
not the micro-canonical one. That does not mean that one cannot learn
everything about the system by considering it isolated (micro-canonically).
Indeed, we can determine CV (and other second derivatives) for an isolated
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system and then will know the mean squared fluctuation of energy when we
bring the system into a contact with a thermostat.

See also Landau & Lifshitz 35 and Huang 8.3-5.

2.5 Two simple examples

We have seen that the central element of statistical physics is counting the
states. Here we consider two examples with the simplest structures of energy
levels to illustrate the use of microcanonical and canonical distributions.

2.5.1 Two-level system

Assume levels 0 and ϵ. Remind that in Sect. 2.2 we already considered
two-level system in the microcanonical approach calculating the number of
ways one can distribute L = E/ϵ portions of energy between N particles
and obtaining S(E,N) = lnCL

N = ln[N !/L!(N − L)!] ≈ N ln[N/(N − L)] +
L ln[(N − L)/L]. The temperature in the microcanonical approach is as
follows:

T−1 =
∂S

∂E
= ϵ−1(∂/∂L) ln[N !/L!(N − L)!] = ϵ−1 ln(N − L)/L . (35)

The entropy as a function of energy is drawn on the Figure:

E

0

T=+0

ε

T=

T=−0

N

T=−

S

Indeed, entropy is zero at E = 0, Nϵ when all the particles are in the same
state. The entropy is symmetric about E = Nϵ/2. We see that when E >
Nϵ/2 then the population of the higher level is larger than of the lower one
(inverse population as in a laser) and the temperature is negative. Negative
temperature may happen only in systems with the upper limit of energy
levels and simply means that by adding energy beyond some level we actually
decrease the entropy i.e. the number of accessible states. That example with
negative temperature is to help you to disengage from the everyday notion
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of temperature and to get used to the physicist idea of temperature as the
derivative of energy with respect to entropy.

Available (non-equilibrium) states lie below the S(E) plot, notice that
the entropy maximum corresponds to the energy minimum for positive tem-
peratures and to the energy maximum for the negative temperatures part.
A glance on the figure also shows that when the system with a negative tem-
perature is brought into contact with the thermostat (having positive tem-
perature) then our system gives away energy (a laser generates and emits
light) decreasing the temperature further until it passes through infinity to
positive values and eventually reaches the temperature of the thermostat.
That is negative temperatures are actually ”hotter” than positive. By itself
though the system is stable since ∂2S/∂E2 = −N/L(N − L)ϵ2 < 0.

Let us stress that there is no volume in S(E,N) that is we consider only
subsystem or only part of the degrees of freedom. Indeed, real particles have
kinetic energy unbounded from above and can correspond only to positive
temperatures [negative temperature and infinite energy give infinite Gibbs
factor exp(−E/T )].

Apart from laser, an example of a two-level system is spin 1/2 in the mag-
netic field H. Because the interaction between the spins and atom motions
(spin-lattice relaxation) is weak then the spin system for a long time (tens of
minutes) keeps its separate temperature and can be considered separately.

External fields are parameters (like volume and chemical potential) that
determine the energy levels of the system. They are sometimes called gene-
ralized thermodynamic coordinates, and the derivatives of the energy with
respect to them are called respective forces. Let us derive the generalized
force M that corresponds to the magnetic field and determines the work
done under the change of magnetic field: dE(S,H) = TdS −MdH. Since
the projection of every magnetic moment on the direction of the field can
take two values ±µ then the magnetic energy of the particle is ∓µH and
E = −µ(N+ − N−)H. The force (the partial derivative of the energy with
respect to the field at a fixed entropy) is called magnetization or magnetic
moment of the system:

M = −
(
∂E

∂H

)
S

= µ(N+ −N−) = Nµ
exp(µH/T )− exp(−µH/T )
exp(µH/T ) + exp(−µH/T )

. (36)

The derivative was taken at constant entropy that is at constant popula-
tions N+ and N−. Note that negative temperature for the spin system
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corresponds to the magnetic moment opposite in the direction to the ap-
plied magnetic field. Such states are experimentally prepared by a fast re-
versal of the magnetic field. We can also define magnetic susceptibility:
χ(T ) = (∂M/∂H)H=0 = Nµ2/T , yet another second derivative that deter-
mines the response and fluctuations and will feature prominently in what
follows.

At weak fields and positive temperature, µH ≪ T , (36) gives the formula
for the so-called Pauli paramagnetism

M

Nµ
=
µH

T
. (37)

Para means that the majority of moments point in the direction of the exter-
nal field. This formula shows in particular a remarkable property of the spin
system: adiabatic change of magnetic field (which keeps constantN+, N− and
thusM) is equivalent to the change of temperature even though spins do not
exchange energy. One can say that under the change of the value of the ho-
mogeneous magnetic field the relaxation is instantaneous in the spin system.
This property is used in cooling the substances that contain paramagnetic
impurities. For the entropy of the spin system to be preserved, one needs
to change the field slowly comparatively to the spin-spin relaxation and fast
comparatively to the spin-lattice relaxation. The first condition means that
one cannot reach negative temperatures by adiabatically reversing magnetic
field since the relaxation times of spins grow when field decreases; indeed, ne-
gative temperatures must be reached through T → ∞, not zero. In practice,
negative temperatures were reached (by Purcell, Pound and Ramsey in 1951)
by fast reversal of the magnetic field.

To conclude let us treat the two-level system by the canonical approach
where we calculate the partition function and the free energy:

Z(T,N) =
N∑

L=0

CL
N exp[−Lϵ/T ] = [1 + exp(−ϵ/T )]N , (38)

F (T,N) = −T ln Z = −NT ln[1 + exp(−ϵ/T )] . (39)

We can now re-derive the entropy as S = −∂F/∂T and derive the (mean)
energy and specific heat:

Ē = Z−1
∑
a

Ea exp(−βEa) = −∂ lnZ
∂β

= T 2∂ lnZ

∂T
(40)
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=
Nϵ

1 + exp(ϵ/T )
, (41)

C =
dE

dT
=

N exp(ϵ/T )

[1 + exp(ϵ/T )]2
ϵ2

T 2
. (42)

Here (40) is a general formula which we shall use in the future. Remark that
even though canonical approach corresponds to a system in a thermostat,
which necessary has positive temperature, all the formulas make sense at
negative T too.

Specific heat is one of the second derivatives of the thermodynamic po-
tentials; such quantities characterize the response of the system to change
of parameters and will feature prominently in the course. Specific heat tells
us how much one raises the energy of the system when increasing the tem-
perature by one degree (or, alternatively, how much energy one needs to
increase the temperature by one degree). Specific heat of a two-level system
turns into zero both at low temperatures (too small portions of energy are
”in circulation”) and at high temperatures (occupation numbers of two levels
already close to equal so changing temperature does not change energy).

C/N

T/ε

1/2

2

A specific heat of this form characterized by a peak is observed in all systems
with an excitation gap.

More details can be found in Kittel, Section 24 and Pathria, Section 3.9.

2.5.2 Harmonic oscillators

Small oscillations around the equilibrium positions (say, of atoms in the
lattice or in the molecule) can be treated as harmonic and independent. The
harmonic oscillator is a particle in the quadratic potential U(q) = mω2q2/2,
it is described by the Hamiltonian

H(q, p) =
1

2m

(
p2 + ω2q2m2

)
. (43)
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We start from the quasi-classical limit, h̄ω ≪ T , when the single-oscillator
partition function is obtained by Gaussian integration:

Z1(T ) = (2πh̄)−1
∫ ∞

−∞
dp
∫ ∞

−∞
dq exp(−H/T ) = T

h̄ω
. (44)

We can now get the partition function ofN independent oscillators as Z(T,N) =
ZN

1 (T ) = (T/h̄ω)N , the free energy F = NT ln(h̄ω/T ) and the mean energy
from (40): E = NT — this is an example of the equipartition (every
oscillator has two degrees of freedom with T/2 energy for each)8. The
thermodynamic equations of state are µ(T ) = ∂F/∂N = T ln(h̄ω/T ) and
S = N [ln(T/h̄ω) + 1] while the pressure is zero because there is no volume
dependence. The specific heat CP = CV = N .

Apart from thermodynamic quantities one can write the probability dis-
tribution of coordinate of the particle with a finite temperature (i.e. in
contact with the thermostat). The distribution is given by the Gibbs distri-
bution using the potential energy:

dwq =
√
mω2/2πT exp(−mω2q2/2T )dq . (45)

Using kinetic energy and simply replacing q → p/mω one obtains a similar
formula dwp = (2πmT )−1/2 exp(−p2/2mT )dp which is the Maxwell distribu-
tion.

For a quantum case, the energy levels are given by En = h̄ω(n + 1/2).
The single-oscillator partition function

Z1(T ) =
∞∑
n=0

exp[−h̄ω(n+ 1/2)/T ] =
1

2 sinh(h̄ω/2T )
(46)

gives again Z(T,N) = ZN
1 (T ) and F (T,N) = NT ln[2 sinh(h̄ω/2T )] =

Nh̄ω/2 +NT ln[1− exp(−h̄ω/T ). The chemical potential,

µ(T ) = T ln[sinh(h̄ω/2T )/2] ,

is negative in the classical region T ≫ h̄ω and is positive in the quantum
region T ≪ h̄ω.

The energy of the quantum oscillator is

E = Nh̄ω/2 +Nh̄ω[exp(h̄ω/T )− 1]−1

8If some variable x enters energy as x2n then the mean energy associated with that
degree of freedom is

∫
x2n exp(−x2n/T )dx/

∫
exp(−x2n/T )dx = T2−n(2n− 1)!!.
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where one sees the contribution of zero quantum oscillations and the break-
down of classical equipartition. The specific heat is as follows:

CP = CV = N(h̄ω/T )2 exp(h̄ω/T )[exp(h̄ω/T )− 1]−2 . (47)

Note that zero oscillations do not contribute the specific heat. Comparing
(47) with (42) we see the same behavior at T ≪ h̄ω: CV ∝ exp(−h̄ω/T )
because “too small energy portions are in circulation” and they cannot move
system to the next level. At large T the specific heat of two-level system
turns into zero because the occupation numbers of both levels are almost
equal while for oscillator we have classical equipartition (every oscillator has
two degrees of freedom so it has T in energy and 1 in CV ).

T/ε2

1
C/N

Quantum analog of (45) must be obtained by summing the wave functions
of quantum oscillator with the respective probabilities:

dwq = adq
∞∑
n=0

|ψn(q)|2 exp[−h̄ω(n+ 1/2)/T ] . (48)

Here a is the normalization factor. Straightforward (and beautiful) calcula-
tion of (48) can be found in Landau & Lifshitz Sect. 30. Here we note that
the distribution must be Gaussian dwq ∝ exp(−q2/2q2) where the mean-
square displacement q2 can be read from the expression for energy so that
one gets:

dwq =

(
ω

πh̄
tanh

h̄ω

2T

)1/2

exp

(
−q2ω

h̄
tanh

h̄ω

2T

)
dq . (49)

At h̄ω ≪ T it coincides with (45) while at the opposite (quantum) limit gives
dwq = (ω/πh̄)1/2 exp(−q2ω/h̄)dq which is a purely quantum formula |ψ0|2 for
the ground state of the oscillator.

See also Pathria Sect. 3.8 for more details.
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3 Entropy and information

By definition, entropy of a closed system determines the number of available
states (or, classically, phase volume). Assuming that system spends compa-
rable time in different available states we conclude that since the equilibrium
must be the most probable state it corresponds to the entropy maximum.
If the system happens to be not in equilibrium at a given moment of time
[say, the energy distribution between the subsystems is different from the
most probable Gibbs distribution] then it is more probable to go towards
equilibrium that is increasing entropy. This is a microscopic (probabilistic)
interpretation of the second law of thermodynamics formulated by Clausius
in 1865. The probability maximum is very sharp in the thermodynamic limit
since exp(S) grows exponentially with the system size. That means that
for macroscopic systems the probability to pass into the states with lower
entropy is so vanishingly small that such events are never observed.

What often causes confusion here is that the dynamics (classical and
quantum) of any given system is time reversible. The Hamiltonian evolution
described in Sect 2.1 preserves the density in the phase space ρ(p, q), so how
the entropy S = −

∫
dpdqρ ln ρ can grow? To avoid the confusion, one must

remember that we study the situations with incomplete knowledge of the
system. That means that we know coordinates and momenta within some
intervals, i.e. characterize the system not by a point in phase space but by a
finite region there. Entropy growth is then related not to the trajectory of a
single point (or domain exactly defined at any time), but to the behavior of
finite regions which can be registered only with a finite precision (i.e. sets of
such points or ensembles of systems). The necessity to consider finite regions
and finite precision follows from the insufficiency of information about the
true state of the system. Such consideration is called coarse graining and it is
the main feature of stat-physical approach responsible for the irreversibility
of statistical laws. In this section we shall see how it works.

3.1 Lyapunov exponent

The dynamical mechanism of the entropy growth is the separation of trajec-
tories in phase space so that trajectories started from a small finite region
are found in larger and larger regions of phase space as time proceeds. The
relative motion is determined by the velocity difference between neighboring
points in the phase space: δvi = rj∂vi/∂xj = rjσij. Here x = (p,q) is
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the 6N -dimensional vector of the position and v = (ṗ, q̇) is the velocity in
the phase space. The trace of the tensor σij is the rate of the volume change
which must be zero according to the Liouville theorem (that is a Hamiltonian
dynamics imposes an incompressible flow in the phase space). We can de-
compose the tensor of velocity derivatives into an antisymmetric part (which
describes rotation) and a symmetric part (which describes deformation). We
are interested here in deformation because it is the mechanism of the entropy
growth. The symmetric tensor, Sij = (∂vi/∂xj + ∂vj/∂xi)/2, can be always
transformed into a diagonal form by an orthogonal transformation (i.e. by
the rotation of the axes), so that Sij = Siδij. Recall that for Hamiltonian
motion,

∑
i Si = div v = 0, so that some components are positive, some are

negative. Positive diagonal components are the rates of stretching and nega-
tive components are the rates of contraction in respective directions. Indeed,
the equation for the distance between two points along a principal direction
has a form: ṙi = δvi = riSi . The solution is as follows:

ri(t) = ri(0) exp
[∫ t

0
Si(t

′) dt′
]
. (50)

For a time-independent strain, the growth/decay is exponential in time. One
recognizes that a purely straining motion converts a spherical element into an
ellipsoid with the principal diameters that grow (or decay) in time. Indeed,
consider a two-dimensional projection of the initial spherical element i.e. a

circle of the radius R at t = 0. The point that starts at x0, y0 =
√
R2 − x20

goes into

x(t) = eS11tx0 ,

y(t) = eS22ty0 = eS22t
√
R2 − x20 = eS22t

√
R2 − x2(t)e−2S11t ,

x2(t)e−2S11t + y2(t)e−2S22t = R2 . (51)

The equation (51) describes how the initial circle turns into the ellipse whose
eccentricity increases exponentially with the rate |S11 − S22|. In a multi-
dimensional space, any sphere of initial conditions turns into the ellipsoid
defined by

∑6N
i=1 x

2
i (t)e

−2Sit =const.
Of course, as the system moves in the phase space, both the strain values

and the orientation of the principal directions change, so that expanding
direction may turn into a contracting one and vice versa. Since we do not
want to go into details of how the system interacts with the environment,
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Figure 1: Deformation of a phase-space element by a permanent strain.

then we consider such evolution as a kind of random process. The question
is whether averaging over all values and orientations gives a zero net result.
It may seem counter-intuitive at first, but in a general case an exponential
stretching must persist on average and the majority of trajectories separate.
Physicists think in two ways: one in space and another in time (unless they
are relativistic and live in a space-time).

Let us first look at separation of trajectories from a temporal perspective,
going with the flow: even when the average rate of separation along a given
direction Λi(t) =

∫ t
0 Si(t

′)dt′/t is zero, the average exponent of it is larger
than unity (and generally growing with time):

1

T

∫ T

0
dt exp

[∫ t

0
Si(t

′)dt′
]
≥ 1 .

This is because the intervals of time with positive Λ(t) give more contribution
into the exponent than the intervals with negative Λ(t). That follows from
the concavity of the exponential function. In the simplest case, when −a <
Λ < a, the average Λ is zero, while the average exponent is (1/2a)

∫−a
a eΛdΛ =

(ea − e−a)/2a > 1.
Looking from a spatial perspective, consider the simplest flow field: two-

dimensional pure strain, which corresponds to an incompressible saddle-point
flow: vx = λx, vy = −λy. Here we have one expanding direction direction and
one contracting direction, their rates being equal. The vector r = (x, y) which
characterizes the distance between two close trajectories can look initially at
any direction. The evolution of the vector components satisfies the equations
ẋ = vx and ẏ = vy. Whether the vector is stretched or contracted after some
time T depends on its orientation and on T . Since x(t) = x0 exp(λt) and
y(t) = y0 exp(−λt) = x0y0/x(t) then every trajectory is a hyperbole. A
unit vector initially forming an angle φ with the x axis will have its length
[cos2 φ exp(2λT ) + sin2 φ exp(−2λT )]1/2 after time T . The vector will be
stretched if cosφ ≥ [1 + exp(2λT )]−1/2 < 1/

√
2, i.e. the fraction of stretched

directions is larger than half. When along the motion all orientations are
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equally probable, the net effect is stretching, proportional to the persistence
time T .

xx(T)x(0)

y

y(0)

y(T)
ϕ
0

Figure 2: The distance of the point from the origin increases if the angle is
less than φ0 = arccos[1 + exp(2λT )]−1/2 > π/4. Note that for φ = φ0 the
initial and final points are symmetric relative to the diagonal: x(0) = y(T )
and y(0) = x(T ).

The net stretching and separation of trajectories is formally proved in mat-
hematics by considering random strain matrix σ̂(t) and the transfer matrix Ŵ
defined by r(t) = Ŵ (t, t1)r(t1). It satisfies the equation dŴ/dt = σ̂Ŵ . The Liou-
ville theorem tr σ̂ = 0 means that det Ŵ = 1. The modulus r(t) of the separation
vector may be expressed via the positive symmetric matrix Ŵ T Ŵ . The main re-
sult (Furstenberg and Kesten 1960; Oseledec, 1968) states that in almost every
realization σ̂(t), the matrix 1

t ln Ŵ
T (t, 0)Ŵ (t, 0) tends to a finite limit as t→ ∞.

In particular, its eigenvectors tend to d fixed orthonormal eigenvectors fi. Geo-
metrically, that precisely means than an initial sphere evolves into an elongated
ellipsoid at later times. The limiting eigenvalues

λi = lim
t→∞

t−1 ln |Ŵ fi| (52)

define the so-called Lyapunov exponents, which can be thought of as the mean

stretching rates. The sum of the exponents is zero due to the Liouville theorem

so there exists at least one positive exponent which gives stretching. Therefore,

as time increases, the ellipsoid is more and more elongated and it is less and less

likely that the hierarchy of the ellipsoid axes will change. Mathematical lesson to

learn is that multiplying N random matrices with unit determinant (recall that

determinant is the product of eigenvalues), one generally gets some eigenvalues

growing (and some decreasing) exponentially with N . It is also worth remembe-

ring that in a random flow there is always a probability for two trajectories to
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come closer. That probability decreases with time but it is finite for any finite

time. In other words, majority of trajectories separate but some approach. The

separating ones provide for the exponential growth of positive moments of the

distance: E(a) = limt→∞ t−1 ln [⟨ra(t)/ra(0)⟩] > 0 for a > 0. However, approa-

ching trajectories have r(t) decreasing, which guarantees that the moments with

sufficiently negative a also grow. Mention without proof that E(a) is a concave

function, which evidently passes through zero, E(0) = 0. It must then have anot-

her zero which for isotropic random flow in d-dimensional space can be shown to

be a = −d, see home exercise.

The probability to find a ball turning into an exponentially stretching
ellipse thus goes to unity as time increases. The physical reason for it is that
substantial deformation appears sooner or later. To reverse it, one needs
to contract the long axis of the ellipse, that is the direction of contraction
must be inside the narrow angle defined by the ellipse eccentricity, which is
less likely than being outside the angle. Randomly oriented deformations
on average continue to increase the eccentricity. Drop ink into a glass of
water, gently stir (not shake) and enjoy the visualization of Furstenberg and
Oseledets theorems.

Armed with the understanding of the exponential stretching, we now re-
turn to the dynamical foundation of the second law of thermodynamics. We
assume that our finite resolution does not allow us to distinguish between
the states within some square in the phase space. That square is our ”grain”
in coarse-graining. In the figure below, one can see how such black square
of initial conditions (at the central box) is stretched in one (unstable) di-
rection and contracted in another (stable) direction so that it turns into a
long narrow strip (left and right boxes). Later in time, our resolution is still
restricted - rectangles in the right box show finite resolution (this is coarse-
graining). Viewed with such resolution, our set of points occupies larger
phase volume (i.e. corresponds to larger entropy) at t = ±T than at t = 0.
Time reversibility of any trajectory in the phase space does not contradict
the time-irreversible filling of the phase space by the set of trajectories con-
sidered with a finite resolution. By reversing time we exchange stable and
unstable directions (i.e. those of contraction and expansion), but the fact of
space filling persists. We see from the figure that the volume and entropy
increase both forward and backward in time. To avoid misunderstanding,
note that usual arguments that entropy growth provides for time arrow are
such: if we already observed an evolution that produces a narrow strip then

38



its time reversal is contraction into a ball; but if we consider a narrow strip
as an initial condition, it is unlikely to observe a contraction because of the
narrow angle mentioned above. Therefore, being shown two movies, one with
stretching, another with contraction we conclude that with probability close
(but not exactly equal!) to unity the first movie shows the true sequence of
events, from the past to the future.

t=T q

pp

q

p

qt=-T t=0

After the strip length reaches the scale of the velocity change (when one
already cannot approximate the phase-space flow by a linear profile σ̂r),
strip starts to fold because rotation (which we can neglect for a ball but not
for a long strip) is different at different parts of the strip. Still, however
long, the strip continues locally the exponential stretching. Eventually, one
can find the points from the initial ball everywhere which means that the
flow is mixing, also called ergodic. Formal definition is that the flow is
called ergodic in the domain if the trajectory of almost every point (except
possibly a set of zero volume) passes arbitrarily close to every other point. An
equivalent definition is that there are no finite-volume subsets of the domain
invariant with respect to the flow except the domain itself. Ergodic flow on an
energy surface in the phase space provides for a micro-canonical distribution
(i.e. constant), since time averages are equivalent to the average over the
surface. While we can prove ergodicity only for relatively simple systems,
like the gas of hard spheres, we believe that it holds for most systems of
sufficiently general nature (that vague notion can be make more precise by
saying that the qualitative systems behavior is insensitive to small variations
of its microscopic parameters).

When the density spreads, entropy grows (as the logarithm of the volume
occupied). If initially our system was within the phase-space volume ϵ6N ,
then its density was ρ0 = ϵ−6N inside and zero outside. After stretching to
some larger volume eλtϵ6N the entropy S = −

∫
ρ ln ρdx has increased by λt.

The Lyapunov exponent λ determines the rate of the entropy growth.
At even larger time scales than the time of the velocity change for a
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trajectory, one can consider the motion as a series of uncorrelated random
steps. That produces random walk considered in detail in Sect 6.1 below,
where we will show that the spread of the probability density ρ(r, t) is descri-
bed by a simple diffusion: ∂ρ/∂t = −κ∆ρ. The total probability

∫
ρ(r, t) dr

is conserved but the entropy increases monotonically under diffusion:

dS

dt
= − d

dt

∫
ρ(r, t) ln ρ(r, t) dr = −κ

∫
∆ρ ln ρ dr = κ

∫ (∇ρ)2

ρ
dr ≥ 0 . (53)

Asymptotically in time the solution of the diffusion equation takes the uni-
versal form ρ(r, t) = (4πκt)−d/2exp (−r2/4κt) , see (127) below; substituting
it into (53) we obtain a universal entropy production rate, dS/dt = 1/2t,
independent of κ (which is clear from dimensional reasoning).

Two concluding remarks are in order. First, the notion of an exponential
separation of trajectories put an end to the old dream of Laplace to be able
to predict the future if only all coordinates and momenta are given. Even
if we were able to measure all relevant phase-space initial data, we can do
it only with a finite precision ϵ. However small is the indeterminacy in the
data, it is amplified exponentially with time so that eventually ϵ exp(λT ) is
large and we cannot predict the outcome. Mathematically speaking, limits
ϵ→ 0 and T → ∞ do not commute. Second, the above arguments did not
use the usual mantra of thermodynamic limit, which means that even the
systems with a small number of degrees of freedom need statistics for their
description at long times if their dynamics has a positive Lyapunov exponent
(which is generic) - this is sometimes called dynamical chaos.

3.2 Adiabatic processes

The second law of thermodynamics is valid not only for isolated systems but
also for systems in the (time-dependent) external fields or under external
conditions changing in time as long as there is no heat exchange, that is
for systems that can be described by the microscopic Hamiltonian H(p, q, λ)
with some parameter λ(t) slowly changing with time. That means that the
environment is not a macroscopic body with hidden degrees of freedom but
is completely determined by the value of the single parameter λ, that is the
entropy of the environment is zero. In particular, λ can be the system volume
since the walls can be thought of as confining potential. If temporal changes
are slow enough then the entropy of the system change only a little i.e. the

40



process is adiabatic. Indeed, the positivity of Ṡ = dS/dt requires that the
expansion of Ṡ(λ̇) starts from the second term,

dS

dt
=
dS

dλ
· dλ
dt

= A

(
dλ

dt

)2

⇒ dS

dλ
= A

dλ

dt
. (54)

We see that when dλ/dt goes to zero, entropy is getting independent of λ.
That means that we can change λ (say, volume) by finite amount making the
entropy change whatever small by doing it slow enough.

During the adiabatic process the system is assumed to be in thermal
equilibrium at any instant of time (as in quasi-static processes defined in
thermodynamics). Changing λ (called coordinate) one changes the energy
levels Ea and the total energy. But we assume that changing it slowly we do
not change respective probabilities wa i.e. do not cause transitions between
levels. Respective force (pressure when λ is volume, magnetic or electric
moments when λ is the field) is obtained as the average (over the equilibrium
statistical distribution) of the energy derivative with respect to λ:

∂H(p, q, λ)

∂λ
=
∑
a

wa
∂Ea

∂λ
=

∂

∂λ

∑
a

waEa =

(
∂E(S, λ, . . .)

∂λ

)
S

. (55)

We see that the force is equal to the derivative of the thermodynamic energy
at constant entropy. It is an important formula since instead of calculating
averages over statistical distributions one can just differentiate the thermo-
dynamic potential. Let us also stress that we assumed that in an adiabatic
process all probabilities do not change i.e. the entropy of any subsystem us
conserved. This is more restrictive than the condition of reversibility which
requires only the total entropy to be conserved. In other words, the process
can be reversible but not adiabatic. See Landau & Lifshitz (Section 11) for
more details.

3.3 Information theory approach

Information is physical (Landauer)
Here I briefly re-tell the story of statistical physics using a different lan-

guage. It will let us see entropy in a new light. An advantage of using
different formulations is that it helps to understand things better and trig-
gers different intuition in different people.
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Consider first a simple problem in which we are faced with a choice among
n equal possibilities (say, in which of n boxes a candy is hidden). How much
we need to know to get the candy? Let us denote the missing information by
I(n). Clearly, I(1) = 0, and we want the information to be a monotonically
increasing function of n. 9 If we have several independent problems then
information must be additive. For example, consider each box to have m
compartments. To know in which from mn compartments is the candy, we
need to know first in which box and then in which compartment inside the
box: I(nm) = I(n) + I(m). Now, we can write (Shannon, 1948)

I(n) = I(e) lnn = k lnn (56)

That it must be a logarithm is clear also from obtaining the missing informa-
tion by asking the sequence of questions in which half we find the box with
the candy, one then needs log2 n of such questions and respective one-bit
answers. We can easily generalize the definition (56) for non-integer rational
numbers by I(n/l) = I(n)− I(l) and for all positive real numbers by consi-
dering limits of the series and using monotonicity. So the message carrying
the single number of the lucky box with the candy brings the information
k lnn.

We used to think of information received through words and symbols.
Essentially, it is always about in which box the candy is. Indeed, if we have
an alphabet with n symbols then every symbol we receive is a choice out of n
and brings the information k lnn. That is n symbols like n boxes. If symbols
come independently then the message of the length N can potentially be one
of nN possibilities so that it brings the information kN lnn. If all the 25
letters of the English alphabet were used with the same frequency then the
word ”love” would bring the information equal to 4k ln 25 or 4 log2 25 bits.
Here and below we assume that the receiver has no other prior knowledge on
subjects like correlations between letters (for instance, everyone who knows
English, can infer that there is only one four-letter word which starts with
“lov...” so the last letter brings zero information for such people).

9Even if it may seem that the messages ”in box 2 out of 2” and ”in box 2 out of 22”
carry the same amount of information, they are not.
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In reality though every letter brings even less information than k ln 25 since
we know that letters are used with different frequencies. Indeed, consider
the situation when there is a probability wi assigned to each letter (or box)
i = 1, . . . , n. It is then clear that different letters bring different information.
When there is randomness, we evaluate the average information per symbol
by repeating our choice, say, N times. As N → ∞ we know that candy in
the i-th box in Nwi cases, that is we know that we receive the first symbol
Nw1 times, the second symbol Nw2 times. etc. What we didn’t know and
what the message brings is the order in which different symbols appear. Total
number of orders is N !/Πi(Nwi)! and the information that we obtained from
N symbols is

IN = k ln
(
N !/Πi(Nwi)!

)
≈ −Nk

∑
i

wi lnwi +O(lnN) . (57)

The missing information per symbol in the language coincides with the en-
tropy (29):

I(w1 . . . wn) = lim
N→∞

IN/N = −k
n∑

i=1

wi lnwi . (58)

Incidentally for English language the information per symbol is

−
z∑

i=a

wi log2wi ≈ 4.11 bits .

The information (58) is zero for delta-distribution wi = δij; it is generally
less than the information (56) and coincides with it only for equal probabi-
lities, wi = 1/n, when the entropy is maximum. Indeed, equal probabilities
we ascribe when there is no extra information, i.e. in a state of maximum
ignorance. In this state, we get maximum information per symbol; any prior
knowledge can reduce the information. Mathematically, the property

I(1/n, . . . , 1/n) ≥ I(w1 . . . wn) (59)
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is called convexity. It follows from the fact that the function of a single
variable s(w) = −w lnw is strictly downward convex (concave) since its
second derivative, −1/w, is everywhere negative for positive w. For any
concave function, the average over the set of points wi is less or equal to the
function at the average value (so-called Jensen inequality):

1

n

n∑
i=1

s (wi) ≤ s

(
1

n

n∑
i=1

wi

)
. (60)

−Wln W

A (A+B)/2 B

S[(A+B)/2]>[S(A)+S(B)]/2

W

From here one gets the entropy inequality:

I(w1 . . . wn) =
n∑

i=1

s (wi) ≤ ns

(
1

n

n∑
i=1

wi

)
= ns

(
1

n

)
= I

(
1

n
, . . . ,

1

n

)
. (61)

The relation (60) can be proven for any concave function. Indeed, the conca-
vity condition states that the linear interpolation between two points a, b lies
everywhere below the function graph: s(λa+b−λb) ≥ λs(a)+(1−λ)s(b) for
any λ ∈ [0, 1], see the Figure. For λ = 1/2 it corresponds to (60) for n = 2.
To get from n = 2 to arbitrary n we use induction. For that end, we choose
λ = (n− 1)/n, a = (n− 1)−1∑n−1

i=1 wi and b = wn to see that

s

(
1

n

n∑
i=1

wi

)
= s

(
n− 1

n
(n− 1)−1

n−1∑
i=1

wi +
wn

n

)

≥ n− 1

n
s

(
(n− 1)−1

n−1∑
i=1

wi

)
+

1

n
s (wn)

≥ 1

n

n−1∑
i=1

s (wi) +
1

n
s (wn) =

1

n

n∑
i=1

s (wi) . (62)

In the last line we used the truth of (60) for n− 1 to prove it for n.
Note that when n→ ∞ then (56) diverges while (58) may well be finite.

We can generalize (58) for a continuous distribution by dividing into cells
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(that is considering a limit of discrete points). Here, different choices of
variables to define equal cells give different definitions of information. It is
in such a choice that physics (or other specific knowledge) enters. Physics
(quantum mechanics) requires that for Hamiltonian system the equal volumes
in phase space contain equal number of states, so the measure is uniform in
canonical coordinates; we then write the missing information in terms of the
phase space density, which may also depend on time:

I(t) = −
∫
ρ(p, q, t) ln[ρ(p, q, t)] dpdq . (63)

It is maximal for the uniform distribution ρ = 1/Γ, I = lnΓ.

If the density of the discrete points in the continuous limit is inhomogeneous,
say m(x), then the proper generalization is

I(t) = −
∫
ρ(x) ln[ρ(x)/m(x)] dx .

It is invariant with respect to an arbitrary change of variables x → y(x) since
ρ(y)dy = ρ(x)dx and m(y)dy = m(x)dx while (63) was invariant only with
respect to canonical transformations (including a time evolution according to a
Hamiltonian dynamics) that conserve the element of the phase-space volume. If
we introduce the normalized distribution of points ρ′(x) = m(x)/Γ, then

I(t) = lnΓ−
∫
ρ(x) ln[ρ(x)/ρ′(x)] dx . (64)

The last term in (64) turns into zero when ρ and ρ′ coincide and thus presents

some measure of the difference between the distributions.

Mention briefly the application of entropy in communication theory. In-
equality (59) means that a communication channel transmitting bits (ones
and zeros) on average can transmit no more than one unit of the information
(58) per symbol. In other words,

∑z
i=awi log2wi gives the minimum number

of bits per symbol needed to transmit the ensemble of messages. We can say
that the information content of a symbol number i is log2(1/wi), while the
entropy is the mean information content per symbol. Note that less proba-
ble symbols have larger information content, but they happen more rarely.
The mean information content for a given letter, −w lnw, is maximal for
w = 1/e. Different probability of letters suggests a way of signal compres-
sion by coding common letters by short sequences and infrequent letters by
more lengthy combinations - lossless compressions like zip, gz and gif work
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this way (you may find it interesting to know that jpeg, mpeg, mp3 and
telephone use lossy compression which removes information presumed to be
unimportant for humans).

Apart from restrictions imposed by the statistics of symbols to be trans-
ferred, one also wish to characterize the quality of the channel. Did the
message brought a true information or something was lost on the way? Note
that in this context one can view measurements as messages about the value
of the quantity we measure. Here, the message (measurement) A we receive
gives the information about the event (quantity) B. That information must
be related to the fact that having observed A increases the probability to
have B comparing to the unconditional probability to observe B:

I(A,B) = ln[P (B|A)/P (B)] .

Here P (B|A) is the so-called conditional probability (of B in the presence of
A). The conditional probability is related to the joint probability P (A,B) by
the evident formula P (A,B) = P (B|A)P (A), which allows one to write the
information in a symmetric form

I(A,B) = ln

[
[P (B,A)

P (A)P (B)

]
. (65)

When A and B are independent then the conditional probability is indepen-
dent of A and information is zero. When they are dependent, P (B,A) ≥
P (A)P (B), so that that the information is always positive.

If one is just interested in the channel as specified by P (B|A) then one maxi-
mizes I(A,B) over all choices of the source statistics P (B) and call it the channel
capacity. Alternatively, one may wish to know how much information about B
one obtains on average by measuring A. Summing over all possible B1, . . . , Bn

and A1, . . . , Am we obtain Shannon’s “mutual information” used to evaluate the
quality of communication systems (or measurements)

I(A,B) =
m∑
i=1

n∑
j=1

P (Ai, Bj) ln[P (Bj |Ai)/P (Bj)]

→ I(Z, Y )=

∫
dzdyp(z, y) ln

[
p(z|y)
p(y)

]
=

∫
dzdy p(z, y) ln

[
p(z, y)

p(z)p(y)

]
. (66)

Here we used p(z, y) = p(z|y)p(y) - the probability to get y, z is the probability

to get y times the probability to get z for this y. Note that (66) is the particular

case of multidimensional (64), where one takes x = (y, z), ρ′ = p(z)p(y), that
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is mutual information measures the difference between the true joint distribution

and the distribution taken as if the quantities were statistically independent. It is

straightforward to generalize it from the pair to many quantities.

You probably noticed that (56,65) corresponds to the microcanonical des-
cription (19) giving information/entropy as a logarithm of the number of
states, while (58,64,66) corresponds to the canonical description (29) giving
it as an average. An advantage of Shannon entropy (58,64,66) is that it is
defined for arbitrary distribution, not necessarily equilibrium. One can go
further and define a free energy for any system in a contact with a thermostat
having temperature T as F (ρ) = E(ρ)− TS(ρ), even when the distribution
of the system itself is not equilibrium. In Section 1.2 we interpreted F as the
energy we are free to use keeping the temperature. We can now reinterpret
that in the following way: If we knew everything, we can possibly use the
whole energy (to do work); the less we know about the system, the more is
the missing information S and the less work we are able to extract. In other
words, the decrease of F = E − TS with the growth of S measures how
available energy decreases with the loss of information about the system.

It is straightforward to express the mutual information via entropy (home
exercise): I(A,B) = S(A) + S(B)− S(A,B). That allows one to see the se-
cond law of thermodynamics from a different perspective. Boltzmann consi-
dered the thermodynamic entropy of the gas as a the sum of entropies of diffe-
rent particles

∑
S(pi, qi), neglecting their correlations, i.e. neglecting the mu-

tual information
∑

i S(pi, qi) − S(p1 . . . pn, q1, . . . qn) = I(p1 . . . pn, q1, . . . qn).
That allowed him to establish H-theorem, that is the growth of the thermo-
dynamic (uncorrelated) entropy. Since the Liouville theorem guarantees that
the phase volume and the true entropy S(p1 . . . pn, q1, . . . qn) do not change
upon evolution, then the increase of the uncorrelated part must be com-
pensated by the increase of the mutual information. In other words, one can
replace the usual second law of thermodynamics by the law of conservation of
the total entropy (or information), where the increase in the thermodynamic
(uncorrelated) entropy is exactly compensated by the increase in correlations
between particles expressed by the mutual information. The usual second law
then results simply from our renunciation of all correlation knowledge, and
not from any intrinsic behavior of dynamical systems.

So far, we defined information via the distribution. Now, we want to
use the idea of information to get the distribution. Statistical mechanics is a
systematic way of guessing, making use of incomplete information. The main
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problem is how to get the best guess for the probability distribution ρ(p, q, t)
based on any given information presented as ⟨Rj(p, q, t)⟩ = rj, i.e. as the
expectation (mean) values of some dynamical quantities. Our distribution
must contain the whole truth (i.e. all the given information) and nothing
but the truth that is it must maximize the missing information I. This is to
provide for the widest set of possibilities for future use, compatible with the
existing information. Looking for the maximum of

I −
∑
j

λj⟨Rj(p, q, t)⟩ =
∫
ρ(p, q, t){ln[ρ(p, q, t)]−

∑
j

λjRj(p, q, t)} dpdq ,

we obtain the distribution

ρ(p, q, t) = Z−1 exp
[
−
∑
j

λjRj(p, q, t)
]
, (67)

where the normalization factor

Z(λi) =
∫

exp
[
−
∑
j

λjRj(p, q, t)
]
dpdq ,

can be expressed via the measured quantities by using

∂ lnZ

∂λi
= −ri . (68)

For example, consider our initial ”candy-in-the-box” problem (think of an
impurity atom in a lattice if you prefer physics to candies). Let us denote
the number of the box with the candy j. Different attempts give different j
(for impurity, think of X-ray with wavenumber k scattering on the lattice)
but on average after many attempts we find, say, ⟨cos(kj)⟩ = 0.3. Then

ρ(j) = Z−1(λ) exp[−λ cos(kj)]

Z(λ) =
n∑

j=1

exp[λ cos(kj)] , ⟨cos(kj)⟩ = d logZ/dλ = 0.3 .

We can explicitly solve this for k ≪ 1 ≪ kn when one can approximate the
sum by the integral so that Z(λ) ≈ nI0(λ) where I0 is the modified Bessel
function. Equation I ′0(λ) = 0.3I0(λ) has an approximate solution λ ≈ 0.63.

Note in passing that the set of equations (68) may be self-contradictory
or insufficient so that the data do not allow to define the distribution or
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allow it non-uniquely. If, however, the solution exists then (63,67) define the
missing information I{ri} which is analogous to thermodynamic entropy as
a function of (measurable) macroscopic parameters. It is clear that I have
a tendency to increase whenever a constraint is removed (when we measure
less quantities Ri).

If we know the given information at some time t1 and want to make
guesses about some other time t2 then our information generally gets less
relevant as the distance |t1 − t2| increases. In the particular case of guessing
the distribution in the phase space, the mechanism of loosing information
is due to separation of trajectories described in Sect. 3. Indeed, if we know
that at t1 the system was in some region of the phase space, the set of
trajectories started at t1 from this region generally fills larger and larger
regions as |t1 − t2| increases. Therefore, missing information (i.e. entropy)
increases with |t1 − t2|. Note that it works both into the future and into the
past. Information approach allows one to see clearly that there is really no
contradiction between the reversibility of equations of motion and the growth
of entropy.

Yet there is one class of quantities where information does not age. They
are integrals of motion. A situation in which only integrals of motion are
known is called equilibrium. The distribution (67) takes the canonical form
(13,14) in equilibrium. On the other hand, taking micro-canonical as constant
over the constant-energy surface corresponds to the same approach of not
adding any additional information to what is known (energy).

From the information point of view, the statement that systems approach
equilibrium is equivalent to saying that all information is forgotten except the
integrals of motion. If, however, we possess the information about averages
of quantities that are not integrals of motion and those averages do not
coincide with their equilibrium values then the distribution (67) deviates
from equilibrium. Examples are currents, velocity or temperature gradients
like considered in kinetics.

The concept of entropy as missing information10 allows one to understand
that entropy does not really decrease in the system with Maxwell demon or
any other information-processing device (indeed, if at the beginning one has
an information on position or velocity of any molecule, then the entropy was
less by this amount from the start; after using and processing the information
the entropy can only increase). Consider, for instance, a particle in the box.

10that entropy is not a property of the system but of our knowledge about the system
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If we know that it is in one half then entropy (the logarithm of available
states) is ln(V/2). That also teaches us that information has thermodynamic
(energetic) value: by placing a piston at the half of the box and allowing
particle to hit and move it we can get the work T∆S = T ln 2 done. On
the other hand, the law of energy conservation tells that to get such an
information one must make a measurement whose minimum energetic cost is
T∆S = T ln 2 (that was considered by Szilard in 1929 who also introduced
”bit” as a unit of information). Making measurement R one changes the
distribution from ρ(x) to (generally non-equilibrium) ρ(x|R), which decreases
the entropy of the system by the mutual information (66):

S(x|R)− S(x) = −
∫
ρ(x|R) ln ρ(x|R) dxdR

+
∫
ρ(x) ln ρ(x) dx =

∫
ρ(x,R) ln[ρ(x,R)/ρ(x)ρ(R)] dxdR .

If such measurement does not change energy (like the knowledge in which
half of the box the particles is), the entropy decrease increases the (non-
equilibrium) free energy, so that the minimal work to perform such a mea-
surement is F (ρ(x|R))− F (ρ(x)).

More details can be found in Katz, Sects. 2-5, Sethna Sect. 5.3 and Kardar
I, Problem 2.6.

3.4 Central limit theorem and large deviations

Mathematical statement underlying most of the statistical physics in the
thermodynamic limit is the central limit theorem, which states that the sum
of many independent random numbers has Gaussian probability distribution.
Recently, however, we are more and more interested in the statistics of not
very large systems or in the statistics of really large fluctuations. That re-
quires treating the sum of random numbers in more detail, which we do now.
Consider the variable X which is a sum of many independent identically
distributed (iid) random numbers X =

∑N
1 yi. Its mean value ⟨X⟩ = N⟨y⟩

grows linearly with N . Here we show that its fluctuations X − ⟨X⟩ on the
scale less and comparable with O(N1/2) are governed by the Central Limit
Theorem that states that (X − ⟨X⟩)/N1/2 becomes for large N a Gaussian
random variable with variance ⟨y2⟩ − ⟨y⟩2 ≡ ∆. Note that the statistics of
the quantities that we sum, yi, can be quite arbitrary, the only requirements
that we must impose is that the first two moments, the mean ⟨y⟩ and the
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variance ∆, are finite. Finally, the fluctuations X − ⟨X⟩ on the larger scale
O(N) are governed by the Large Deviation Theorem that states that the
PDF of X has asymptotically the form

P(X) ∝ e−NH(X/N−⟨y⟩) . (69)

To show this, let us characterize y by its generating function ⟨e zy⟩ ≡ eS(z)

(assuming that the mean value exists for all complex z). The derivatives
of the generating function at zero are equal to the moments of y, while the
derivatives of its logarithm S(z) are equal to the moments of (y−⟨y⟩) called
cumulants:

⟨exp(zy)⟩ = 1 +
∞∑
n=1

zn

n!
⟨yn⟩ , S(z) = ln⟨ezy⟩ = ln⟨1 + ezy − 1⟩

= −
∑
n=1

1

n
(1− ⟨exp(zy)⟩)n = −

∑
n=1

1

n

(
−

∞∑
m=1

zm

m!
⟨ym⟩

)n

(70)

= z⟨y⟩+
(
⟨y2⟩ − ⟨y⟩2

)z2
2!

+ . . . =
∞∑
n=1

zn

n!
⟨(y − ⟨y⟩)n⟩ =

∞∑
n=1

zn

n!
⟨yn⟩c .

An advantage in working with the cumulants is that for the sum of
independent random variables their cumulants and the cumulant genera-
ting functions S sum up. For example, the second cumulant of the sum,
⟨(A+B − ⟨A⟩ − ⟨B⟩)2⟩ = ⟨(A− ⟨A⟩)2⟩+ ⟨(B − ⟨B⟩)2⟩), as long as ⟨AB⟩ =
⟨A⟩⟨B⟩ i.e. A,B are independent. Generating functions are then multiplied.
In our case, because all y-s in the sum are independent, then the generating
function ⟨e zX⟩ = ⟨exp

(
z
∑N

i=1 yi
)
⟩ of the moments of X has exponential de-

pendence on N : ⟨e zX⟩ = eNS(z). The PDF P(X) is then given by the inverse
Laplace transform 1

2πi

∫
e−z X+NS(z) dz with the integral over any axis parallel

to the imaginary one. For large N , the integral is dominated by the saddle
point z0 such that S ′(z0) = X/N . This is similar to representing the sum (20)
by its largest term. If there are several saddle-points, the result is dominated
by the one giving the largest probability. We now substitute X = NS ′(z0)
into −zX +NS(z), and obtain the large deviation relation (69) with

H = −S(z0) + z0S
′(z0) . (71)

We see that −H and S are related by the Legendre transform. Note that
NdH/dX = z0(X) and N2d2H/dX2 = Ndz0/dX = 1/S ′′(z0). The function
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H of the variable X/N − ⟨y⟩ is called Cramér or rate function since it mea-
sures the rate of probability decay with the growth of N for every X/N . It is
also sometimes called entropy function since it is a logarithm of probability.

Several important properties of H can be established independently of
the distribution P(y) or S(z). It is a convex function as long as S(z) is
a convex function since their second derivatives have the same sign. It is
straightforward to see that the logarithm of the generating function has a
positive second derivative (at least for real z):

S ′′(z) =
d2

dz2
ln
∫
ezyP(y) dy

=

∫
y2ezyP(y) dy

∫
ezyP(y) dy − [

∫
yezyP(y) dy]2

[
∫
ezyP(y) dy]2

≥ 0 . (72)

This uses the Cauchy-Bunyakovsky-Schwarz inequality which is a generali-
zation of ⟨y2⟩ ≥ ⟨y⟩2. Also, H takes its minimum at zero, i.e. for X taking
its mean value ⟨X⟩ = N⟨y⟩ = NS ′(0), which corresponds to z0 = 0. Ge-
nerally, the maximum of probability does not necessarily coincide with the
mean value but they approach each other when N grows and maximum is
getting very sharp. Since S(0) = 0 then the minimal value of H is zero.
Any smooth function is quadratic around its minimum with H ′′(0) = ∆−1,
where ∆ = S ′′(0) is the variance of y. Quadratic entropy means Gaussian
probability near the maximum — this statement is (loosely speaking) the
essence of the central limit theorem. In the particular case of Gaussian P(y),
the PDF P(X) is Gaussian for any X. Non-Gaussianity of the y’s leads to
a non-quadratic behavior of H when deviations of X/N from the mean are
large, of the order of ∆/S ′′′(0).

A simple example is provided by the statistics of the kinetic energy, E =∑N
1 p2i /2, of N classical identical unit-mass particles in 1d. We considered similar

problem in the Section 2.2 in the micro-canonical approach and thermodynamic li-
mit N → ∞. Let us now look using canonical Gibbs distribution which is Gaussian
for momenta:

ρ(p1, . . . , pN ) = (2πT )−N/2 exp

(
−

N∑
1

p2i /2T

)
.

The energy probability for any N is done by integration, using spherical coordi-
nates in the momentum space:

ρ(E,N) =

∫
ρ(p1, . . . , pN )δ

(
E −

N∑
1

p2i /2

)
dp1 . . . dpN
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=

(
E

T

)N/2 exp(−E/T )
EΓ(N/2)

. (73)

Plotting it for different N , one can appreciate how the thermodynamic limit ap-
pears. Taking the logarithm and using the Stirling formula one gets the large-
deviation form for the energy R = E/Ē, normalized by the mean energy Ē =
NT/2:

ln ρ(E,N) =
N

2
ln
RN

2
− ln

N

2
!− RN

2
≈ N

2
(1−R+ lnR) . (74)

This expression has a maximum at R = 1 i.e the most probable value is the mean
energy. The probability of R is Gaussian near maximum when R − 1 ≤ N−1/2

and non-Gaussian for larger deviations. Notice that this function is not symmetric
with respect to the minimum, it has logarithmic asymptotic at zero and linear
asymptotic at infinity.

One can generalize the central limit theorem and the large-deviation approach

in two directions: i) for non-identical variables yi, as long as all variances are

finite and none dominates the limit N → ∞, it still works with the mean and

the variance of X being given by the average of means and variances of yi; ii) if

yi is correlated with a finite number of neighboring variables, one can group such

”correlated sums” into new variables which can be considered independent.
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4 Fluctuating fields

In this Chapter, we first consider macroscopic fluctuations of thermodynamic
parameters, then we treat phenomenologically spatially non-uniform large-
scale fluctuations; we consider microscopic fluctuations in the next Chapter.
We then relate the fluctuating fields with random walks.

4.1 Thermodynamic fluctuations

Here we consider fluctuations from a thermodynamic perspective with an
added knowledge that the probability is proportional to the phase volume.
We briefly treated the subject in Section 2.4, here we develop a general
treatment. We shall ask in particular whether the fluctuations of different
quantities correlate with each other. Consider fluctuations of energy and
volume of a given (small) subsystem. The probability of a fluctuation is
determined by the (small) entropy change of the whole (closed) system w ∝
exp(∆Stotal) which is determined by the minimal work needed for a reversible
creation of such a fluctuation: T∆Stotal = −Rmin - see the figure. Just the
same, Rmin is the maximal work one can extract from the system by bringing
it into equilibrium at a constant total entropy. For example, if the fluctuation
is that the subsystem starts moving as a whole with the velocity v then the
minimal work is the kinetic energy Mv2/2, so that the probability of such a
fluctuation is w(v) ∝ exp(−Mv2/2T ). Generally, we can express Rmin via
the fluctuations ∆S,∆E,∆V related to the subsystem and the properties of
the rest of the system characterized by P0, T0, S0, V0. To do that, note that
the energy change of the subsystem, ∆E = R + P0∆V0 − T0∆S0, is equal
to the work R done on it (by something from outside the whole system)
plus the work done by the rest of the system P0∆V0 = −P0∆V plus the
heat received from the rest of the system −T0∆S0. The signs are correct:
positive ∆V0 means contraction of the subsystem i.e. positive work done on
it, and positive ∆S0 means that the subsystem gives away heat. Minimal
work corresponds to ∆S0 = −∆S so that Rmin = ∆E + P0∆V − T0∆S. In
calculating variations we also assume P, T equal to their mean values which
are P0, T0. Stress that the formula for the probability of the fluctuation,
w ∝ exp(−Rmin/T0) = exp[−∆S + (∆E + P0∆V )/T0], only assumes the
subsystem to be small i.e. ∆S0 ≪ S0, E ≪ E0, V ≪ V0, while fluctuations
can be substantial, i.e. ∆E can be comparable with E.

54



− ∆S

Rmin

E

S

V

V

0

00

0

If, in addition, we assume the fluctuations to be small (∆E ≪ E) we
can expand ∆E(S, V ) up to the first non-vanishing terms. The linear terms
of this expansion cancel P∆V −T∆S, while the quadratic terms give the
Gaussian probability distribution:

Rmin=∆E+P∆V −T∆S=[ESS(∆S)
2+2ESV∆S∆V +EV V (∆V )2]/2

= (1/2)(∆S∆ES +∆V∆EV ) = (1/2)(∆S∆T −∆P∆V ) . (75)

Written in such a way, it shows a sum of contributions of hidden and
mechanical degrees of freedom. To avoid misunderstanding, note that ∆P
is the deviation from the mean (equilibrium) value. Of course, only two
variables are independent. From that general formula one obtains different
cases by choosing different pairs of independent variables. In particular,
choosing an extensive variable from one pair and an intensive variable from
another pair (i.e. either V, T or P, S), we get cross-terms canceled because
of the Maxwell identities like (∂P/∂T )V = (∂S/∂V )T = ∂2F/∂T∂V . That
means the absence of cross-correlation i.e. respective quantities fluctuate
independently11: ⟨∆T∆V ⟩ = ⟨∆P∆S⟩ = 0. Indeed, choosing T and V as
independent variables we must express

∆S =
(
∂S

∂T

)
V
∆T +

(
∂S

∂V

)
T
∆V =

Cv

T
∆T +

(
∂P

∂T

)
V
∆V ,

∆P =
(
∂P

∂T

)
V
∆T +

(
∂P

∂V

)
T
∆V ,

and obtain

w ∝ exp

[
− Cv

2T 2
(∆T )2 +

1

2T

(
∂P

∂V

)
T
(∆V )2

]
. (76)

11Remind that the Gaussian probability distribution w(x, y) ∼ exp(−ax2 − 2bxy −
cy2) corresponds to the second moments ⟨x2⟩ = c/2(ac − b2), ⟨y2⟩ = a/2(ac − b2)
and to the cross-correlation ⟨xy⟩ = b/2(b2 − ac). Generally, for w(x1, . . . , xn) =√

|β̂|/(2π)n exp(−βikxixk/2) one has ⟨xixk⟩ = β̂−1
ik .
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Mean squared fluctuation of the temperature

⟨(∆T )2⟩ = T 2/Cv . (77)

In particular, with that accuracy one can define temperature for an isolated
system. Remind that at low temperatures, the specific heat decreases when
temperature decreases due to ”freezing-out” of the degrees of freedom. For
instance,Cv ∝ exp(−h̄ω/T for oscillators and two-level systems. We shall
also see below that Cv ∝ T for solids (due to electrons) and Cv ∝ T 3/2 for
the gas of cold atoms. In all cases the relative fluctuations of the temperature,
⟨(∆T )2⟩/T 2 = 1/Cv, increases when T → 0, which makes difficult the life of
experimentalists dealing with low temperatures.

Mean squared fluctuation of the volume (for a given number of particles),

⟨(∆V )2⟩ = −T (∂V/∂P )T , (78)

gives the fluctuation of the specific volume

⟨(∆v)2⟩ = N−2⟨(∆V )2⟩

which can be converted into the mean squared fluctuation of the number of
particles in a fixed volume:

∆v = ∆
V

N
= V∆

1

N
= −V∆N

N2
,

⟨(∆N)2⟩ = −T N
2

V 2

(
∂V

∂P

)
T

= NT

(
∂n

∂P

)
T,N

= nT

(
∂N

∂P

)
T,V

= T

(
∂P

∂µ

)
T,V

(
∂N

∂P

)
T,V

= T

(
∂N

∂µ

)
T,V

. (79)

We expressed n = (∂P/∂µ)T,V using −dΩ(T, µ) = d(PV ) = SdT+Ndµ. One
can also obtain that directly from the grand canonical distribution (30)

N̄ =
∑
N,a

N exp[(Ω + µN − EaN)/T ] = −
(
∂Ω

∂µ

)
T,V

. (80)

Differentiating it with respect to µ one gets(
∂N

∂µ

)
T,V

=
∑
N,a

(
N2 +N

∂Ω

∂µ

)
exp[(Ω + µN − EaN)/T ] =

⟨(∆N)2⟩
T

. (81)
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As we discussed in Thermodynamics, ∂P (v)/∂v < 0 for stability. The
mean squared fluctuations of N, V, P (and similar thermodynamic quantities
having mechanical nature) turn to zero linearly as T → 0. The relative
fluctuation, ⟨(∆N)2⟩/N2 = N−1T (∂n/∂P ), generally decreases as 1/N in the
thermodynamic limit. We see that generally the fluctuations are small unless
the isothermal compressibility is close to zero which happens at the first-order
phase transitions. Particle number (and density) strongly fluctuate in such
systems which contain different phases of different densities. This is why one
uses grand canonical ensemble in such cases. Near the critical point ∂n/∂P
is large. As we shall discuss in Sect. 8.4.1, ∂P/∂n cannot be exactly zero in
a finite system. We then expect at criticality ∂P/∂n ∝ 1/N and the relative
fluctuation to be independent of N .

For a classical ideal gas with V = NT/P (79) gives ⟨(∆N)2⟩ = N .
In this case, we can do more than considering small fluctuations (or large
volumes). We can find the probability of large fluctuations, even comparable
to the mean value N̄ = N0V/V0. The probability for N (noninteracting)
particles to be inside some volume V out of the total volume V0 is

wN =
N0!

N !(N0 −N)!

(
V

V0

)N(V0 − V

V0

)N0−N

≈ N̄N

N !

(
1− N̄

N0

)N0

≈ N̄N exp(−N̄)

N !
. (82)

Here we assumed that N0 ≫ N and N0! ≈ (N0 − N)!NN
0 . Note that N0

disappeared from (82). The distribution (82) is called Poisson law which
takes place for independent events. It satisfies normalization

∑
N

wN = exp(−N̄)
∑
N=0

N̄N

N !
= 1 .

Mean squared fluctuation is the same as for small fluctuations:

⟨(∆N)2⟩ = ⟨N2⟩ − N̄2 = exp(−N̄)
∑
N=1

N̄NN

(N − 1)!
− N̄2

= exp(−N̄)

[∑
N=2

N̄N

(N − 2)!
+
∑
N=1

N̄N

(N − 1)!

]
− N̄2

= exp(−N̄)

[
N̄2

∑
N=0

N̄N

N !
+ N̄

∑
N=0

N̄N

N !

]
− N̄2 = N̄ . (83)
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This formula also can be used for reading the dependence on the volume.
Recall that the measurement volume is proportional to the mean number
of particles in this volume, N̄ . In particular, the probability that a given
volume is empty (N = 0) decays exponentially with the volume. This is the
same as the fact that the probability of a radioactive decay not happening
during time t decays exponentially with t. On the other hand, the probability
to cram more than average number of particles into the volume decays with
N in a factorial way, i.e. faster than exponential: wN ∝ exp[−N ln(N/N̄)].
One can check that near the maximum, at N − N̄ = δN ≪ N̄ , the Poisson
distribution coincide with the Gaussian distribution. Indeed, replacing N ! ≈
(N/e)N(2πN̄)1/2 we obtain

wN =
N̄N exp(−N̄)

N !
≈ (2πN̄)−1/2 exp[−N̄ +N −N ln(N/N̄)]

≈ (2πN̄)−1/2 exp[−(N − N̄)2/2N̄ ] .

Of course, real molecules do interact, so that the statistics of their density
fluctuations deviate from the Poisson law, particularly near the critical point
where the interaction energy is getting comparable to the entropy contribu-
tion into the free energy. Spatial correlation of fluctuations in the interacting
systems is considered in the next Section 4.2.

Landau & Lifshitz, Sects. 20, 110–112, 114.

4.2 Spatial correlation of fluctuations

We now expand the phenomenological consideration to systems with inte-
raction and discuss a spatial correlation of fluctuations. Our particular in-
terest is when we can have a long-range order in a system, and when, on
the contrary, fluctuations destroy such an order. As always, we consider sy-
stems with a short radius of interaction and treat correlations on the scales
much larger than this radius. It is clear that whether fluctuations destroy
a long-range order must depend on the dimensionality. For example, if cor-
relations are along the line, it is easier to break the order, than when it is
supported from different directions. We treat 3d here and then consider lower
dimensionalities.

Let us now regularly consider the correlation function of fluctuations at
the distances much larger than the radius of interaction. Consider, for in-
stance, the concentration n = N/V . Since the fluctuations of n and T are
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independent, we assume T =const so that the minimal work is the change
in the free energy, which we again expand to the quadratic terms

w ∝ exp(−∆F/T ) , ∆F =
1

2

∫
ϕ(r12)∆n(r1)∆n(r2) dV1dV2 . (84)

Here ϕ is the second (variational) derivative of F with respect to n(r). Since
we restrict ourselves by the quadratic terms in ∆n = n − n̄ then the pro-
bability distribution is Gaussian (in field theory, it is called the case of the
free field). We assumed translational invariance so that ϕ(r12) depends only
on a relative distance. In this case, the free energy can be diagonalized, i.e.
presented as a single (not double) sum, by the Fourier transform:

∆n(r) =
∑
k

∆nke
ikr , ∆nk =

1

V

∫
∆n(r)e−ikr dr , ϕ(k) =

∫
ϕ(r)e−ikr dr .

∆F =
V

2

∑
k

ϕ(k)|∆nk|2 ,

which corresponds to a Gaussian probability distribution of independent va-
riables - amplitudes of the harmonics. The mean squared fluctuation is as
follows

⟨|∆nk|2⟩ =
T

V ϕ(k)
. (85)

The free energy must increase when the concentration is modulated in space.
That means that ϕ(k) must be growing function of k. Therefore, the largest
fluctuations correspond to small k, where we can use the expansion called
the Ornshtein-Zernicke approximation

ϕ(k) ≈ ϕ0 + 2gk2 . (86)

The coefficient g is assumed positive. Such expansion presumes short-range
interaction which makes large-scale limit regular. From the previous section,
ϕ0(T ) = n̄−1(∂P/∂n)T = −n̄2V (∂P/∂V )T . It must be positive for stability
and turns into zero at a phase transition.

Not only for the concentration but also for other quantities (like magne-
tization, for instance), (86) is a general form at small k. Let us show how
it appears in a continuous limit of a lattice model. Consider some variable
ηi defined on the sites i of, say, cubic lattice with the spacing a. The free
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energy contains on-cite term and the interaction between neighboring cites i
and i± ej (j = 1, . . . d):

∆F =
1

2

∑
(λ−1η2i − ηiηi±ej/2d) . (87)

To obtain the continuous limit, we introduce the coordinates x = ia and
re-scale the variable: ηi =

√
2dad/2−1η(x) to eliminate a from the gradient

term below. We then denote λ−1 − 1 = m2a2/2d and obtain

∆F =
1

2

∫ dx2dad

ad

{
λ−1η2(x)− η(x)

1

d

d∑
j=1

[
η(x) +

1

2
∂2j η(x) + . . .

]}

=
∫ dx

2
η(x)(m2−∆)η(x)+O(a4) =

∫ dx
2
(m2η2+|∇η|2) + O(a4) . (88)

That is we obtained (86) with ϕ0(T ) = m2 and 2g = 1. Generally, the
gradient term can be neglected when η changes on the scale far exceeding a,
but this is not the case near phase transition when λ→ 1 and ϕ0 = m2 → 0.

Making the inverse Fourier transform of (85) with (86), we find (the large-
scale part of) the pair correlation function of the concentration in 3d:

⟨∆n(0)∆n(r)⟩ = 1

V

∫
dr1∆n(r1)∆n(r1 + r) =

∑
k

|∆nk|2eikr

=
∫

|∆nk|2eikr
V d3k

(2π)3
=
∫ ∞

0

V k2dk

(2π)2
|∆nk|2

∫ π

0
sin θdθeikr cos θ

=
∫ ∞

0

T

ϕ0 + 2gk2
eikr − e−ikr

ikr

k2dk

(2π)2
=
T exp(−r/rc)

8πgr
. (89)

One can derive that by expanding the integral to −∞ and then close the
contour in the complex upper half plane for the first exponent and in the
lower half plane for the second exponent so that the integral is determined
by the respective poles k = ±iκ = ±ir−1

c , where the correlation radius of
fluctuations rc = [2g(T )/ϕ0(T )]

1/2 = 1/m.
One can represent ⟨∆n(r1)∆n(r2)⟩ = ⟨n(r1)n(r2)⟩ − n̄2. The correlation

function can be written as ⟨n(r1)n(r2)⟩ = n̄2w12, where w12 describes the
probability density of having particle at the point r2 under the condition that
another particle is at the point r1. Indeed, consider the infinitesimal volume
dV1 around the point r1, then n̄dV1 ≪ 1 is the probability to find a particle
there. Denote n̄w12dV2 the probability to find a particle around the point
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r2, then ⟨n(r1)dV1n(r2)dV2⟩ = n̄2w12dV1dV2. That representation is valid for
r1 ̸= r2. When points r1 and r2 coincide one needs to account for the trivial
fact that the one particle, which is in the first point is also in the second one,
so the whole correlation function is ⟨n(r1)n(r2)⟩ = n̄2w12 + n̄δ(r1 − r2) and
the same for fluctuations, ⟨∆n(r1)∆n(r2)⟩ = n̄2(w12− 1)+ n̄δ(r1− r2). If we
integrate the last equality over dV1dV2 running over the whole space V and
denote N̄ = n̄V then

⟨(∆N)2⟩ = N̄ + N̄ n̄
∫
[w(r12 − 1] dr12 . (90)

The first term in the right hand side is the answer for an ideal gas, so we
see that any correlation, in particular (89), is due to interaction. Note that
w(r12) → 1 when r12 → ∞.

Far from any phase transition, the correlation radius rc = [2g(T )/ϕ0(T )]
1/2

is typically the mean distance between molecules i.e. a. On the contrary, at
phase transition ϕ0 turns into zero. Indeed, ⟨(∆N)2⟩ = −T n̄2(∂V/∂P )T so
that

∫
[w(r12 − 1] dr12 ∝ 1/ϕ0 ∝ (∂V/∂P )T → ∞ at the critical temperature.

Then the variance of fluctuations grows with the system size L as follows:

⟨(∆n)2⟩ ∝
∫ 1/a

1/L
k−2d dk =

a2−d − L2−d

d− 2
. (91)

We see that whether this grows saturates or not depends on whether space
dimensionality larger or smaller than two. Moreover, ϕ0 = 0 for any transla-
tion invariant system with a continuous variable since then a uniform change
of this variable (k = 0) does not cost any energy. Perturbations whose
energy goes to zero when k → are called Goldstone modes and they owe
their existence to continuous symmetries like translational invariance, rota-
tional invariance. We see that in dimensionality two and less, fluctuations
due to Goldstone mode grow unlimited with the system size and thus de-
stroy any long-range order. This is the reason two-dimensional crystals or
ferromagnetic films cannot exist (they can have short-range order though).
That statement sometimes is called Mermin-Wagner theorem.

4.3 Impossibility of long-range order in 1d

In what dimensionality can we have long-range order if there is no continuous
symmetry and Goldstone mode does not exist? That happens, for instance,
if the order parameter cannot change continuously but takes only discrete
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values, as in the Ising model where spin can take only two values. The
so-called Ising model was formulated by Lenz in 1920 and solved in one
dimension by his student Ising in 1925. The model was suggested as the
simplest model for ferromagnetism. Experiments show that ferromagnetism
is associated with the spins of electrons (not with their orbital motion). Spin
1/2 may have two possible projections, so it is natural to consider the discrete
spin variable σi = ±1 at every lattice site. The interaction energy is between
nearest neighbors (n.n.):

H =
J

2

∑
ij−n.n.

(1− σiσj) . (92)

We shall see later that ferromagnetic order appears at low temperatures in
two and higher dimensions. Let us show that in 1d no temperature is low
enough to have a nonzero magnetization N⟨σ⟩. The state of lowest energy
has all spins parallel. The first excited state correspond to one spin flip
and has an energy higher by ∆E = γJ , where γ is the number of nearest
neighbors (γ = 2d for a cubic lattice). The concentration of such opposite
spins is proportional to exp(−γJ/T ) and is low at low temperatures so that
⟨σ⟩ ≈ 1 and the magnetization is close to N . In one dimension, however,
the lowest excitation is not the flip of one spin (energy 2J) but flipping all
the spins to the right or left from some site (energy J). Again the mean
number of such flips is N exp(−J/T ) but now long-range order is determined
by comparing this number to unity, not to the total number of spins. In
sufficiently long chain, N is large enough so that the number N exp(−J/T )
is larger than unity. That means that long chains consist of pieces with
different spin signs and the mean magnetization is zero. Note that short
pieces with N < exp(J/T ) are magnetized. Yet the ferromagnetism of the
whole lattice in the thermodynamic limit is possible only starting from two
dimensions and only without the Goldstone mode.

It is physically natural that fluctuations has much influence in one di-
mension: it is enough to have a fluctuation in a domain exceeding the radius
of interaction to loose completely the information of the order. It is thus not
surprising that long-range order is impossible in one-dimensional systems
with short-range interaction.

That argument can be generalized for arbitrary systems with the short-
range interaction in the following way (Landau, 1950; Landau & Lifshitz,
Sect. 163): assume we have n contact points of two different phases and
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that every point costs the energy ϵ. Those points add nϵ − TS to the ther-
modynamic potential. The entropy is lnCn

L where L is the length of the
chain. Evaluating entropy at 1 ≪ n ≪ L we get the addition to the poten-
tial nϵ − Tn ln(eL/n). The derivative of the thermodynamic potential with
respect to n is thus ϵ − T ln(L/n) and it is negative for sufficiently small
n/L. That means that one decreases the thermodynamic potential creating
the mixture of two phases all the way until the derivative comes to zero which
happens at L/n = exp(ϵ/T ) — this length can be called the correlation scale
of fluctuations and it is always finite in 1d at a finite temperature as in a
disordered state. We then expect the spin-spin correlation function in 1d to
behave as ⟨σ(0)σ(r)⟩ = exp[−r exp(ϵ/T )]. Let us stress that for the above
arguments it is important that the ground state is non-degenerate so that
the first excited state has a higher energy (degeneracy leads to criticality).
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5 Response and fluctuations

As we learnt above (in particular, in Sections 4.1,4.2), the probability of the
fluctuation is determined by the entropy change which is the minimal work
(divided by temperature) which is the change in the respective thermodyn-
amics potential. For small fluctuations, we can expand the thermodynamic
potential up to quadratic terms thus getting a Gaussian probability dis-
tribution. Therefore, the mean squared thermodynamic fluctuation of any
quantity is determined by the second derivative of the thermodynamic po-
tential with respect to this quantity. Those second derivatives are related to
susceptibilities that determine response with respect to the properly defined
external forces. Here we formulate a general relation between susceptibilities
and the second moments of fluctuations.

5.1 Static response

Consider a system with the Hamiltonian H and add some small static ex-
ternal force f so that the Hamiltonian becomes H − xf where x is called
the coordinate. The examples of force-coordinate pairs are magnetic field
and magnetization, pressure and volume etc. The mean value of any ot-
her variable B can be calculated by the canonical distribution with the new
Hamiltonian

B̄ =

∑
B exp[(xf −H)/T ]∑
exp[(xf −H)/T ]

.

Note that we assume that the perturbed state is also in equilibrium. The
susceptibility of B with respect to f is as follows

χ ≡ ∂B̄

∂f
=

⟨Bx⟩ − B̄x̄

T
≡ ⟨Bx⟩c

T
. (93)

Here the cumulant (also called the irreducible correlation function) is defined
for quantities with the subtracted mean values ⟨xy⟩c ≡ ⟨(x− x̄)(y − ȳ)⟩ and
it is thus the measure of statistical correlation between fluctuations of x and
y. We thus learn that the susceptibility is the measure of the statistical cohe-
rence of the system, increasing with the statistical dependence of variables.
Consider few examples of this relation.

Example 1. If x = H is energy itself then f represents the fractional
increase in the temperature: H(1− f)/T ≈ H/(1 + f)T . Formula (93) then
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gives the relation between the specific heat (one kind of susceptibility) and
the squared energy fluctuation

∂H̄
∂f

= T
∂E

∂T
= TCv =

⟨(∆E)2⟩
T

, (94)

which can be written via the irreducible correlation function of the energy
density ϵ(r) defined by ∆E =

∫
[ϵ(r)− ϵ̄] dr:

⟨(∆E)2⟩ =
∫
[ϵ(r1)− ϵ̄]dr1

∫
[ϵ(r2)− ϵ̄]dr2 (95)

=
∫
dr
∫
[ϵ(r1)− ϵ̄][ϵ(r1 + r)− ϵ̄] dr1 = V

∫
⟨ϵ(r)ϵ(0)⟩c dr .

As we discussed before, the specific heat is extensive i.e. proportional to the
volume (or number of particles), but the coefficient of proportionality actually
tells us how many degrees of freedom are effective in absorbing energy at a
given temperature (recall two-level system where specific heat was small for
high and low temperatures). We see from (94) that the higher the correlation
the larger is the specific heat that is the more energy one needs to spend to
raise the temperature by one degree. In other words, system with more
correlation absorbs more energy under a given temperature difference.

Example 2. If f = h is a magnetic field then the coordinate x =M is the
magnetization and (93) gives the magnetic susceptibility

χ =
∂M

∂h
=

⟨M2⟩c
T

=
V

T

∫
⟨m(r)m(0)⟩c dr .

We shall see blow that the specific heat grows when the temperature ap-
proached criticality, which is related to the growth of the correlation function
of fluctuations. Similarly, magnetic susceptibility χ diverges near the Cu-
rie temperature of ferromagnetic phase transition, which means the gro-
wth of correlations between distant spins i.e. the growth of correlation
length. For example, the Ornshtein-Zernicke correlation function (89) gives
⟨m(r)m(0)⟩c ∝ r2−d so that in the mean-field approximation χ ∝

∫ rc
a ddrr2−d ∝

r2c .

General remark. These particular fluctuation-response relations can all
be related to the change of the thermodynamic potential (free energy) under
the action of the force:

F = −T lnZ = −T ln
∑

exp[(xf −H)/T ] = −T ln
{
Z0Z

−1
0

∑
e(xf−H)/T

}
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= −T lnZ0 − T ln⟨exp(xf/T )⟩0 = F0 − f⟨x⟩0 −
f 2

2T
⟨x2⟩0c + . . . (96)

⟨x⟩ = −∂F/∂f, ⟨x2⟩c/T = ∂⟨x⟩/∂f = −∂F 2/∂f 2 . (97)

Subscript 0 means an average over the state with f = 0, like ⟨exp(xf/T )⟩0 =∑
exp(xf/T ) exp(−H/T )/∑ exp(−H/T ); we don’t write the subscript in the

expansion (97), which can take place around any value of f . Formula (96) is
based on the cumulant expansion theorem (70):

⟨exp(ax)⟩ = 1 +
∞∑
n=1

an

n!
⟨xn⟩ ,

ln⟨exp(ax)⟩ = −
∑
n=1

1

n
(1− ⟨exp(ax)⟩)n = −

∑
n=1

1

n

(
−

∞∑
m=1

am

m!
⟨xm⟩

)n

= a⟨x⟩+
(
⟨x2⟩ − ⟨x⟩2

)a2
2!

+ . . . =
∞∑
n=1

an

n!
⟨xn⟩c = ⟨eax − 1⟩c . (98)

In other words, ⟨exp(ax)⟩ is the generating function of the moments ⟨xn⟩
while ln⟨exp(ax)⟩ is the generating function of the cumulants. We shall use
that in making virial expansion (239) in Sect. 8.2 and in RG expansion (302).

Example 3. Consider now the inhomogeneous force f(r) and denote
a(r) ≡ x(r)− x0. The Hamiltonian change is now the integral∫

f(r)a(r) dr =
∑
kk′
fkak′

∫
ei(k+k′)·r dr = V

∑
k

fka−k .

The mean linear response ā(r) can be written as an integral of the force with
the response (Green) function which is a generalization of succeptibility;
again, translation invariance makes the relation between the response and
force diagonal in the Fourier representation:

ā(r) =
∫
G(r− r′)f(r′) dr′ , āk = Gkfk . (99)

One relates the Fourier components of the Green function and the correlation
function of the coordinate fluctuations choosing B = ak, x = a−k in (93):

V Gk =
⟨aka−k⟩c

T
=

1

T

∫
⟨a(r)a(r′)⟩ceik·(r

′−r) drdr′ =
V

T

∫
⟨a(r)a(0)⟩ce−ik·r dr ,

TGk = (a2)k .
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Example 4. If B = x = N then f is the chemical potential µ:(
∂N

∂µ

)
T,V

=
⟨N2⟩c
T

=
⟨(∆N)2⟩

T
=
V

T

∫
⟨n(r)n(0)⟩cdr . (100)

We have seen this formula before in the form (90). This formula also coincides
with (79) if one accounts for

−n2

(
∂V

∂P

)
T,N

= N

(
∂n

∂P

)
T,N

= n

(
∂N

∂P

)
T,V

=

(
∂P

∂µ

)
T,V

(
∂N

∂P

)
T,V

=

(
∂N

∂µ

)
T,V

. (101)

Here we used the fact Ω(T, µ) = PV and N = ∂Ω/∂µ. We conclude that the
response of the density to the pressure is expressed via the density fluctuati-
ons.

The correlation function ⟨n(r)n(0)⟩ is n2 times the probability w(r) to
find particle at r under the condition that there is a particle at zero. In
the simplest case of an ideal gas with ⟨n(r)n(0)⟩c = nδ(r), (100,101) give
dn/dP = 1/T . To account for the pair interaction energy U(r) in the first
approximation (neglecting multiple correlations) one just uses the Gibbs pro-
bability w(r) = e−U(r)/T so that the cumulant is ⟨n(r)n(0)⟩c = n{δ(r) +
n[e−U(r)/T − 1]}.

The corrected equation of state is can be derived from

Tdn/dP = 1 + n
∫
[e−U(r)/T − 1]dr or dP/dn ≈ T

(
1 + n

∫
[1− e−U(r)/T ]dr

)
,

which gives

p = nT + n2T

∫
[1− e−U(r)/T ] dr/2 .

We shall also derive this in Sect. 8.3 by the virial expansion (244-245). We then

shall see that the second density cumulant is the second virial coefficient.

More details in Shang-Keng Ma, Statistical Mechanics, Sect. 13.1

5.2 Temporal correlation of fluctuations

We now consider the time-dependent force f(t) so that the Hamiltonian is
H = H0 − xf(t). Time dependence requires more elaboration than space
inhomogeneity12 because one must find the non-equilibrium time-dependent

12As the poet (Brodsky) said, ”Time is bigger than space: space is an entity, time is in
essence a thought of an entity.”
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probability density in the phase space solving the Liouville equation

∂ρ

∂t
+
∂ρ

∂x

dx

dt
+
∂ρ

∂p

dp

dt
=
∂ρ

∂t
+
∂ρ

∂x

∂H
∂p

− ∂ρ

∂p

∂H
∂x

= 0 . (102)

Here p is the canonical momentum conjugated to the coordinate x. One can
solve the equation (102) perturbatively in f , denoting ρ(x, p, t) = ρ0(x, p) +
ρ1(x, p, t) and assuming ρ1(x, p, t) ≪ ρ0 = Z−1 exp(−βH0) by virtue of xf ≪
H0:

∂ρ

∂t
+
∂ρ

∂x

∂H0

∂p
− ∂ρ

∂p

∂H0

∂x
=
dρ1
dt

= −∂ρ0
∂p

f = fβ
∂H0

∂p
ρ0 . (103)

Here, like in Sect. 2.1, d/dt denotes the derivative in the moving reference
frame along an unperturbed trajectory determined by H0. Recall now that
∂H0/∂p = dx/dt (calculated at f = 0 i.e. also along an unperturbed trajec-
tory). The formal solution of (103) is written as an integral over the past:

ρ1 = βρ0

∫ t

−∞
f(τ)

dx(τ)

dτ
dτ . (104)

It tells us that in the linear approximation the relative change of the probabi-
lity distribution ρ1/ρ0 is equal to the work done by the external force divided
by temperature. Our approach is valid when the work is small relative to
temperature.

We now use (104) to derive the relation between the fluctuations and
response in the time-dependent case. Indeed, the linear response of the coor-
dinate to the force is as follows

⟨x(t)⟩ =
∫
xdxρ1(x, t) ≡

∫ t

−∞
α(t, t′)f(t′) dt′ , (105)

which defines generalized susceptibility (also called response or Green function)
α(t, t′) = α(t− t′) ≡ δ⟨x(t)⟩/δf(t′). Note that causality requires α(t− t′) = 0
for t < t′. Substituting (104) into (105) and taking a variational derivative
δ/δf(t′) we obtain the fluctuation-dissipation theorem (FDT)

Tα(t, t′)=
∫
ρ0x(t)

dx(t′)

dt′
dx =

⟨
x(t)

dx(t′)

dt′

⟩
=

d

dt′
⟨x(t)x(t′)⟩ , t ≥ t′ . (106)

It relates quantity in equilibrium (the decay rate of correlations) to the weakly
non-equilibrium quantity (linear response to a small perturbation). Differen-
tiation and averaging are both linear operations so they commute, which
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allowed us to take the time derivative outside. Pay attention to the fact
that the derivative is with respect to the earlier time, which is related to
causality and is also clear looking at (104). While (106) is similar to the
fluctuation-response relations obtained in the previous section, it is called
the fluctuation-dissipation theorem. To understand (106) better and to see
where the word ”dissipation” comes from, we introduce the spectral decom-
position of the fluctuations:

xω =
∫ ∞

−∞
x(t)eiωtdt , x(t) =

∫ ∞

−∞
xωe

−iωtdω

2π
. (107)

The pair correlation function ⟨x(t)x(t′)⟩ =
∫
xω1xω2e

−iω1t−iω2t′dω1dω2(2π)
−2

must depend on the time difference which requires ⟨xωxω′⟩ = 2πδ(ω+ω′)(x2)ω
— this relation defines the spectral density of fluctuations

(x2)ω =
∫ ∞

−∞
⟨x(0)x(t)⟩ exp(iωt)dt .

Linear response in the spectral form is diagonal: xω = αωfω. Here

α(ω) =
∫ ∞

0
α(t)eiωt dt = α′ + ıα′′

is analytic in the upper half-plane of complex ω under the assumption that
α(t) is finite everywhere and zero at negative times. Since α(t) is real then
α(−ω∗) = α∗(ω).

We can now make a Fourier transform of (106) and obtain the spectral
form of the fluctuation-dissipation theorem (Callen and Welton, 1951):

Tα(ω)

iω
=
∫ ∞

0
⟨x(0)x(t)⟩ exp(iωt)dt ,

(x2)ω =
∫ ∞

0
⟨x(0)x(t)⟩ exp(iωt)dt+

∫ 0

−∞
⟨x(0)x(t)⟩ exp(iωt)dt

=
T [α(ω)− α(−ω)]

iω
=

2Tα′′(ω)

ω
.

This is true for real ω. Let us show that the imaginary part α′′ determines
the energy dissipation,

dE

dt
=
dH
dt

=
∂H
∂t

=
∂H
∂f

df

dt
= −x̄df

dt
(108)
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It turns into zero for a time-independent force. For a purely monochro-
matic force, f(t) = fω exp(−iωt) + f ∗

ω exp(iωt), x̄ = α(ω)fω exp(−iωt) +
α(−ω)f ∗

ω exp(iωt), the dissipation averaged over a period is as follows:

dE

dt
=
∫ 2π/ω

0

ωdt

2π
[α(−ω)− α(ω)]ıω|fω|2 = 2ωα′′

ω|fω|2 . (109)

We can now calculate the average dissipation using (104)

dE

dt
= −

∫
xḟρ1 dpdx = −β

∫
x(t)ḟ(t)ρ0 dpdx

∫ t

−∞
ẋ(τ − t)f(τ) dτ

= −iω|fω|2β
∫ ∞

−∞
⟨x(t)ẋ(t′)⟩eiω(t−t′) dt′ = βω2|fω|2(x2)ω , (110)

where the spectral density of the fluctuations is calculated with ρ0 (i.e. at
unperturbed equilibrium). Comparing (109) and (110) we obtain again:

2Tα′′(ω) = ω(x2)ω . (111)

This truly amazing formula relates the dissipation coefficient that governs
non-equilibrium kinetics under the external force with the equilibrium fluc-
tuations. The physical idea is that to know how a system reacts to a force
one might as well wait until the fluctuation appears which is equivalent to
the result of that force. Note that the force f disappeared from the final
result which means that the relation is true even when the (equilibrium)
fluctuations of x are not small. Integrating (111) over frequencies we get

⟨x2⟩ =
∫ ∞

−∞
(x2)ω

dω

2π
=
T

π

∫ ∞

−∞

α′′(ω)dω

ω
=
T

ıπ

∫ ∞

−∞

α(ω)dω

ω
= Tα(0) . (112)

Here we added the real part, which is symmetric under the frequency change
so does not contribute. The last step used the Cauchy integration formula (for
the contour that runs along the real axis, avoids zero by a small semi-circle
and closes at the upper half plane). We thus see that the mean squared fluc-
tuation is the zero-frequency response, which is the integral of the response
over time:

α(ω = 0) =
∫ ∞

0
α(t) dt .

Let us now illustrate the general relation between fluctuations and relax-
ation by the simplest case of the current I flowing through an electric L-R
circuit at a finite temperature:

L
dI

dt
= −RI + V (t) . (113)
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Here inductance L characterizes the inertia of the current while resistance R
characterizes the dissipation. The voltage V (t) is due to thermal fluctuations,
so we must treat V (t) as a random function, which makes (113) stochastic
(Langevin) equation. We assume that ⟨V ⟩ = 0 and that ⟨V (t′)V (t′ + t)⟩ =
C(t) decays with t during the correlation time τ which is much smaller than
the relaxation time L/R. The solution of (113) is as follows:

LI(t) =
∫ t

−∞
V (t′)eR(t′−t)/Ldt′ . (114)

Since the integration time in (114) is of order L/R then the current can
be considered as a sum of many independent random numbers (integrals
over intervals of order τ) and so it must have a Gaussian statistics ρ(I) =
(2πσ2)−3/2 exp(−I2/2σ2) where

σ2 = ⟨I2⟩=L−2
∫ 0

−∞
dt1

∫ 0

−∞
dt2 ⟨V (t1)V (t2)⟩eR(t1+t2)/L

= L−2
∫ ∞

0
dt1

∫ ∞

0
dt2C(t1 − t2)e

−R(t1+t2)/L

≈ L−2
∫ ∞

0
e−2Rt/L dt

∫ 2t

−2t
C(t′) dt′≈ 1

2RL

∫ ∞

−∞
C(t′) dt′ . (115)

On the other hand, equipartition requires L⟨I2⟩/2 = T/2. We can then relate
the resistance to the equilibrium voltage fluctuations on a resistor R:∫ ∞

−∞
⟨V (0)V (t)⟩dt = 2RT . (116)

This relation is called Nyquist theorem. Note that L does not enter, so
that the correlation function of voltage fluctuations is related only to the
resistance which characterizes the dissipation in the contour. Another way
to interpret (116) is to say that 2RT = (V 2)ω=0 is the spectral density of
voltage fluctuations at zero frequency (really, at frequencies much less than
the inverse voltage correlation time, ωτ ≪ 1).

From (114) we can also write the current auto-correlation function:

⟨I(0)I(t)⟩ = (T/L) exp(−Rt/L) .

We see that the current is correlated on the inertial timescale L/R which is
much longer than the voltage correlation time τ . The direct analog of the
FDT (106) is now

d

dt
⟨I(0)I(t)⟩ = TR

L2
exp(−Rt/L) ,
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so that the current response function is α(t) = (R/L2) exp(−Rt/L), as it
is clear from (114). Its Fourier transform is α(ω) = L−1(1 − iωL/R)−1.
The exponential correlation function corresponds to the Lorentzian spectral
density: (I2)ω = 2RT/(L2ω2+R2) which is proportional to α′′(ω)/ω. Again,
we see that for a given system the spectral response function has both real
and imaginary parts, but the spectral density of fluctuations is proportional
to the imaginary part. Note that we treat current as a coordinate and voltage
as a force here, which is because of inductance that makes the current time
derivative proportional to voltage.

At low frequencies the Lorentzian corresponds to a constant spectral den-
sity (white noise) - current noise is uncorrelated at large times. Generally,
the spectral density has a universal Lorentzian form in the low-frequency li-
mit when the period of the force is much longer than the relaxation time for
establishing the partial equilibrium [exactly like the Ornshtein-Zernicke ap-
proximation (85,86) appears at scales exceeding the correlation radius]. The
mean value that characterizes the partial equilibrium at a given value f of
the slowly-changing force is x̄ = α(0)f . Slow evolution of x is the relaxation
towards x̄:

ẋ = −λ(x− x̄) . (117)

For harmonics,

(λ− iω)xω = λx̄ = λα(0)f ,

α(ω) = α(0)
λ

λ− iω
, α′′(ω) = α(0)

ω

λ2 + ω2
. (118)

The spectral density of such (so-called quasi-stationary) fluctuations is as
follows:

(x2)ω = ⟨x2⟩ 2λ

λ2 + ω2
. (119)

It corresponds to the long-time exponential decay of the temporal correlation
function: ⟨x(t)x(0)⟩ = ⟨x2⟩ exp(−λ|t|), which can be obtained from (117) as-
suming x ≫ x̄. That exponential decay of correlations is a temporal analog
of the large-scale formula (89). The exponential decay occurs on the scales
or times much exceeding typical times of the events in the system. Similarly,
the probability in the Poisson distribution of not meeting any particle decays
exponentially with the volume, the probability of radioactive decay not hap-
pening decays exponentially with time etc. Non-smooth behavior at zero is
an artefact of the long-time approximation, consistent consideration would
give zero derivative at t = 0. The susceptibility is α(t) = exp(−λt).
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When several degrees of freedom are weakly deviated from equilibrium,
the relaxation must be described by the system of linear equations (consider
all xi = 0 at the equilibrium)

ẋi = −λijxj . (120)

The dissipation coefficients are generally non-symmetric: λij ̸= λji. One
can however find a proper coordinates in which the coefficients are sym-
metric. Single-time probability distribution of small fluctuations is Gaus-
sian w(x) ∼ exp(∆S) ≈ exp(−βjkxjxk/2). The matrix β̂ is symmetric
since it is the matrix of second derivatives. Introduce generalized forces13

Xj = −∂S/∂xj = βijxi so that ẋi = −γijXj, γij = λik(β̂
−1)kj with ⟨xiXj⟩ =∫

dxxiXjw = −
∫
dxxi∂w/∂xj = δij. Indeed, we have seen that the coordi-

nates and the generalized forces do not cross-correlate between different pairs
already in the simplest case of uniform fluctuations described by (75), which
gave ⟨∆T∆V ⟩ = 0, for instance. Returning to the general case, note also
that ⟨XjXj⟩ = βij and ⟨xjxk⟩ = (β̂−1)jk. We see that different coordinates
are correlated and so are different forces, but every coordinate correlates only
with its own force at the same time. If xi all have the same properties with
respect to the time reversal then their correlation function is symmetric too:
⟨xi(0)xk(t)⟩ = ⟨xi(t)xk(0)⟩. Differentiating it with respect to t at t = 0 we
get the Onsager symmetry principle, γik = γki. For example, currents Ii and
voltages Vj along different directions in anisotropic crystals are related by the
conductivity tensor: Ii = σijVj. The tensor is symmetric without magnetic
field, that is an electric field in i direction produces the same current in j
direction as vice versa. Also, a temperature difference produces the same
electric current as the heat current produced by a voltage. Note that we
treat current not as a coordinate, but as a time derivative of the coordinate
which is charge here (voltage time charge is the energy change).

Such symmetry relations due to time reversibility are valid only near
equilibrium steady state where one can use the relaxation equations (120) -
they are the same as the equations for equilibrium fluctuations which satisfy
the detailed balance (time-reversibility of the statistics i.e. absence of any
persistent currents in the phase space). Let us stress, however, that γij are
different from the susceptibilities in equilibrium which were symmetric for
the simple reason that they were second derivatives of the thermodynamic

13Here the coordinate-force pair appears in the thermodynamic potential, rather than
in the Hamiltonian as before, so we call the force generalized.
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potential; for instance, dielectric susceptibility (i.e. polarization of the crystal
by an electric field) χij = ∂Pi/∂Ej = χji where P is the polarization of the

medium - this symmetry is analogous to the (trivial) symmetry of β̂, not the
(non-trivial) symmetry of γ̂.

See Landay & Lifshitz, Sect. 119-120 for the details and Sect. 124 for the
quantum case. Also Kittel, Sects. 33-34.

5.3 Spatio-temporal correlation function

To have a specific example, let us calculate the correlation function of the
density at different points and times for the simplest case of an ideal gas. We
have N particles with the time-independent momenta pk and the coordinates
Rk(t) = Rk(0)+pkt/m. The concentration is just the sum of delta-functions,
corresponding to different particles:

n(r, t) =
N∑
k=1

δ
(
r−Rk(t)

)
. (121)

Since the particles do not interact, there is no correlation between diffe-
rent particles. Therefore, the only correlation between densities n(r, t) and
n(r′, t′) can appear due to a particle that visited both places at respective
times:

⟨n(r, t)n(r′, t′)⟩c =
⟨

N∑
k=1

δ
(
r−Rk(t)

)
δ
(
r′ −Rk(t

′)
)⟩

= N
⟨
δ
(
r−Rk(t)

)
δ
(
r′ −Rk(t)− pk(t

′ − t)/m
)⟩

= N
⟨
δ
(
r−Rk(t)

)
δ
(
r′ − r− pk(t

′ − t)/m
)⟩

. (122)

There are two averages here. The first one is over all possible positions within
the space V , which gives ⟨δ

(
r−Rk(t)

)
⟩ = 1/V . The second average is over

the Maxwell distribution of the momenta:

⟨n(r, t)n(r′, t′)⟩c =
N

V

⟨
δ
(
r′ − r− pk(t

′ − t)/m
)⟩

= n(2πMT )−d/2
∫
dpe−p2/2mT δ

(
r′ −Rk(t)− pk(t

′ − t)/M
)

= n|t− t′|−d
(
m

2πT

)d/2

exp

(
−m|r− r′|2

2|t− t′|2

)
. (123)
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That function determines the response of the concentration to the change
in the chemical potential. In particular, when t′ → t it tends to nδ(r − r′),
which determines the static response described in Sect. 5.1. For coinciding
points it decays by the diffusion law, ⟨n(r, t)n(r, t′)⟩c ∝ |t− t′|−d, so that the
response decays as |t− t′|−d−1.

6 Stochastic processes

Many of the properties of the statistical systems, in particularly, the statis-
tics of fluctuations can be related to the fundamental problem of a random
walk. It is interesting both for fundamental physics and for numerous modern
applications related to nano-particles, macro-molecules etc.

6.1 Random walk and diffusion

Consider a particle that can hop randomly to a neighboring cite of d-dimensional
cubic lattice, starting from the origin at t = 0. We denote a the lattice spa-
cing, τ the time between hops and ei the orthogonal lattice vectors that
satisfy ei · ej = a2δij. The probability to be in a given cite x satisfies the
equation

P (x, t+ τ) =
1

2d

d∑
i=1

[P (x+ ei, t) + P (x− ei, t)] . (124)

The first (painful) way to solve this equation is to turn it into averaging
exponents as we always do in statistical physics. This is done using the
Fourier transform, P (x) = (a/2π)d

∫
eikxP (k) ddk, which gives

P (k, t+ τ) =
1

d

d∑
i=1

cos aki P (k, t) . (125)

The initial condition for (124) is P (x, 0) = δ(x), which gives P (k, 0) = 1

and P (k, t) =
(
d−1∑d

i=1 cos aki
)t/τ

. That gives the solution in space as an
integral

P (x, t) = (a/2π)d
∫
eikx

(
1

d

d∑
i=1

cos aki

)t/τ

ddk . (126)

We are naturally interested in the continuous limit a → 0, τ → 0. If
we take τ → 0 first, the integral tends to zero and if we take a → 0 first,
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the answer remains delta-function. A non-trivial evolution appears when the
lattice constant and the jump time go to zero simultaneously. Consider the
cosine expansion,(

1

d

d∑
i=1

cos aki

)t/τ

=
(
1− a2k2/2d+ . . .

)t/τ
,

where k2 =
∑d

i=1 k
2
i . The finite answer exp(−κtk2) appears only if one takes

the limit keeping constant the ratio κ = a2/2dτ . In this limit, the space
density of the probability stays finite and is given by the integral:

ρ(x, t) = P (x, t)a−d ≈ (2π)−d
∫
eikx−tκk2 ddk = (4πκt)−d/2exp

(
− x2

4κt

)
.(127)

The second (painless) way to get this answer is to pass to the continuum
limit already in the equation (124):

P (x, t+τ)−P (x, t) = 1

2d

d∑
i=1

[P (x+ ei, t) + P (x− ei, t)− 2P (x, t)] . (128)

This is a finite difference approximation to the diffusion equation

(∂t − κ∆)P (x, t) = 0 . (129)

Of course, ρ satisfies the same equation, and (127) is its solution. Note that
(127,129) are isotropic and translation invariant while the discrete version
respected only cubic symmetries. Also, the diffusion equation conserves the
total probability,

∫
ρ(x, t) dx, because it has the form of a continuity equation,

∂tρ(x, t) = −div j with the current j = −κ∇ρ.
Another way to describe it is to treat ei as a random variable with ⟨ei⟩ = 0

and ⟨eiej⟩ = a2δij, so that x =
∑t/τ

i=1 ei. The probability of the sum (127) is
Gaussian with the variance growing linearly with t.

Random walk is a basis of the statistical theory of fields. One way to see
the relation is to consider the Green function which is the mean time spent
on a given site x:

G(x) =
∞∑
t=0

P (x, t) . (130)

The most natural question is whether this time is finite or infinite. From,
(127) it is immediately clear that the answer depends on the space dimen-
sionality:

∫∞ t−d/2dt diverges for d ≤ 2. It is instructive to see it from the
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discrete version too. Indeed, summing (126) over t as a geometric series one
gets

G(x) =
∫ eikx ddk

1− d−1
∑

cos(aki)
. (131)

It diverges at k → 0 when d ≤ 2. In the limit k → 0 one can also use the
continuous limit, where the Green function has a form

g(x) = lim
a→0

(a2−d/2d)G(x/a) =
∫ ∞

0
dt
∫
eikx−tk2 ddk =

∫ eikx ddk

(2π)dk2
. (132)

We have seen this integral calculating the large-distance correlation function
(89) for the field with Gaussian statistics and k−2 spectral density. At x = 0
we have the variance of fluctuation (91), whose divergence at L→ ∞ in one
and two dimensions means that the long fluctuation are so strong that they
destroy any order, as will be described in more details in Section 8.6 below.
Now, (132) suggests another interpretation: integral divergence means that
the mean time spent by a random walker on any given site is infinite. In other
words, it means that the walker in 1d and 2d returns to any point infinite
number of times. Analogy between the Green function of a random walker
and the correlation function of fluctuating fields appear in the large-scale
limit exploiting a short-correlated nature of a random walk and short-range
interaction of fields.

A path of a random walker behaves rather like a surface than a line. Two-
dimensionality of the random walk is a reflection of the square-root diffusion
law: ⟨x⟩ ∝

√
t. Indeed, one can define the dimensionality of a geometric

object as a relation between its size R and the number N of standard-size
elements(with fixed volume or area) needed to cover it . For a line, N ∝ R,
generally N ∝ Rd. For a random walk, the number of elements is of order of
the number of steps, N ∝ t, while R ∝ x so that d = 2. Surfaces generally
intersect along curves in 3d, they meet at isolated points in 4d and do not
meet at d > 4. That is reflected in special properties of critical phenomena
in 2d (where random walker fills the surface) and 4d (where random walkers
do not meet and hence do not interact)..

To describe the whole statistics of the (fluctuating) time on a site, one
can use a slight generalization which gives the generating function for the
time moments:

G(x, λ) = λ
∞∑
t=0

λt/τP (x, t) =
∫ eikx ddk

λ−1 − d−1
∑

cos(aki)
. (133)
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At λ = 1 it coincides with the Green functions while its derivatives give
moments of time:

⟨(1 + t/τ)n⟩ =
(
∂nG

∂λn

)
λ=1

.

The continuous limit of the generating function,

g(x,m) = lim
a→0

(a2−d/2d)G(x/a, λ) =
∫ eikx ddk

(2π)d(k2 +m2)
, (134)

exactly corresponds to the Ornstein-Zernike approximation of the correlation
function of fluctuations of order parameter away from criticality (with a finite
correlation radius). Here we denoted 1/λ = 1+m2a2/2d so that m plays the
role of the inverse radius of correlation or mass of the quantum particle. Note
that this Green function can be presented as an integral of the probability
density (127) taken with κ = a2/2dτ = 1:

g(x,m) =
∫ ∞

0
e−m2tρ(x, t) dt . (135)

The properties of random walks can be expressed alternatively in terms
of sums over different paths. Let us write the transition probability indi-
cating explicitly the origin: ρ(x, t; 0, 0). Then we can write the convolution
identity which simply states that the walker was certainly somewhere at an
intermediate time t1:

ρ(x, t; 0, 0) =
∫
ρ(x, t;x1, t1)ρ(x1, t1; 0, 0) dx1 . (136)

We now divide the time interval t into an arbitrary large number of intervals
and using (127) we write

ρ(x, t; 0, 0) =
∫

Πn
i=0

dxi+1

[4πκ(ti+1 − ti)]d/2
exp

[
− (xi+1 − xi)

2

4κ(ti+1 − ti)

]

→
∫

Dx(t′) exp
[
− 1

4κ

∫ t

0
dt′ẋ2(t′)

]
. (137)

The last expression is an integral over paths that start at zero and end up at
x at t. Notation Dx(t′) implies integration over the positions at intermediate
times normalized by square roots of the time differences. The exponential it
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gives the weight of every trajectory. By virtue of (135) it leads to a path-
integral expression for the Green function:

g(x,m) =
∫ ∞

0
dt
∫
Dx(t′) exp

{
−
∫ t

0
dt′
[
m2 +

1

4
ẋ2(t′)

]}
. (138)

Comparison of the Green functions (89,134) shows the relation between
the random walk and a free field. This analogy goes beyond the correlation
function to all the statistics. Indeed, much in the same way, the partition
function of a fluctuating field η(x) that takes continuous values in a con-
tinuum limit can be written as a path integral over all realizations of the
field:

Z=
∫
dη1 . . . dηN exp [−βH(η1 . . . ηN)] →

∫
Dη exp [−βH{η(x)}] . (139)

For a Gaussian free field in a discrete case one takes

βH =
1

2

∑
x,x′

η(x)[λ−1δx,x′ − Jx,x′ ]η(x′) (140)

=
1

2

∫
ddkη(k)[λ−1 − d−1

∑
cos(aki)]η(−k) , (141)

where Jx,x′ = 1/2d when |x − x′| = a and Jx,x′ = 0 otherwise. In the
continuous limit one re-normalizes η(x/a) →

√
2dad/2−1η(x), and obtains

(139) with

βH =
1

2

∫
dx
(
m2η2 + |∇η|2

)
. (142)

We did it before in (88). In particular, it gives the Ornstein-Zernike correla-
tion function (134).

Stochastic dynamics of a random walk can thus be seen as statistical
physics in space-time with trajectories playing the role of configurations.

Looking at the transition probability (137), one can also see the analogy bet-
ween the statistical physics of a random walk and quantum mechanics. According
to Feynman, for a quantum non-relativistic particle with a mass M in the exter-
nal potential U(x), the transition amplitude T (x, t; 0, 0) from zero to x during t
is given by the sum over all possible paths connecting the points. Every path is
weighted by the factor exp(iS/h̄) where S is the classical action:

T (x, t; 0, 0) =

∫
Dx(t′) exp

[
i

h̄

∫ t

0
dt′
(
Mẋ2

2
− U(x)

)]
. (143)
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Comparing with (137), we see that the transition probability of a random walk is
given by the transition amplitude of a free quantum particle during an imaginary
time. Note the action is an integral of the Lagrangian Mẋ2/2− U(x) rather than
HamiltonianMẋ2/2+U(x). In quantum theory, one averages over quantum rather
than thermal fluctuations, yet the formal structure of the theory is similar.

This similarity can be also revealed by using the formalism of the transfer
matrix for the systems with nearest neighbor interaction. Indeed, in a nutshell,
quantum mechanics is done by specifying two sets of states |q⟩ and ⟨p|, which
has ortho-normality and completeness: ⟨p|q⟩ = δqp and

∑
q |q⟩⟨q| = 1. Physical

quantities are represented by operators, and measurement corresponds to taking
a trace of the operator over the set of states: traceP=

∑
q⟨q|P |q⟩. One special

operator, called Hamiltonian H, determines the temporal evolution of all other
operators according to P (t) = exp(iHt)P (0) exp(−iHt). The operator T (t) =
exp(iHt) is called time translation operator also called evolution operator. The
quantum-mechanical average of any operator Q is calculated as a trace with the
evolution operator normalized by the trace of the evolution operator:

⟨Q⟩ = traceT (t)Q

Z(t)
, Z(t) = traceT (t) =

∑
a

e−itEa . (144)

The normalization factor is naturally to call the partition function, all the more if
we formally consider it for an imaginary time t = iβ

Z(β) = traceT (iβ) =
∑
a

e−βEa . (145)

If the inverse ”temperature” β goes to infinity then all the sums are dominated by
the ground state, Z(β) ≈ exp(−βE0) and the average in (145) are just expectation
values in the ground state.

That quantum mechanical description can be compared with the transfer-

matrix description of the Ising model in Section 8.5.1 below. For the Ising model,

the sum over two values of σ at every cite is the analog of taking trace in quantum-

mechanical average. If there are m values on the cite, then T is m×m matrix. For

a spin in n-dimensional space (described by so-called O(n) model), trace means

integrating over orientations. We see that the translations along the chain are

analogous to quantum-mechanical translations in (imaginary) time. This analogy

is not restricted to 1d systems, one can consider 2d strips that way too.

6.2 Brownian motion

Let us see how the properties of the random walk and diffusion appear a
physical system We consider the motion of a small particle in a fluid. The
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momentum of the particle, p = Mv, changes because of collisions with the
molecules. When the particle M is much larger than the molecular mass
m then the particle velocity v is small comparing to the typical velocities

of the molecules vT ≃
√
T/m. Then one can write the force f(p) acting

on it as Taylor expansion in p, keeping the first two terms, independent of
p and linear in p: fi(p, t) = fi(0, t) + pj(t)∂fi(0, t)/∂pj(t) (note that we
neglected the dependence of the force of the momentum at earlier times).
Such expansion makes sense if the second term is much smaller than the
first one; then one may ask what is the reason to keep both. The answer
is that molecules hitting standing particle produce force whose average is
zero. The mean momentum of the particle is zero as well. However, random
force by itself would make the squared momentum grow with time exactly
like the squared displacement of a random walker in the previous section. To
describe the particle in an equilibrium with the medium, the force must be
balanced by resistance which is also provided by the medium. That resistance
must be described by the second term, which then may be approximated as
∂fi/∂pj = −λδij. If the particle radius R is larger than the mean free path
ℓ, in calculating resistance, we can consider fluid as a continuous medium
and characterize it by the viscosity η ≃ mnvT ℓ, where n is the concentration
of the molecules. For a slow moving particle, v ≪ vT ℓ/R, the resistance is
given by the Stokes formula

λ = 6πηR/M . (146)

We then obtain
ṗ = f − λp . (147)

The solution of the linear equation (147) is similar to (114):

p(t) =
∫ t

−∞
f(t′)eλ(t

′−t)dt′ . (148)

We must treat the force f(t) as a random function since we do not track
molecules hitting the particle, which makes (147) Langevin equation. We
assume that ⟨f⟩ = 0 and that ⟨f(t′)·f(t′+t)⟩ = 3C(t) decays with t during the
correlation time τ which is much smaller than λ−1. Since the integration time
in (148) is of order λ−1 then the condition λτ ≪ 1 means that the momentum
of a Brownian particle can be considered as a sum of many independent
random numbers (integrals over intervals of order τ) and so it must have a
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Gaussian statistics ρ(p) = (2πσ2)−3/2 exp(−p2/2σ2) where

σ2 = ⟨p2x⟩=⟨p2y⟩=⟨p2z⟩=
∫ ∞

0
C(t1 − t2)e

−λ(t1+t2)dt1dt2

≈
∫ ∞

0
e−2λt dt

∫ 2t

−2t
C(t′) dt′≈ 1

2λ

∫ ∞

−∞
C(t′) dt′ . (149)

On the other hand, equipartition guarantees that ⟨p2x⟩ =MT so that we can
express the friction coefficient via the correlation function of the force fluc-
tuations (a particular case of the fluctuation-dissipation theorem discussed
in Sect. 5.2):

λ =
1

2TM

∫ ∞

−∞
C(t′) dt′ . (150)

Displacement

∆r(t′) = r(t+ t′)− r(t) =
∫ t′

0
v(t′′) dt′′

is also Gaussian with a zero mean. To get its second moment we need the
different-time correlation function of the velocities

⟨v(t) · v(0)⟩ = (3T/M) exp(−λ|t|) (151)

which can be obtained from (148). Note that the friction makes velocity
correlated on a longer timescale than the force. That gives

⟨(∆r)2(t′)⟩ =
∫ t′

0
dt1

∫ t′

0
dt2⟨v(t1)v(t2)⟩ =

6T

Mλ2
(λt′ + e−λt′ − 1) .

The mean squared distance initially grows quadratically (so-called ballistic
regime at λt′ ≪ 1). In the limit of a long time (comparing to the relaxation
time λ−1 rather than to the force correlation time τ) we have the diffusive
growth ⟨(∆r)2⟩ ≈ 6Tt′/Mλ. Generally ⟨(∆r)2⟩ = 2dκt where d is space
dimensionality and κ - diffusivity. In our case d = 3 and then the diffusivity
is as follows: κ = T/Mλ— the Einstein relation. Using (146) one can rewrite
it as follows

κ =
T

Mλ
=

T

6πηR
. (152)
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Note that the diffusivity depends on particle radius, but not mass. Heavier
particles are slower both to start and to stop moving. Measuring diffusion of
particles with a known size one can determine the temperature14.

The probability distribution of displacement at λt′ ≫ 1,

ρ(∆r, t′) = (4πκt′)−3/2 exp[−(∆r)2/4κt′] ,

satisfies the diffusion equation ∂ρ/∂t′ = κ∇2ρ. If we have many particles
initially distributed according to n(r, 0) then their distribution n(r, t) =∫
ρ(r− r′, t)n(r′, 0) dr′, also satisfies the diffusion equation: ∂n/∂t′ = κ∇2n.

In the external field V (q), the particle satisfies the equations

ṗ = −λp+ f − ∂qV , q̇ = p/M . (153)

Note that these equations characterize the system with the Hamiltonian H =
p2/2M+V (q), that interact with the thermostat, which provides friction−λp
and agitation f - the balance between these two terms expressed by (150)
means that the thermostat is in equilibrium.

We now pass from considering individual trajectories to the description
of the ”cloud” of trajectories. Consider the over-damped limit λM ≫ ∂2qqV ,
where we can neglect the acceleration term on timescales exceeding the force
correlation time τ : λp ≫ ṗ. For example, if apply to a charged particle an
electric field E = −∂qV constant in space, then ∂2qqV = 0, so that if we average
(coarse-grain) over times exceeding τ we can neglect acceleration since the
particle move on average with a constant velocity E/λM . In this limit our
second-order equation (148) on q is reduced to the first-order equation:

λp = λM q̇ = f − ∂qV . (154)

We can now derive the equation on the probability distribution ρ(q, t), which
changes with time due to random noise and evolution in the potential, the
two mechanisms can be considered additively. We know that without V ,

q(t)− q(0) = (λM)−1
∫ t

0
f(t′)dt′ , ⟨|q(t)− q(0)|2⟩ = 2Dt ,

14With temperature in degrees, (152) contains the Boltzmann constant, k = κMλ/T ,
which was actually determined by this relation and found constant indeed, i.e. independent
of the medium and the type of particle. That proved the reality of atoms - after all, kT is
the kinetic energy of a single atom.
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and the density ρ(q, t) satisfies the diffusion equation. The dynamical equa-
tion without any randomness, λM q̇ = −∂qV , corresponds to a flow in q-
space with the velocity w = −∂qV/λM . In that flow, density satisfies the
continuity equation ∂tρ = −div ρw = −∂qiwiρ. Together, diffusion and ad-
vection give the so-called Fokker-Planck equation

∂ρ

∂t
= κ∇2ρ+

1

λM

∂

∂qi
ρ
∂V

∂qi
= −div J . (155)

More formally, one can derive this equation by writing the Langevin equation
(154) as q̇i − wi = ηi and taking the random force Gaussian delta-correlated:
⟨ηi(0)ηj(t)⟩ = 2κδijδ(t). Since it is the quantity q̇ − w which is Gaussian now,
then the path integral representation (137) changes into

ρ(q, t; 0, 0) =

∫
Dq(t′) exp

[
− 1

4κ

∫ t

0
dt′|q̇−w|2

]
, (156)

To describe the time change, consider the convolution identity (136) for an infini-
tesimal time shift ϵ, then instead of the path integral we get simply the integral
over the initial position q′. We substitute q̇ = (q− q′)/ϵ into (156) and obtain

ρ(q, t) =

∫
dq′(4πκϵ)−d/2 exp

[
− [q− q′ − ϵw(q′)]2

4κϵ

]
ρ(q′, t− ϵ) . (157)

What is written here is simply that the transition probability is the Gaussian
probability of finding the noise η with the right magnitude to provide for the
transition from q′ to q. We now change integration variable, y = q′ + ϵw(q′)− q,
and keep only the first term in ϵ: dq′ = dy[1− ϵ∂q ·w(q)]. Here ∂q ·w = ∂iwi =
divw. In the resulting expression, we expand the last factor ρ(q′, t− ϵ):

ρ(q, t) ≈ (1− ϵ∂q ·w)

∫
dy(4πκϵ)−d/2e−y2/4κϵρ(q+ y − ϵw, t− ϵ)

≈ (1− ϵ∂q ·w)

∫
dy(4πκϵ)−d/2e−y2/4κϵ

[
ρ(q, t) + (y − ϵw) · ∂qρ(q, t)

+(yiyj − 2ϵyiwj + ϵ2wiwj)∂i∂jρ(q, t)/2− ϵ∂tρ(q, t)
]

= (1− ϵ∂q ·w)[ρ− ϵw · ∂qρ+ ϵκ∆ρ− ϵ∂tρ+O(ϵ2)] , (158)

and obtain (155) collecting terms linear in ϵ. Note that it was necessary to expand

until the quadratic terms in y, which gave the contribution linear in ϵ, namely the

Laplacian, i.e. the diffusion operator.
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The Fokker-Planck equation has a stationary solution which corresponds
to the particle in an external field and in thermal equilibrium with the sur-
rounding molecules:

ρ(q) ∝ exp[−V (q)/λMκ] = exp[−V (q)/T ] . (159)

Apparently it has a Boltzmann-Gibbs form, and it turns into zero the proba-
bility current: J = −ρ∂V/∂q − κ∂ρ/∂q = e−V/T∂(ρeV/T )/∂q = 0. We shall
use the Fokker-Planck equation in the next section for the consideration of
the detailed balance and fluctuation-dissipation relations.

Ma, Sect. 12.7; Kardar Fields, Sect 9.1.

6.3 General fluctuation-dissipation relation

Fluctuation-dissipation theorem and Onsager reciprocity relations treated
small deviations from equilibrium. Recently, a significant generalization of
equilibrium statistical physics appeared for systems with one or few degrees
of freedom deviated arbitrary far from equilibrium. This is under the as-
sumption that the rest of the degrees of freedom is in equilibrium and can be
represented by a thermostat generating thermal noise. This new approach
also allows one to treat non-thermodynamic fluctuations, like the negative
entropy change.

Consider again the over-damped Brownian particle with the coordinate
x(t) in a time-dependent potential V (x, t):

ẋ = −∂xV + η . (160)

Here the random function η(t) can be thought of as representing interaction
with a thermostat with the temperature T so that ⟨η(0)η(t)⟩ = 2Tδ(t). This
equation (used very often in different applications) can be applied to any
macroscopic observable, where one can distinguish a systematic and random
part of the evolution.

The Fokker-Planck equation for the probability ρ(x, t) has the form (155):

∂tρ = T∂2xρ+ ∂x(ρ∂xV ) = −ĤFPρ . (161)

We have introduced the Fokker-Planck operator,

HFP = − ∂

∂x

(
∂V

∂x
+ T

∂

∂x

)
,
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which allows one to exploit another instance of the analogy between quantum
mechanics and statistical physics. We may say that the probability density is
the ψ-function is the x-representation, ρ(x, t) = ⟨x|ψ(t)⟩. In other words, we
consider evolution in the Hilbert space of functions so that we may rewrite
(161) in a Schrödinger representation as d|ψ⟩/dt = −ĤFP |ψ⟩, which has a
formal solution |ψ(t)⟩ = exp(−tHFP )|ψ(0)⟩. The only difference with quan-
tum mechanics is that their time is imaginary (of course, they think that
our time is imaginary). The transition probability is given by the matrix
element:

ρ(x′, t′;x, t) = ⟨x′| exp[(t− t′)HFP )|x⟩ . (162)

Without the coordinate-dependent field V (x), the transition probability is
symmetric, ρ(x′, t;x, 0) = ρ(x, t;x′, 0), which is formally manifested by the
fact that the respective Fokker-Planck operator ∂2x is Hermitian. This pro-
perty is called the detailed balance.

How the detailed balance is modified in an external field? If the potential
V is time independent, then we have a Gibbs steady state which also satis-
fies the detailed balance: the probability current is the (Gibbs) probability
density at the starting point times the transition probability; forward and
backward currents must be equal in equilibrium:

ρ(x′, t;x, 0)e−V (x)/T = ρ(x, t;x′, 0)e−V (x′)/T . (163)

⟨x′|e−tHFP−V/T |x⟩ = ⟨x|e−tHFP−V/T |x′⟩ = ⟨x′|e−V/T−tH†
FP |x⟩ .

Since this must be true for any x, x′ then e−tH†
FP = eV/T e−tHFP e−V/T and

H†
FP ≡

(
∂V

∂x
− T

∂

∂x

)
∂

∂x
= eV/THFP e

−V/T , (164)

i.e. eV/2THFP e
−V/2T is hermitian, which can be checked directly.

If we now allow the potential to change in time then the system goes
away from equilibrium. Consider an ensemble of trajectories starting from
the initial positions taken with the equilibrium Gibbs distribution corre-
sponding to the initial potential: ρ(x, 0) = Z−1

0 exp[−βV (x, 0)]. As time
proceeds and the potential continuously changes, the system is never in equi-
librium, so that ρ(x, t) does not generally have a Gibbs form. Indeed, even
though one can define a time-dependent Gibbs state Z−1

t exp[−βV (x, t)] with
Zt =

∫
exp[−βV (x, t)]dx, one can directly check that it is not any longer

a solution of the Fokker-Planck equation (161) because of the extra term
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∂tρ = −βρ∂tV . Indeed, the distribution needs some time to adjust to the
potential changes and is generally dependent on the history of these. For
example, if we suddenly broaden the potential well, it will take diffusion
(with diffusivity T ) to broaden the distribution. Still, can we find some use
of the Gibbs factor and also have anything generalizing the detailed balance
relation (163) we had in equilibrium? Such relation was found surprisingly
recently despite its generality and relative technical simplicity of derivation.

To find the quantity that has a Gibbs form (i.e. have its probability
determined by the instantaneous partition function Zt), we need to find an
equation which generalizes (161) by having an extra term that will cancel the
time derivative of the potential. It is achieved by considering, apart from a
position x, another random quantity defined as the potential energy change
(or the external work done) during the time t:

Wt =
∫ t

0
dt′
∂V (x(t′), t′)

∂t′
. (165)

The time derivative is partial i.e. taken only with respect to the second
argument. The work is a fluctuating quantity depending on the trajectory
x(t′), which depends on the initial point and noise.

Let us now take many different realizations of the noise η(t), choose initial
x(0) with the Gibbs probability ρ0 and run (160) many times with every
initial data and every noise realization. It will give us many trajectories
having different endpoints x(t) and different energy changes W accumulated
along the way. Now consider the joint probability ρ(x,W, t) to come to x
acquiring energy change W . This two-dimensional probability distribution
satisfies the generalized Fokker-Planck equation, which can be derived as
follows: Similar to the argument preceding (155), we note that the flow
along W in x−W space proceeds with the velocity dW/dt = ∂tV so that the
respective component of the current is ρ∂tV and the equation takes the form

∂tρ = β−1∂2xρ+ ∂x(ρ∂xV )− ∂
W
ρ∂tV , (166)

Since W0 = 0 then the initial condition for (166) is

ρ(x,W, 0) = Z−1
0 exp[−V (x, 0)]δ(W ) . (167)

where Z0 =
∫
exp[−βV (x, 0)] dx. While we cannot find ρ(x,W, t) for ar-

bitrary V (t) we can multiply (166) by exp(−βW ) and integrate over dW .
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Since V (x, t) does not depend on W , we get the closed equation for f(x, t) =∫
dWρ(x,W, t) exp(−βW ):

∂tf = β−1∂2xf + ∂x(f∂xV )− βf∂tV , (168)

Now, this equation does have an exact time-dependent solution f(x, t) =
Z−1

0 exp[−βV (x, t)] where the factor Z−1
0 is chosen to satisfy the initial con-

dition (167). Note that f(x, t) is instantaneously defined by V (x, t), no
history dependence as we have generally in ρ(x, t). In other words, the dis-
tribution weighted by exp(−βWt) looks like Gibbs state, adjusted to the
time-dependent potential at every moment of time. Remark that the en-
tropy is defined only in equilibrium, yet the work divided by temperature
is an analog of the entropy change (production), and the exponent of it is
an analog of the phase volume change. Let us stress that f(x, t) is not a
probability distribution. In particular, its integral over x is not unity but the
mean phase volume change, which remarkably is expressed via equilibrium
partition functions at the ends (Jarzynski 1997):∫

f(x, t)dx =
∫
ρ(x,W, t)e−βWdxdW =

⟨
e−βW

⟩
=
Zt

Z0

=

∫
e−βV (x,t)dx∫
e−βV (x,0)dx

. (169)

Here the bracket means double averaging, over the initial distribution ρ(x, 0)
and over the different realizations of the Gaussian noise η(t) during the
time interval (0, t). We can also obtain all weighted moments of x like
⟨xn exp(−βWt)⟩ 15. One can introduce the free energy Ft = −T lnZt, so
that Zt/Z0 = exp[β(F0 − Ft)].

Let us reflect. We started from a Gibbs distribution but considered ar-
bitrary temporal evolution of the potential. Therefore, our distribution was
arbitrarily far from equilibrium during the evolution. And yet, to obtain the
mean exponent of the work done, it is enough to know the partition functions
of the equilibrium Gibbs distributions corresponding to the potential at the
beginning and at the end (even though the system is not in equilibrium at
the end). This is, of course, because the further relaxation to the equilibrium
at the end value of the potential is not accompanied by doing any work. Re-
markable that there is no dependence on the intermediate times. One can
also look from it from the opposite perspective: no less remarkable is that
one can determine the truly equilibrium property, the free energy difference,
from non-equilibrium measurements.

15I thank R. Chetrite for this derivation.
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We can write for the dissipation Wd = W − Ft + F0 (the work minus the
free energy change) the following identity:

⟨e−βWd⟩ =
∫
dWdρ(Wd) exp(−βWd) = 1 , (170)

which is a generalization of the second law of thermodynamics. Indeed,
the mean dissipation divided by temperature is the thermodynamic entropy
change. Using the Jensen inequality ⟨eA⟩ ≥ e⟨A⟩, one can obtain the usual
second law of thermodynamics in the following form:

⟨Wd⟩ ≥ 0 .

So the modern form of the second of thermodynamics is an equality rather
than an inequality. Compare it with the re-formulation of the second law in
Section 3.3 as a conservation law rather than a law of increase.

Moreover, the Jarzynski relation is a generalization of the fluctuation-
dissipation theorem, which can be derived from it for small deviations from
equilibrium. Namely, we can consider V (x, t) = V0(x)− f(t)x, consider limit
of f → 0, expand (169) up to the second-order terms in f and get (106).

One can also relate dissipation to irreversibility by stating that the proba-
bility to absorb −Wd in a time-reversed process is as follows (Crooks 1999):

ρ†(−Wd) = ρ(Wd)e
−βWd . (171)

Integrating this relation one obtains (169,170).
All that can be generalized for the case when information processing is

involved, which allows one to decrease the work and the dissipation below
the free energy difference: ⟨e−βWd−I⟩ =

∫
dWdρ(Wd) exp(−βWd) = 1 (Sagawa

and Uedo, 2010; Sagawa 2012).
Another generalization is from the overdamped case to the full (Kramers) pro-

blem (153). The distribution in the phase space satisfies the equation ∂tρ(p,q, t) =
−ĤKρ where

ĤK = pi
∂

∂qi
+
∂V

∂qi

∂

∂pi
− ∂

∂qi

(
T
∂

∂qi
+ λpi

)
. (172)

We put M = 1 for simplicity so that p = q̇. For the time-independent potential
the detailed balance has the following form

⟨q′,p′|e−tHK |q,p⟩e−βH(q,p) = ⟨q,−p|e−tHK |q′,−p′⟩e−βH(q′,−p′) . (173)
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where the Hamiltonian is H = p2/2M + V (q). Comparing (173) with (163) we
see that time reversal in this case requires also reflecting momenta. One can write
(173) similar to (164):

H†
K = eβHHFP e

−βH , (174)

In a multi-dimensional case, apart from making the potential time-dependent,
there is another way to deviate the system from equilibrium: to apply in addition
to the random thermal force f(t) a coordinate-dependent force F(q, t) which is
non-potential (not a gradient of any scalar). Again, there is no Gibbs steady state
and the detailed balance (173,174) is now violated in the following way:

H†
K = eβHHFP e

−βH + β(F · p) , (175)

The last term is again the power (F · p) = (F · q̇) divided by temperature i.e. the
entropy production rate. A close analog of the Jarzynski relation can be formulated
for the production rate averaged during the time t:

σt =
1

tT

∫ t

0
(F · q̇) dt . (176)

Would F = dV/dq, that is a gradient of a scalar, then (F · q̇) = dV (q(t))/dt.
The quantity (176) fluctuates from realization to realization. The probabilities
P (σt) satisfy the relation, analogous to (171), which we give without derivation
(see Kurchan for details)

P (σt)

P (−σt)
∝ etσt . (177)

The second law of thermodynamics states that to keep the system away from
equilibrium, the external force F must on average do a positive work. Over a
long time we thus expect σt to be overwhelmingly positive, yet fluctuations do
happen. The relation (177) shows how low is the probability to observe a negative
entropy production rate - this probability decays exponentially with the time of
observation. Such fluctuations were unobservable in classical macroscopic ther-
modynamics, but they are often very important in modern applications to nano
and bio objects. In the limit t → ∞, when the probability of the integral (176)
must have a large-deviation form, P (σt) ∝ exp[−tH(σt)], so that (177) means that
H(σt)−H(−σt) = −σt, as if P (σt) was Gaussian.

One calls (171,177) detailed fluctuation-dissipation relations since they are

stronger than integral relations of the type (169,170). Indeed, it is straightforward

to derive ⟨exp(−tσt)⟩ = 1 from (177).
The relation similar to (177) can be derived for any system symmetric with

respect to some transformation, to which we add perturbation anti-symmetric with
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respect to that transformation. Consider a system with the variables s1, . . . , sN
and the even energy: E0(s) = E0(−s). Consider the energy perturbed by an odd
term, E = E0 − hM/2, where M(s) =

∑
si = −M(−s). The probability of the

perturbation P [M(s)] satisfies the direct analog of (177), which is obtained by
changing the integration variable s → −s:

P (a)=

∫
dsδ[M(s)−a]eβ(ha−E0)=

∫
dsδ[M(s)+a]e−β(ha+E0)=P (−a)e−2βha .

The validity condition for the results in this Section is that the interaction with the
thermostat is represented by noise independent of the the evolution of the degrees
of freedom under consideration.

Take-home lesson of this whole Chapter: no fluctuations - no dissipation.

91



7 Ideal Gases

We now go on to apply a general theory given in the previous chapters. Our
ultimate goal is to understand how interaction between particles tries to impose
order while fluctuations try to destroy it. As will be clear, it can be understood as
competition between energy in entropy in setting minimum of the free energy. We
shall be particularly be interested in the phase transitions where order appears.

Let us first neglect the potential energy of interaction completely. Note though
that molecules in the same state do have quantum interaction so generally one can-
not consider particles completely independent. If however we consider all molecules
in the same state as a subsystem then such subsystems do not interact. Since the
number of particles in a given state na is not fixed, we need to describe such set
by a grand canonical ensemble (with V, µ and T = 1/β as variables). Using the
distribution (30) with N = na and E = naϵa one expresses the probability of
occupation numbers:

w(na) = exp{β[Ωa + na(µ− ϵa)]} . (178)

Consider now a dilute gas, when all na ≪ 1. Then the probability of no particles
in the given state is close to unity, w0 = exp(βΩa) ≈ 1, and the probability of
having one particle and the average number of particles is given by

n̄a =
∑
na

w(na)na ≈ w1 ≈ exp

(
µ− ϵa
T

)
, (179)

which is called Boltzmann distribution. It is the same as (27) for independent
systems, only the normalization factor is expressed here via the chemical potential.

7.1 Boltzmann (classical) gas

The focus in this section is on the specific heat CV and its relation to the number
of effective degrees of freedom. Remind that the variance of the energy fluctuation
is ⟨(∆E)2⟩ = T 2CV . Let us neglect quantum exchange interaction of particles
(atoms or molecules) in the same state which requires the occupation numbers of
any quantum state to be small, which in turn requires the number of states V p3/h̄3

to be much larger than the number of molecules N . Since the typical momentum
is p ≃

√
mT we get the condition

(mT )3/2 ≫ h̄3n . (180)

To get the feeling of the order of magnitudes, one can make an estimate with
M = 1.6·10−24g (proton) and n = 1021cm−3 which gives T ≫ h̄2n2/3/kM ≃ 0.5K.
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Another way to interpret (180) is to say that the mean distance between molecules
n−1/3 must be much larger than the wavelength λ = (2πh̄2/MT )1/2. In this case,
one can pass from the distribution over the quantum states to the distribution in
the phase space:

n̄(p, q) = exp

[
µ− ϵ(p, q)

T

]
. (181)

In particular, the distribution over momenta is always quasi-classical for the Boltz-
mann gas. Indeed, the distance between energy levels is determined by the size of
the box, ∆E ≃ h2M−1V −2/3 ≪ h2M−1(N/V )2/3 which is much less than tempe-
rature according to (180). To put it simply, if the thermal quantum wavelength
h/p ≃ h(MT )−1/2 is less than the distance between particles it is also less than
the size of the box. We conclude that the Boltzmann gas has the Maxwell dis-
tribution over momenta. If such is the case even in the external field U(q) we
have n(q, p) = exp{[µ− ϵ(p, q)]/T} = exp{[µ− U(q)− p2/2M ]/T}. That gives, in
particular, the particle density in space n(r) = n0 exp[−U(r)/T ] where n0 is the
concentration without field. In the uniform gravity field we get the barometric
formula n(z) = n(0) exp(−Mgz/T ).

Since now molecules do not interact then we can treat them as members of the
Gibbs canonical ensemble (you probably noticed by now that we are consistently
looking for ways to divide every new system we consider into independent parts).
The partition function of the Boltzmann gas can be obtained from the partition
function of a single particle (like we did for two-level system and oscillator) with
the only difference that particles are now real and indistinguishable so that we
must divide the sum by the number of transmutations:

Z =
1

N !

[∑
a

exp(−ϵa/T )
]N

.

Using the Stirling formula lnN ! ≈ N ln(N/e) we write the free energy

F = −NT ln

[
e

N

∑
a

exp(−ϵa/T )
]
. (182)

Since the motion of the particle as a whole is always quasi-classical for the Boltz-
mann gas, one can single out the kinetic energy: ϵa = p2/2m + ϵ′a. If in addition
there is no external field (so that ϵ′a describes rotation and the internal degrees
of freedom of the particle) then one can integrate over d3pd3q/h3 and get for the
ideal gas:

F = −NT ln

[
eV

N

(
MT

2πh̄2

)3/2∑
a

exp(−ϵ′a/T )
]
. (183)
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To complete the computation we need to specify the internal structure of the
particle. Note though that

∑
a exp(−ϵ′a/T ) depends only on temperature so that

we can already get the equation of state P = −∂F/∂V = NT/V .
Mono-atomic gas. At the temperatures much less than the distance to the

first excited electronic state, all the atoms will be in the ground state (we put
ϵ0 = 0). That means that the energies are much less than Rydberg ε0 = e2/aB =
me4/h̄2 ≃ 4·10−11erg and the temperatures are less than ε0/k ≃ 3·105K (otherwise
atoms are ionized). Note that m = 9 · 10−28g is the electron mass here.

If there is neither orbital angular momentum nor spin (L = S = 0 — such
are the atoms of noble gases) we get

∑
a exp(−ϵ′a/T ) = 1 as the ground state is

non-degenerate and

F = −NT ln

[
eV

N

(
mT

2πh̄2

)3/2
]
= −NT ln

eV

N
−NcvT lnT −NζT , (184)

cv = 3/2 , ζ =
3

2
ln

m

2πh̄2
. (185)

Here ζ is called the chemical constant. Note that for F = AT +BT lnT the energy
is linear E = F −T∂F/∂T = BT that is the specific heat, Cv = B, is independent
of temperature. The formulas thus derived allow one to derive the conditions for
the Boltzmann statistics to be applicable which requires n̄a ≪ 1. Evidently, it is
enough to require exp(µ/T ) ≪ 1 where

µ=
E−TS+PV

N
=
F+PV

N
=
F+NT

N
=T ln

N
V

(
2πh̄2

mT

)3/2
 = T ln(nλ3) .

Using such µ we get (MT )3/2 ≫ h3n. Note that µ < 0. As T grows, µ/T is getting
very large negative.

If there is a nonzero spin, it can be in 2S+1 states. Even though all these states
have the same energy, they must be counted in the partition function, which adds
ζS = ln(2S +1) to the chemical constant (185). If both L and S are nonzero then
the total angular momentum J determines the fine structure of levels ϵJ . This
is the energy of spin-orbital and spin-spin interactions, both relativistic effects,
so that the energy can be estimated as ϵJ ≃ ε0(v/c)

2 ≃ ε0(Zne
2/h̄c)2. For not

very high nuclei charge Zn, it is generally comparable with the room temperature
ϵJ/k ≃ 200÷300K. Every such level has a degeneracy 2J+1 so that the respective
partition function

z =
∑
J

(2J + 1) exp(−ϵJ/T ) .

Without actually specifying ϵJ we can determine this sum in two limits of large
and small temperature. If ∀J one has T ≫ ϵJ , then exp(−ϵJ/T ) ≈ 1 and z =
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(2S+1)(2L+1) which is the total number of components of the fine level structure.
In this case

ζSL = ln(2S + 1)(2L+ 1) .

In the opposite limit of temperature smaller than all the fine structure level diffe-
rences, only the ground state with ϵJ0 = 0 contributes and one gets

ζJ = ln(2J0 + 1) ,

where J0 is the total angular momentum in the ground state.

ζ

T

ζ

ζ

cv

J

3/2

T

SL

Note that cv = 3/2 in both limits that is the specific heat is constant at low and
high temperatures (no contribution of electron degrees of freedom) having some
maximum in between (due to contributions of the electrons). We have already
seen this in considering two-level system and the lesson is general: if one has a
finite number of levels then they do not contribute to the specific heat both at low
and high temperatures. Indeed, the partition function ζ(T ) =

∑k
a=0 exp(−ϵa/T )

is constant both at low at high temperatures: it is equal to the degeneracy of the
lowest level at T ≪ ϵ0 and to the total number of states (with their degeneracies)
at T ≫ ϵk.

Specific heat of diatomic molecules. We need to calculate the sum over
the internal degrees of freedom in (183). We assume the temperature to be smaller
than the energy of dissociation (which is typically of the order of electronic excited
states). Since most molecules have S = L = 0 in the ground state we disregard
electronic states in what follows. The internal excitations of the molecule are
thus vibrations and rotations with the energy ϵ′a characterized by two quantum
numbers, j and K:

ϵjK = h̄ω(j + 1/2) +

(
h̄2/2I

)
K(K + 1) . (186)

Here ω is the frequency of vibrations and I is the moment of inertia for rotations.
We estimate the parameters here assuming the typical scale to be Bohr radius
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aB = h̄2/me2 ≃ 0.5 · 10−8cm and the typical energy to be Rydberg ε0 = e2/aB =
me4/h̄2 ≃ 4 · 10−11erg. Now the frequency of the atomic oscillations is given by
the ratio of the Coulomb restoring force and the mass of the ion:

ω ≃
√

ε0
a2BM

=

√
e2

a3BM
.

Rotational energy is determined by the moment of inertia I ≃Ma2B. We may thus
estimate the typical energies of vibrations and rotations as follows:

h̄ω ≃ ε0

√
m

M
,

h̄2

I
≃ ε0

m

M
. (187)

Sincem/M ≃ 10−4 then both energies are much smaller than the energy of dissoci-
ation ≃ ϵ0 and the rotational energy is smaller than the vibrational one so that ro-
tations start to contribute at lower temperatures: ε0/k ≃ 3·105K, h̄ω/k ≃ 3·103K
and h̄2/Ik ≃ 30K.

To calculate the contribution of rotations one ought to calculate the partition
function

zrot =
∑
K

(2K + 1) exp

(
− h̄

2K(K + 1)

2IT

)
. (188)

Again, when temperature is much smaller than the distance to the first le-
vel, T ≪ h̄2/2I, the specific heat must be exponentially small. Indeed, retai-
ning only two first terms in the sum (188), we get zrot = 1 + 3 exp(−h̄2/IT )
which gives in the same approximation Frot = −3NT exp(−h̄2/IT ) and crot =
3(h̄2/IT )2 exp(−h̄2/IT ). We thus see that at low temperatures diatomic gas be-
haves an mono-atomic.

At large temperatures, T ≫ h̄2/2I, the terms with large K give the main
contribution to the sum (188). They can be treated quasi-classically replacing the
sum by the integral:

zrot =

∫ ∞

0
dK(2K + 1) exp

(
− h̄

2K(K + 1)

2IT

)
=

2IT

h̄2
. (189)

That gives the constant specific heat crot = 1. The harmonic oscillator was con-
sidered in Sect. 2.5.2. In the quasi-classical limit, h̄ω ≪ T , the partition function
of N independent oscillators is Z(T,N) = ZN

1 (T ) = (T/h̄ω)N , the free energy
F = NT ln(h̄ω/T ) and the mean energy from (40): E = NT . The specific heat
CV = N .

For a quantum case, the energy levels are given by En = h̄ω(n + 1/2). The
single-oscillator partition function

Z1(T ) =
∞∑
n=0

exp[−h̄ω(n+ 1/2)/T ] =
1

2 sinh(h̄ω/2T )
(190)
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gives again Z(T,N) = ZN
1 (T ) and F (T,N) = NT ln[2 sinh(h̄ω/2T )] = Nh̄ω/2 +

NT ln[1− exp(−h̄ω/T ). The energy now is

E = Nh̄ω/2 +Nh̄ω[exp(h̄ω/T )− 1]−1

where one sees the contribution of zero quantum oscillations and the breakdown
of classical equipartition. The specific heat (per molecule) of vibrations is thus
as follows: cvib = (h̄ω/T )2 exp(h̄ω/T )[exp(h̄ω/T ) − 1]−2. At T ≪ h̄ω: we have
CV ∝ exp(−h̄ω/T ). At large T we have classical equipartition (every oscillator
has two degrees of freedom so it has T in energy and 1 in CV ).

The resulting specific heat of the diatomic molecule, cv = 3/2 + crot + cvibr,
is shown on the figure: Note that for h̄2/I < T ≪ h̄ω the specific heat (weakly)

Ι/h T

Cv

2

3/2

7/2

5/2

h ω

Figure 3: Specific heat of a diatomic molecule as a function of temperature.

decreases because the distance between rotational levels increases with energy so
that the level density (which is actually cv) decreases with temperature.

For (non-linear) molecules with N > 2 atoms we have 3 translations, 3 ro-
tations and 6N − 6 vibrational degrees of freedom (3N momenta and out of
total 3N coordinates one subtracts 3 for the motion as a whole and 3 for ro-
tations). That makes for the high-temperature specific heat cv = ctr+crot+cvib =
3/2+3/2+3N−3 = 3N . Indeed, every variable (i.e. every degree of freedom) that
enters ϵ(p, q), which is quadratic in p, q, contributes 1/2 to cv. Translation and
rotation each contributes only momentum and thus gives 1/2 while each vibration
contributes both momentum and coordinate (i.e. kinetic and potential energy)
and gives 1.

Landau & Lifshitz, Sects. 47, 49, 51.
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7.2 Fermi and Bose gases

Like we did at the beginning of the Section 7 we consider all particles at the same
quantum state as Gibbs subsystem and apply the grand canonical distribution
with the potential

Ωa = −T ln
∑
na

exp[na(µ− ϵa)/T ] . (191)

Here the sum is over all possible occupation numbers na. For fermions, there are
only two terms in the sum with na = 0, 1 so that

Ωa = −T ln {1 + exp[β(µ− ϵa)]} .

For bosons, one must sum the infinite geometric progression (which converges when
µ < 0) to get Ωa = T ln {1− exp[β(µ− ϵa)]}. Remind that Ω depends on T, V, µ.
The average number of particles in the state with the energy ϵ is thus

n̄(ϵ) = −∂Ωa

∂µ
=

1

exp[β(ϵ− µ)]± 1
. (192)

Upper sign here and in the subsequent formulas corresponds to the Fermi statis-
tics, lower to Bose. Note that at exp[β(ϵ − µ)] ≫ 1 both distributions turn into
Boltzmann distribution (179). The thermodynamic potential of the whole system
is obtained by summing over the states

Ω = ∓T
∑
a

ln
[
1± eβ(µ−ϵa)

]
. (193)

Fermi and Bose distributions are generally applied to elementary particles
(electrons, nucleons or photons) or quasiparticles (phonons) since atomic and mo-
lecular gases are described by the Boltzmann distribution (with the exception of
ultra-cold atoms in optical traps). For elementary particle, the energy is kinetic
energy, ϵ = p2/2m, which is always quasi-classical (that is the thermal wavelength
is always smaller than the size of the box but can now be comparable to the distance
between particles). In this case we may pass from summation to the integration
over the phase space with the only addition that particles are also distinguished
by the direction of the spin s so there are g = 2s + 1 particles in the elementary
sell of the phase space. We thus replace (192) by

dN(p, q) =
gdpxdpydpzdxdydxh

−3

exp[β(ϵ− µ)]± 1
. (194)

Integrating over volume we get the quantum analog of the Maxwell distribu-
tion:

dN(ϵ) =
gV m3/2

√
2π2h̄3

√
ϵ dϵ

exp[β(ϵ− µ)]± 1
. (195)
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In the same way we rewrite (193):

Ω = ∓gV Tm
3/2

√
2π2h̄3

∫ ∞

0

√
ϵ ln

[
1± eβ(µ−ϵ)

]
dϵ

= −2

3

gV m3/2

√
2π2h̄3

∫ ∞

0

ϵ3/2dϵ

exp[β(ϵ− µ)]± 1
= −2

3

∫ ∞

0
ϵ dN(ϵ) = −2

3
E. (196)

Since also Ω = −PV we get the equation of state

PV =
2

3
E . (197)

We see that this relation is the same as for a classical gas, it actually is true for
any non-interacting particles with ϵ = p2/2m in 3-dimensional space. Indeed,
consider a cube with the side l. Every particle hits a wall |px|/2ml times per
unit time transferring the momentum 2|px| in every hit. The pressure is the total
momentum transferred per unit time p2x/ml divided by the wall area l2:

P =
N∑
i=1

p2ix
ml3

=
N∑
i=1

p2i
3ml3

=
2E

3V
. (198)

So at the same energy all ideal gases have the same pressure. How different are
their pressures at the same temperature? In the limit of Boltzmann statistics we
have E = 3NT/2 so that (197) reproduces PV = NT . Let us obtain the (small)
quantum corrections to the pressure assuming exp(µ/T ) ≪ 1. Expanding integral
in (196)

∞∫
0

ϵ3/2dϵ

eβ(ϵ−µ) ± 1
≈

∞∫
0

ϵ3/2eβ(µ−ϵ)
[
1∓ eβ(µ−ϵ)

]
dϵ =

3
√
π

4β5/2
eβµ

(
1∓ 2−5/2eβµ

)
,

and substituting Boltzmann expression for µ we get

PV = NT

[
1± π3/2

2g

N

V

h3

(mT )3/2

]
= NT

[
1± nλ3/4

√
2
]
. (199)

Non-surprisingly, the small factor here the ratio of the thermal wavelength cube to
the specific volume. This is the first two term of the expansion in the dilute limit si-
milar to the virial expansion we shall do for interacting particles in Section 8.2. We
see that quantum effects (actually, the symmetry properties of the multi-particle
wave function) give some effective attraction between bosons and repulsion bet-
ween fermions. One should resist temptation to interpret it dynamically assuming
that fermions repel each other while bosons attract. Two fermions at different
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levels have no interaction whatsoever. The pressure difference is of purely entropic
nature and can be interpreted as follows. As we saw from (197), for a given energy
the pressure is the same for bosons and fermions. However, relative to the classical
gas, the entropy grows faster with energy for fermions and slower for bosons so that
the temperature, T = ∂E/∂S, is lower for fermions and higher for bosons at the
same energy. Since ∂T/∂E = 1/C > 0 for stability, then at a given temperature
the energy and pressure are higher for fermions.

Landau & Lifshitz, Sects. 53-56.

7.2.1 Degenerate Fermi Gas

The main goal of the theory here is to describe the electrons in the metals (it is
also applied to the Thomas-Fermi model of electrons in large atoms, to protons
and neutrons in large nucleus, to electrons in white dwarf stars, to neutron stars
and early Universe). Drude and Lorents at the beginning of 20th century applied
Boltzmann distribution and obtained decent results for conductivity but disastrous
discrepancy for the specific heat (which they expected to be 3/2 per electron). That
was cleared out by Sommerfeld in 1928 with the help of Fermi-Dirac distribution.
The energy of an electron in a metal is comparable to Rydberg and so is the
chemical potential (which is positive for degenerate Fermi gas in distinction from
Boltzmann and Bose gases, since one increases energy by putting extra particle
into the system, see below). Therefore, for most temperatures we may assume
T ≪ µ so that the Fermi distribution is close to the step function:

F

n
 T

ε
ε

At T = 0 electrons fill all the momenta up to pF that can be expressed via the
concentration (g = 2 for s = 1/2):

N

V
= 2

4π

h3

∫ pF

0
p2dp =

p3F
3π2h̄3

, (200)

which gives the Fermi energy

ϵF = (3π2)2/3
h̄2

2m

(
N

V

)2/3

. (201)
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Indeed, the Fermi distribution n̄(ϵ) = (exp[β(ϵ − µ)] + 1)−1 at T = 0 turns into
a step function n̄(ϵ) = 1 for ϵ < µ and n̄(ϵ) = 0 for ϵ > µ. We thus see that the
chemical potential at T = 0 coincides with the Fermi energy. Putting already one
electron per unit cell and taking N/V ≃ 1021 one estimates

ϵF
k

≃ 10
10−54

2 · 10−27

1014

1.3 · 10−16
≃ 104K.

Condition T ≪ ϵF is evidently opposite to (180). Note that the condition of
ideality requires that the electrostatic energy Ze2/a is much less than ϵF where
Ze is the charge of ion and a ≃ (ZV/N)1/3 is the mean distance between electrons
and ions. We see that the condition of ideality, N/V ≫ Z2(e2m/h̄2)3, surprisingly
improves with increasing concentration because the kinetic energy p2F /2m ∝ n2/3

grows faster than the potential energy Ze2/a ∝ n1/3. Note nevertheless that in
most metals the interaction is substantial, why one can still use Fermi distribution
(only introducing an effective electron mass) is the subject of Landau theory of
Fermi liquids to be described in the course of condensed matter physics (in a
nutshell, it is because the main effect of interaction is reduced to some mean
effective periodic field).

To obtain the specific heat, Cv = (∂E/∂T )V,N one must find E(T, V,N). Since
it corresponds to the canonical description, a straightforward way is to find the
free energy and then express everything through it. We shall use it in the next
subsection for bosons. Here we demonstrate another way: exclude µ from two
relations, (195) and (196):

N =
2V m3/2

√
2π2h̄3

∫ ∞

0

√
ϵdϵ

exp[β(ϵ− µ)] + 1
,

E =
2V m3/2

√
2π2h̄3

∫ ∞

0

ϵ3/2dϵ

exp[β(ϵ− µ)] + 1
.

At T ≪ µ ≈ ϵF this can be done perturbatively using the formula∫ ∞

0

f(ϵ) dϵ

eβ(ϵ−µ) + 1
=

∫ µ

0

f(µ− z)dz

e−βz + 1
+

∫ ∞

0

f(µ+ z)dz

eβz + 1
=

∫ µ

0
f(ϵ) dϵ

+

∫ µ

0

f(µ− z)dz

eβz + 1
+

∫ ∞

0

f(µ+ z)dz

eβz + 1
≈
∫ µ

0
f(ϵ) dϵ+

π2T 2f ′(µ

6
) , (202)

which gives

N =
2V m3/2

√
2π2h̄3

2

3
µ3/2

(
1 + π2T 2/8µ2

)
,

E =
2V m3/2

√
2π2h̄3

2

5
µ5/2

(
1 + 5π2T 2/8µ2

)
.
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From the first equation we find µ(N,T ) perturbatively

µ = ϵF
(
1− π2T 2/8ϵ2F

)2/3
≈ ϵF

(
1− π2T 2/12ϵ2F

)
.

We see that the chemical potential of the Fermi gas decreases with temperature.
Since it must be negative at large T when Boltzmann statistics apply, it changes
sign at T ≃ ϵF . We now substitute µ(T ) into the second equation:

E =
3

5
NϵF

(
1 + 5π2T 2/12ϵ2F

)
, (203)

CV =
π2

2
N
T

ϵF
. (204)

We see that CV ≪ N and it goes to zero when T → 0 (as well as entropy) since the
number of electrons that can participate in thermal motion decreases ∝ T . One
sees that only fraction ≃ T/ϵF of all electrons participates in thermal exchange.
Another important point to stress is that the energy (and PV ) are much larger
than NT , the consequence is that the fermionic nature of electrons is what actually
determines the resistance of metals (and neutron stars) to compression. For an
electron density in metals, n ≃ 1022cm−3, we get

P ≈ 2nϵF
5

= (3π2)2/3
h̄2

5m
n5/3 ≃ 104atm .

Landau & Lifshitz, Sects. 57, 58 and Pathria 8.3.

7.2.2 Photons

Consider electromagnetic radiation in an empty cavity kept at the temperature T .
Since electromagnetic waves are linear they do not interact. Without interaction,
any distribution is possible. To establish equilibrium distribution, waves must
interact with something that has a finite temperature. Thermalization of radiation
comes from interaction with walls (absorption and re-emission)16. One can derive
the equation of state without all the formalism of the partition function. Indeed,
consider the plane electromagnetic wave with the fields having amplitudes E and
B. The average energy density is (E2 + B2)/2 = E2 while the momentum flux
modulus is |E × B| = E2. The radiation field in the box can be considered as
incoherent superposition of plane wave propagating in all directions. Since all

16It is meaningless to take perfect mirror walls which do not change the frequency of
light under reflection and formally correspond to zero T .
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waves contribute the energy density and only one-third of the waves contribute
the radiation pressure on any wall then

PV = E/3 . (205)

In a quantum consideration we treat electromagnetic waves as photons which
are massless particles with the spin 1 that can have only two independent orienta-
tions (correspond to two independent polarizations of a classical electromagnetic
wave). The energy is related to the momentum by ϵ = cp. Now, exactly as we
did for particles [where the law ϵ = p2/2m gave PV = 2E/3 — see (198)] we can
derive (205) considering17 that every incident photon brings momentum 2p cos θ to
the wall, that the normal velocity is c cos θ and integrating

∫
cos2 θ sin θ dθ. Photon

pressure is relevant inside the stars, particularly inside the Sun.
Let us now apply the Bose distribution to the system of photons in a cavity.

Since the number of photons is not fixed then a minimum of the free energy,
F (T, V,N), requires zero chemical potential: (∂F/∂N)T,V = µ = 0 (if the theater
door is wide open so that people can freely enter and exit, the ticket price is zero).
The Bose distribution over the quantum states with fixed polarization, momentum
h̄k and energy ϵ = h̄ω = h̄ck is called Planck distribution

n̄k =
1

eh̄ω/T − 1
. (206)

At T ≫ h̄ω it gives the Rayleigh-Jeans distribution h̄ωn̄k = T which is classical
equipartition. Assuming cavity large we consider the distribution over wave vectors
continuous. Multiplying by 2 (the number of polarizations) we get the spectral
distribution and the total energy

dEω = h̄ck
2V

(2π)3
4πk2dk

eh̄ck/T − 1
=

V h̄

π2c3
ω3dω

eh̄ω/T − 1
. (207)

E =
4σ

c
V T 4 , (208)

where σ = π2/60h̄3c2 is the Stephan-Boltzmann constant. The specific heat cv ∝
T 3 - indeed, the phase volume is k3 and the typical wavenumber k ∝ T . Since
P = 4σT 4/3c depends only on temperature, cP does not exist (may be considered
infinite). We consider fixed temperature so that the relevant potential is F (= Ω for

17This consideration is not restricted to bosons. Indeed, ultra-relativistic fermions have
ϵ = cp and P = E/3V , e.g. electrons in graphene. In the relativistic theory, energy and
momentum are parts of the energy-momentum tensor whose trace must be positive, which
requires cp ≤ ϵ and P ≤ E/3V , where E is the total energy including the rest mass Nmc2,
L&L 61.
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µ = 0). It is derived from energy using S = −∂F/∂T and F+TS = F−T∂F/∂T =
−T 2∂(F/T )/∂T = E, which gives F (T ) = −T

∫ T E(T1)T
−2
1 dT1 = −E/3 ∝ V T 4

and entropy S = −∂F/∂T ∝ V T 3 that is the Nernst law is satisfied: S → 0 when
T → 0. Under adiabatic compression or expansion of radiation, entropy constancy
requires V T 3 =const and PV 4/3 =const.

A small orifice in the cavity absorbs all the incident light like a black body. Of
course, such orifice is only black when illuminated. When we do not shine a light
on it, but observe what comes out of such a hole, it is called black-body radiation.
What color is black? Depends the temperature. Indeed, the radiation is in thermal
equilibrium with the distribution (207) that has a maximum at h̄ωm = 2.8T (one
can estimate the Sun surface temperature by looking at its color). The energy
flux from a unit surface of the hole is the energy density times c and times the
geometric factor

I =
cE

V

∫ π/2

0
cos θ sin θ dθ =

c

4

E

V
= σT 4 . (209)

Landau & Lifshitz, Sect. 63 and Huang, Sect. 12.1.

7.2.3 Phonons

The specific heat of a crystal lattice can be calculated using the powerful idea of
quasi-particles: turning the set of strongly interacting atoms into a set of weakly in-
teracting waves. In this way one considers the oscillations of the atoms as acoustic
waves with three branches (two transversal and one longitudinal) ωi = uik where
ui is the respective sound velocity. Debye took this expression for the spectrum
and imposed a maximal frequency ωmax so that the total number of degrees of
freedom is equal to 3 times the number of atoms:

4πV

(2π)3

3∑
i=1

ωmax∫
0

ω2dω

u3i
=
V ω3

max

2π2u3
= 3N . (210)

Here we introduced some effective sound velocity u defined by 3u−3 = 2u−3
t +u−3

l .
One usually introduces the Debye temperature

Θ = h̄ωmax = h̄u(6π2N/V )1/3 ≃ h̄u/a , (211)

where a is the lattice constant.
We can now write the energy of lattice vibrations using the Planck distribution

(since the number of phonons is indefinite, µ = 0)

E=
3V

2π2u3

ωmax∫
0

h̄ω

(
1

2
+

1

exp(h̄ω/T )−1

)
ω2dω=

9NΘ

8
+3NTD

(
Θ

T

)
, (212)
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D(x) =
3

x3

∫ x

0

z3dz

ez − 1
=

{
1 for x≪ 1 ,
π4/5x3 for x≫ 1 .

At T ≪ Θ for the specific heat we have the same cubic law as for photons:

C = N
12π4

5

T 3

Θ3
. (213)

For liquids, there is only one (longitudinal) branch of phonons so C = N(4π4/5)(T/Θ)3

which works well for He IV at low temperatures.
At T ≫ Θ we have classical specific heat (Dulong-Petit law) C = 3N . Debye

temperatures of different solids are between 100 and 1000 degrees Kelvin. We can
also write the free energy of the phonons as a sum/integral over frequencies of the
single oscillator expression:

F =9NT

(
T

Θ

)3
Θ/T∫
0

z2 ln
(
1− e−z

)
dz=NT

[
3 ln

(
1−e−Θ/T

)
−D(Θ/T )

]
, (214)

and find that, again, at low temperatures S = −∂F/∂T ∝ T 3 i.e. Nernst theorem.
An interesting quantity is the coefficient of thermal expansion α = (∂ lnV/∂T )P .
To get it one must pass to the variables P, T, µ introducing the Gibbs potential
G(P, T ) = E − TS + PV and replacing V = ∂G/∂P . At high temperatures,
F ≈ 3NT ln(Θ/T ). It is the Debye temperature here which depends on P , so that
the part depending on T and P in both potentials is linearly proportional to T :
δF (P, T ) = δG(P, T ) = 3NT lnΘ. That makes the mixed derivative

α = V −1 ∂2G

∂P∂T
= 3

N

V

∂ lnΘ

∂P

independent of temperature. One can also express it via so-called mean geo-
metric frequency defined as follows: ln ω̄ = (3N)−1∑ lnωa. Then δF = δG =
T
∑

a ln(h̄ωa/T ) = NT ln h̄ω̄(P ) , and α = (N/V ω̄)dω̄/dP . When the pressure
increases, the atoms are getting closer, restoring force increases and so does the
frequency of oscillations so that α ≥ 0.

Note that we’ve got a constant contribution 9NΘ/8 in (212) which is due
to quantum zero oscillations. While it does not contribute the specific heat, it
manifests itself in X-ray scattering, Mössbauer effect etc. Incidentally, this is
not the whole energy of a body at zero temperature, this is only the energy of
excitations due to atoms shifting from their equilibrium positions. There is also
a negative energy of attraction when the atoms are precisely in their equilibrium
position. The total (so-called binding) energy is negative for crystal to exists at
T = 0. One may ask why we didn’t account for zero oscillations when considered
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photons in (207,208). Since the frequency of photons is not restricted from above,
the respective contribution seems to be infinite. How to make sense out of such
infinities is considered in quantum electrodynamics; note that the zero oscillations
of the electromagnetic field are real and manifest themselves, for example, in the
Lamb shift of the levels of a hydrogen atom. In thermodynamics, zero oscillations
of photons are of no importance.

To conclude, let us reiterate the lesson we learnt about the specific heat which
is essentially the number of active degrees of freedom. For solids at room tem-
peratures, that number is much smaller than the either the number of atoms or
electrons because only (T/Θ)3 fraction of atoms and T/ϵF fraction of electrons
effectively participate.

Mention briefly the third law of thermodynamics (Nernst theorem). It claims
that S → 0 as T → 0. A standard argument is that since stability requires
the positivity of the specific heat cv then the energy must monotonously increase
with the temperature and zero temperature corresponds to the ground state. If the
ground state is non-degenerate (unique) then S = 0. The ground can be degenerate
yet generally that degeneracy grows slower than exponentially with N , then the
entropy per particle is zero in the thermodynamic limit. While this argument is
correct it is relevant only for temperatures less than the energy difference between
the first excited state and the ground state. As such, it has nothing to do with the
third law established generally for much higher temperatures and related to the
density of states as function of energy (as we have seen in this Chapter, entropy
goes to zero as T, T 3/2, T 3 for fermions, massive and massless bosons respectively).

Landau & Lifshitz, Sects. 45, 64–66; Huang, Sects. 9.4 and 12.2

7.2.4 Bose gas of particles and Bose-Einstein condensation

Consider an ideal Bose gas of massive particles, like atoms 18. Now, the number
of particles is fixed in a closed system. The chemical potential then must not be
identically zero, as it was for massless particles, whose number was not conser-
ved. Moment reflection upon n(ϵ) = [exp(β(ϵ− µ))− 1]−1 tells that the chemical
potential of massive bosons must be non-positive, otherwise one would have ne-
gative or infinite occupation numbers. The chemical potential absolute value is
large at high temperatures where it coincides with that of the Boltzmann gas,
µ = T ln(nλ3), where the thermal wavelength is λ = (2πh̄2/mT )1/2. The magni-
tude apparently decreases when the temperature decreases (at fixed concentration

18The 1923 manuscript of Bose, devoted to re-deriving the Planck distribution by the
approach based on (178,191), was rejected by the Philosophical Magazine. Bose then sent
it to Einstein, who translated it into German, published and used the method to treat
atoms.

106



n = N/V ). The question is whether the chemical potential goes to zero only at
zero temperature or it can turn into zero at a finite T . At µ = 0, the Bose dis-
tribution n(ϵ) = [exp(βϵ) − 1]−1 has singularity at ϵ = 0. We didn’t care about
that considering photons or phonons, since zero-energy-zero-frequency waves are
no waves at all. Now, however, massive particles are real even at zero energy. Of
course, in a finite box, the lowest kinetic energy is finite, h̄2/2mL2, yet it goes to
zero at the thermodynamic limit L→ ∞. Therefore, having zero chemical poten-
tial would mean macroscopic population of the lowest level at the thermodynamic
limit. Let us see if it is possible.

As usual, one determines the chemical potential as a function of temperature
and the specific volume by equaling the total number of particles to the sum of
Bose distribution over all states (the same as finding a thermodynamic potential
and differentiating it with respect to N). It is more convenient here to work with
the function z = exp(µ/T ) which is called fugacity:

N=
∑
p

1

eβ(ϵp−µ)−1
=
4πV

h3

∫ ∞

0

p2dp

z−1ep2/2mT−1
+

z

1− z
=
V g3/2(z)

λ3
+

z

1− z
. (215)

We introduced the function

ga(z) =
1

Γ(a)

∫ ∞

0

xa−1dx

z−1ex − 1
=

∞∑
i=1

zi

ia
. (216)

We singled out the contribution of zero-energy level even though it is not supposed
to contribute at the thermodynamic limit N → ∞. But, as we discussed, thermo-
dynamic limit also means that V → ∞ which allowed us to consider the lowest
level to have zero energy. To analyze the behavior of the term z/(1− z) at µ→ 0
and z → 1, let us rewrite (215) denoting n0 = z/(1 − z) the number of particles
at p = 0

n0
V

=
1

v
−
g3/2(z)

λ3
. (217)

The graphic solution of (217) for a finite V can be seen in the Figure below by plot-
ting g3/2(z) (solid line). The function g3/2(z) monotonically grows while z changes
from zero (µ = −∞) to unity (µ = 0). At z = 1, the value is g3/2(1) = ζ(3/2) ≈ 2.6

and the derivative is infinite (the integral diverges at zero as
∫
0 x

1/2dx/x2). For
a given v, T one knows λ3/v and finds z as a point when the horizontal line λ3/v
cross the solid line (at V → ∞) or the broken line (at finite V ). The distance
between the solid and broken lines determines n0. For high temperatures, λ3/v is
small and so is z. Note, however, that by lowering temperature we can make λ
arbitrarily large. When the temperature and the specific volume v = V/N are such
that λ3/v > g3/2(1) (the thermal wavelength is now larger than the inter-particle
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distance) then there is a finite fraction of particles that occupies the zero-energy
level.

The integral in (215) behaves as
∫
0 p

d−1dp/(p2+1−z) at p→ 0, z → 1. At z = 1
it converges for d > 2 and diverges for d ≤ 2. Integral divergence means that there
are as many as needed states at low but finite momenta, so that condensation does
not appear at d ≤ 2 — yet another manifestation of the impossibility of long-range
order, to be compared with the discussion in Section 4.2.

3/2

_
v

z

0

1
O(1/V)

v/λ3
1/2.6

2.6 O(1/V)

1

λ3

z

g

When V → ∞ we have a sharp transition at λ3/v = g3/2(1) i.e. at

T = Tc = 2πh̄2/m[vg3/2(1)]
2/3 .

At T ≤ Tc we have z ≡ 1 that is µ ≡ 0. At T > Tc we obtain z solving
λ3/v = g3/2(z). Therefore, at the thermodynamic limit we put n0 = 0 at T > Tc
and n0/N = 1− vg3/2(1)/λ

3 = 1− (T/Tc)
3/2 as it follows from (217). All thermo-

dynamic relations have now different expressions above and below Tc (upper and
lower cases respectively):

E =
3

2
PV =

2πV

mh3

∫ ∞

0

p4dp

z−1 exp(p2/2mT )− 1
=

{
(3V T/2λ3)g5/2(z)
(3V T/2λ3)g5/2(1)

, (218)

cv =

{
(15v/4λ3)g5/2(z)− 9g3/2(z)/4g1/2(z)
(15v/4λ3)g5/2(1)

(219)

At low T , cv ∝ λ−3 ∝ T 3/2, it decreases faster than cv ∝ T for electrons yet slower
than cv ∝ T 3 (that we had for ϵp = cp). Note that the number of over-condensate
particles now changes with T as for phonons and photons, and µ = 0 too. So the
specific heat (as the effective number of degrees of freedom) of the ideal Bose gas
behaves as the phase volume p3T ; for massless bosons, pT ∝ T and cv ∝ T 3 while
for massive pT ∝ T 1/2 and cv ∝ T 3/2. One can also say that the particle levels,
ϵp = p2/2m, are denser at lower energies, that is why the specific heat is larger
for massive particles. The other side of the coin is that the same increase of the
distance between levels ϵp = p2/2m with p makes cv decreasing with T at high
temperatures, as for rotators in Sect. 7.1:
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v

5/3

The pressure given by the upper line of (218) depends on V via z. However,
the lower line shows that the pressure is independent of the volume at T < Tc.
That prompts the analogy with a phase transition of the first order. Indeed, this
reminds the properties of the saturated vapor (particles with nonzero energy) in
contact with the liquid (particles with zero energy): changing volume at fixed tem-
perature we change the fraction of the particles in the liquid but not the pressure.
This is why the phenomenon is called the Bose-Einstein condensation. Increasing
temperature we cause evaporation (particle leaving condensate in our case) which
increases cv; after all liquid evaporates (at T = Tc) cv starts to decrease. It is
sometimes said that it is a “condensation in the momentum space” but if we put
the system in a gravity field then there will be a spatial separation of two phases
just like in a gas-liquid condensation (liquid at the bottom). On P-V diagram, the

transition isotherm T = Tc corresponds to P = g5/2(1)Tc/λ
3(Tc) ∝ T

5/2
c ∝ V −5/3.

We can also obtain the entropy, above Tc by usual formulas that follow from
(196) and below Tc just integrating specific heat S =

∫
dE/T = N

∫
cv(T )dT/T =

5E/3T = 2Ncv/3:

S

N
=

{
(5v/2λ3)g5/2(z)− log(z)
(5v/2λ3)g5/2(1)

(220)

The entropy is zero at T = 0 which means that the condensed phase has no entropy
- it is a coherent quantum state of a macroscopic number of atoms. At finite T
all the entropy is due to gas phase. Below Tc we can write S/N = (T/Tc)

3/2s =
(v/vc)s where s is the entropy per gas particle: s = 5g5/2(1)/2g3/2(1). The latent
heat of condensation per particle is Ts that it is indeed phase transition of the
first order. Usual gas-liquid condensation is caused by the interaction - molecules
attract each other at large distances. We see that the Bose-Einstein condensation
takes place already in an ideal gas and is due to the discreteness of the energy
levels, which indeed leads to some effective attraction as was seen from (199).

The Bose-Einstein condensation has been observed for atoms in electromagne-
tic traps at low temperatures. Transition to superfluidity in liquid He4 is of the
second order, but then a liquid is not an ideal gas.

To conclude, we have seen in this Section how quantum effects lead to switching
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off degrees of freedom at low temperatures. Fermi and Bose systems reach the zero-
entropy state at T = 0 in different ways. It is also instructive to compare their
chemical potentials:

T

Fermi

µ

Bose

We also saw that an effective interaction brought by quantum effect lead to
phase transition only for the case of attraction i.e. for bosons.

Landau & Lifshitz, Sect. 62; Huang, Sect. 12.3.

8 Part 2. Interacting systems and phase tran-

sitions

Here we take into account a weak interaction between particles. There are two
limiting cases when the consideration is simplified:
i) when the interaction is long-range so that every particle effectively interact with
many other particles and one can apply some mean-field description, this will be
considered in Section 8.1 below;
ii) when the typical range of interaction is much smaller than the mean distance
between particles so that it is enough to consider only two-particle interactions,
this is considered afterwards.

8.1 Coulomb interaction and screening

Here we consider a three-dimensional system of charged particles (plasma or elec-
trolyte), and describe its thermodynamic properties and the correlation functi-
ons of the charge-density fluctuations. The Coulomb energy of interaction is
uab = e2zazb/rab where za, zb are the charges and rab is the distance between
two particles.

Do we expect the interaction to change the total energy of the system and thus
change thermodynamics in a neutral system with the zero total charge? Indeed, if
the ions and electrons were distributed uniformly then the total Coulomb energy of
interaction is zero. However, interaction leads to correlations in particle positions
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(particle prefer to be surrounded by the particles of the opposite charge) which ma-
kes for a nonzero (negative) contribution to the energy and other thermodynamic
quantities.

Interaction of charged particles is long-range and one may wonder how at
all one may use a thermodynamic approach (divide a system into independent
subsystems, for instance). The answer is that the preference to be surrounded by
opposite charges leads to charge screening, making interaction effectively finite-
range. The semi-phenomenological description of such systems has been developed
by Debye and Hückel (1923) and it works for plasma and electrolytes. Consider
the simplest situation when we have electrons of the charge −e and ions of the
charge +e.

We start from a rough estimate for the screening radius rD which we define as
that of a sphere around an ion where the total charge of all particles is of order −e
i.e. compensates the charge of the ion. Particles are distributed in the field U(r)
according to the Boltzmann formula n(r) = n0 exp[−U(r)/T ] and the estimate is
as follows:

r3Dn0[exp(e
2/rDT )− exp(−e2/rDT )] ≃ 1 . (221)

We obtain what is called the Debye radius

rD ∼
√

T

n0e2
(222)

under the condition of interaction weakness, e2/rDT = (e2n
1/3
0 /T )3/2 ≪ 1. Note

that under that condition there are many particles inside the Debye sphere: n0r
3
d ≫

1 (in electrolytes rD is of order 10−3 ÷ 10−4 cm while in ionosphere plasma it can
be kilometers). Everywhere n0 is the mean density of either ions or electrons.

We can now estimate the electrostatic contribution to the energy of the system
of N particles (what is called correlation energy):

Ū ≃ −N e2

rD
≃ −N

3/2e3√
V T

= − A√
V T

. (223)

The (positive) addition to the specific heat

∆CV =
A

2V 1/2T 3/2
≃ N

e2

rDT
≪ N . (224)

One can get the correction to the entropy by integrating the specific heat:

∆S = −
∫ ∞

T

CV (T )dT

T
= − A

3V 1/2T 3/2
. (225)
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We set the limits of integration here as to assure that the effect of screening
disappears at large temperatures. Interaction decreases entropy by imposing cor-
relations thus making the system more ordered.

We can now get the correction to the free energy and pressure

∆F = Ū − T∆S = − 2A

3V 1/2T 1/2
, ∆P = − A

3V 3/2T 1/2
. (226)

Total pressure is P = NT/V −A/3V 3/2T 1/2 — a decrease at small V (see figure)
hints about the possibility of phase transition which indeed happens (droplet crea-
tion) for electron-hole plasma in semiconductors even though our calculation does
not work at those concentrations.

ideal

P

V

The correlation between particle positions (around every particle there are
more particles of opposite charge) means that attraction prevails over repulsion so
that it is necessary that corrections to energy, entropy, free energy and pressure
are negative. Positive addition to the specific heat could be interpreted as follows:
increasing temperature one decreases screening and thus increases energy.

Now, we can do all the consideration in a more consistent way calculating
exactly the value of the constant A. To calculate the correlation energy of electro-
static interaction one needs to multiply every charge by the potential created by
other charges at its location. In estimates, we took the Coulomb law for the po-
tential around every charge, while it must differ as the distance increases. Indeed,
the electrostatic potential ϕ(r) around an ion determines the distribution of ions
(+) and electrons (-) by the Boltzmann formula n±(r) = n0 exp[∓eϕ(r)/T ] while
the charge density e(n+ − n−) in its turn determines the potential by the Poisson
equation:

∆ϕ = −4πe(n+ − n−) = −4πen0
(
e−eϕ/T − eeϕ/T

)
≈ 8πe2n0

T
ϕ , (227)

where we expanded the exponents assuming the weakness of interaction. We also
need to impose the condition that when r → 0 the potential is that of the ion
ϕ → e/r. Under such a condition the equation (227) has a central-symmetric
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solution ϕ(r) = (e/r) exp(−κr) where κ2 = 8πr−2
D . We are interesting in this

potential near the ion i.e. at small r: ϕ(r) ≈ e/r − eκ where the first term is
the field of the ion itself while the second term is precisely what we need i.e.
contribution of all other charges. We can now write the energy of every ion and
electron as −e2κ and get the total electrostatic energy multiplying by the number
of particles (N = 2n0V ) and dividing by 2 so as not to count every couple of
interacting charges twice:

Ū = −n0V κe2 = −
√
π
N3/2e3√
V T

. (228)

Comparing with the rough estimate (223), we just added the factor
√
π.

The consideration by Debye-Hückel is the right way to account for the first-

order corrections in the small parameter e2n
1/3
0 /T . The method replaces interacti-

ons by an effective mean field ϕ, it is thus a variant of a mean-field approach.
One cannot though get next corrections within the method [further expanding the
exponents in (227)]. That would miss multi-point correlations which contribute
the next orders. Indeed, the existence of an ion at some point influences not only
the probability of having an electron at some other point but they together influ-
ence the probability of charge distribution in the rest of the space. To account for
multi-point correlations, one needs Bogolyubov’s method of correlation functions.
Such functions are multi-point joint probabilities to find simultaneously particles
at given places. The correlation energy is expressed via the two-point correlation
function wab introduced in Section 4.2. The indices a, b mark both the type of
particles (electrons or ions) and the positions ra and rb:

E =
1

2

∑
a,b

NaNb

V 2

∫ ∫
uabwabdVadVb . (229)

Here uab is the energy of the interaction. The pair correlation function is determi-
ned by the Gibbs distribution integrated over the positions of all particles except
the given pair:

wab = V 2−NZ−1
i

∫
exp

[−U(r1 . . . rN )

T

]
dV1 . . . dVN−2 . (230)

Here the normalization factor can be expressed via the difference between total
free energy and the free energy of an ideal gas: Z−1

i = exp[(F − Fid)/T ]. The
energy of interaction is the sum over pairs:

U = uab +
∑
c

(uac + ubc) +
∑

c,d ̸=a,b

ucd .
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Note that wab = 1 for an ideal gas. Assuming the interaction weak and expanding
(230) in U/T we get terms like uabwab and in addition (uac+ubc)wabc which involves
the third particle c and the triple correlation function that one can express via the
integral similar to (230):

wabc = V 3−NZ−1
i

∫
exp

[−U(r1 . . . rN )

T

]
dV1 . . . dVN−3 . (231)

We can also see this (so-called closure problem) by differentiating

∂wab

∂rb
= −wab

T

∂uab
∂rb

− (V T )−1
∑
c

Nc

∫
∂ubc
∂rb

wabc dVc , (232)

and observing that the equation on wab is not closed, it contains wabc; the similar
equation on wabc will contain wabcd etc. Debye-Hückel approximation corresponds
to closing this hierarchical system of equations already at the level of the first
equation (232) putting wabc ≈ wabwbcwac and assuming ωab = wab − 1 ≪ 1, that
is assuming that two particles rarely come close while three particles never come
together:

∂ωab

∂rb
= − 1

T

∂uab
∂rb

− (V T )−1
∑
c

Nc

∫
∂ubc
∂rb

ωac dVc , (233)

For other contributions to wabc, the integral (which is a vector) turns into zero
due to isotropy. This is the general equation valid for any form of interaction. For
Coulomb interaction, we can turn the integral equation (233) into the differential
equation by using ∆r−1 = −4πδ(r) 19. For that we differentiate (233) once more:

∆ωab(r) =
4πzazbe

2

T
δ(r) +

4πzbe
2

TV

∑
c

Nczcωac(r) . (234)

The dependence on ion charges and types is trivial, ωab(r) = zazbω(r) and we
get ∆ω = 4πe2δ(r)/T + κ2ω which is (227) with delta-function enforcing the
condition at zero. We see that the pair correlation function satisfies the same
equation as the potential. Substituting the solution ω(r) = −(e2/rT ) exp(−κr)
into wab(r) = 1+zazbω(r) and that into (229) one gets contribution of 1 vanishing
because of electro-neutrality and the term linear in ω giving (228). To get to the
next order, one considers (232) together with the equation for wabc, where one
expresses wabcd via wabc.

The correlation function of electron and ion densities are proportional to wab,
for instance, ⟨n−(0)n−(r)⟩ = n20w−−. The correlation functions of the fluctuations

19Integrate Laplacian over a region that includes zero: 4π
∫
0
r2drr−2∂rr

2∂rr
−1 = −1.
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∆n(r) = n(r)− n0 all have the form:

⟨∆n−(0)∆n−(r)⟩ = ⟨∆n+(0)∆n+(r)⟩ = −⟨∆n−(0)∆n+(r)⟩

= n20ω(r) = −(n0e)
2

rT
exp(−κr) . (235)

This screened Coulomb law is encountered in many situation, it is called Yukawa
potential in quantum mechanics and Ornstein-Zernicke correlation function in sta-
tistical physics — we have seen that this is a universal form of correlation function
at large distances, see (89). The correlation function of the charge q = e(ni − ne)
is 4n20ω(r). We see that the densities of the particles of the same charge and the
density of the total charge anti-correlate: if there is more in one place then there
is less around. Densities of the different-charge particles have positive correlation
function because the particles prefer to be close. For more details, see Landau &
Lifshitz, Sects. 78,79.

After seeing how screening works, it is appropriate to ask what happens when
there is no screening in a system with a long-range interaction. One example of
that is gravity. Indeed, thermodynamics is very peculiar in this case. Arguably, the
most dramatic manifestation is the Jeans instability of sufficiently large systems
which leads to gravitational collapse, creation of stars and planets and, eventually,
appearance of life.

The quantum (actually quasi-classical) variant of such mean-field consideration
is called Thomas-Fermi method (1927) and is traditionally studied in the courses
of quantum mechanics as it is applied to the electron distribution in large atoms
(such placement is probably right despite the method is stat-physical because for
physicists objects of study are more important than methods). In this method
we consider the effect of electrostatic interaction on a degenerate electron gas
at zero temperature. According to the Fermi distribution (200), the maximal
kinetic energy (Fermi energy) is related to the local concentration n(r) by p20/2m =
(3π2n)2/3h̄2/2m, which is also the expression for the chemical potential at the zero
temperature. We need to find the electrostatic potential ϕ(r) which determines the
interaction energy for every electron, −eϕ. The sum of the chemical potential and
the interaction energy, p20/2m− eϕ = −eϕ0, must be space-independent otherwise
the electrons drift to the places with lower −ϕ0. The constant ϕ0 is zero for neutral
atoms and negative for ions. We can now relate the local electron density n(r) to
the local potential ϕ(r): p20/2m = eϕ − eϕ0 = (3π2n)2/3h̄2/2m — that relation
one must now substitute into the Poisson equation ∆ϕ = 4πen ∝ (ϕ−ϕ0)3/2. The
boundary condition is ϕ→ Z/r at r → 0 where Z is the charge of the nuclei. The
solution of this equation is a monotonically decreasing function, which has another
power law at large distances: ϕ ∝ r−4, n ∝ r−6. This solution cannot be extended
to infinity as atoms are supposed to have finite sizes. Indeed, at large distances
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(∝ Z1/3), the quasi-classical description breaks where the quantum wavelength is
comparable to the distance r. The description also is inapplicable below the Bohr
radius. The Thomas-Fermi approximation works well for large-atoms where there
is an intermediate interval of distances (Landau&Lifshitz, Quantum Mechanics,
Sect. 70).

8.2 Cluster and virial expansions

Consider a dilute gas with the short-range inter-particle energy of interaction u(r).
We assume that u(r) decays on the scale r0 and

ϵ ≡ (2/3)πr30N/V ≡ bN/V ≪ 1 .

Integrating over momenta we get the partition function Z and the grand partition
function Z as

Z(N,V, T ) =
1

N !λ3NT

∫
dr1 . . . drN exp[−U(r1, . . . , rN )/T ] ≡ ZN (V, T )

N !λ3NT
.

Z(z, V, T ) =
∞∑

N=0

zNZN

N !λ3NT
. (236)

Here we use fugacity z = exp(µ/T ) instead of the chemical potential. The terms
with N = 0, 1 give unit integrals, with N = 2 we shall have U12 = u(r12), then
U123 = u(r12) + u(r13) + u(r23), etc. In every term we may integrate over the
coordinate of the center of mass of N particles and obtain

Z(µ, V, T ) = 1 + V
z

λ3T
+
V

2!

(
z

λ3T

)2 ∫
dr exp[−u(r)/T ]

+
V

3!

(
z

λ3T

)3 ∫
exp{−[u(r12) + u(r13) + u(r23)]/T} dr2dr3 + . . . . (237)

The first terms does not account for interaction. The second one accounts for the
interaction of only one pair (under the assumption that when one pair of particles
happens to be close and interact, this is such a rare event that the rest can be
considered non-interacting). The third term accounts for simultaneous interaction
of three particles etc. We can now write the Gibbs potential Ω = −PV = −T lnZ
and expand the logarithm in powers of z/λ3T :

P = λ−3
T

∞∑
l=1

blz
l . (238)
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When expressing the expansion of the logarithm via the expansion of the function
itself, one encounters so-called cumulants. We shall consider the general form of
the cumulant expansion below in (98). Here we just notice that if we introduce
ε =

∑
n=1 αnz

n, then

ln(1 + ε) = 1 + ε− ε2

2
+
ε3

3
+. . .

= 1 + α1z + (α2 −
α2
1

2
)z2 + (α3 − α1α2 +

α3
1

3
)z3. . .

It is then convenient to introduce the two-particle function, called interaction
factor, fij = exp[−u(rij)/T ] − 1, which is zero outside the range of interaction.
Terms containing integrals of k functions fij are proportional to ϵ

k. The coefficients
bl can be expressed via fij :

b1 = 1 , b2 = (1/2)λ−3
T

∫
f12 dr12 ,

b3 = (1/6)λ−6
T

∫ (
e−U123/T−e−U12/T−e−U23/T−e−U13/T+2

)
dr12dr13

= (1/6)λ−6
T

∫
(3f12f13 + f12f13f23) dr12dr13 . (239)

We see that in this case the integrals over different dri are not independent so
that it is pretty cumbersome to analyze higher orders in analytical expressions.
Instead, every term in

ZN (V, T ) =

∫ ∏
i<j

(1 + fij) dr1 . . . drN

=

∫ (
1 +

∑
fij +

∑
fijfkl + . . .

)
dr1 . . . drN .

can be represented as a graph with N points and lines connecting particles which
interaction we account for. In this way, ZN is a sum of all distinct N -particle
graphs. Since most people are better in manipulating visual (rather than abstract)
objects then it is natural to use graphs to represent analytic expressions which is
called diagram technique. For example, the three-particle clusters are as follows:

rr r@ + rr r@ + rr r@ + rr r=3 rr r+ rr r@ , (240)

which corresponds to (239). Factorization of terms into independent integrals
corresponds to decomposition of graphs into l-clusters i.e. l-point graphs where
all points are directly or indirectly connected. Associated with the l-th cluster we
may define dimensionless factors bl (called cluster integrals):

bl =
1

l!V λ
3(l−1)
T

× [sum of all l − clusters] . (241)
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In the square brackets here stand integrals like∫
dr=V for l = 1,

∫
f(r12) dr1dr2=V

∫
f(r) dr for l = 2 , etc .

Using the cluster expansion one can now show that the cluster integrals bl indeed
appear in the expansion (238) (see e.g. Pathria, Sects. 9.1-2, second edition). For
l = 1, 2, 3 we saw that this is indeed so.

We can now use (238) and write the total number of particles:

PV = −Ω = T lnZ(z, V ) = (V/λ3T )
∞∑
l=1

blz
l (242)

n =
1

v
=
Tz

V

∂ lnZ
∂z

= λ−3
T

∞∑
l=1

lblz
l . (243)

To get the equation of state we must express z via nλ3T from (243):

z = nλ3T /b1 − 2b2b
−3
1 (nλ3T )

2 + (8b22b
−5
1 − 3b3b

−4
1 )(nλ3T )

3 + . . .

We now substitute it into (242), which generates the series called the virial expan-
sion

Pv

T
=

∞∑
l=1

al(T )

(
λ3T
v

)l−1

. (244)

Dimensionless virial coefficients are expressed via cluster coefficients i.e. they
depend on the interaction potential and temperature:

a1=b1=1 , a2=−b2 , a3=4b22 − 2b3=−λ−6
T

∫
f12f13f23 dr12dr13/3 . . . .

In distinction from the cluster coefficients bl, which contain terms of different
order in fij , we now have al ∝ ϵl i.e. al comes from simultaneous interaction of l
particles. Using graph language, virial coefficients al are determined by irreducible
clusters i.e. such that there are at least two entirely independent non-intersecting
paths that connect any two points. Tentative physical interpretation of the cluster
expansion (244) is that we consider an ideal gas of clusters whose pressures are
added.

8.3 Van der Waals equation of state

We thus see that the cluster expansion in powers of f generates the virial expansion
of the equation of state in powers of n = N/V . Here we account only for pairs of
the interacting particles. The second virial coefficient

B(T ) = a2λ
3
T = 2π

∫ {
1− exp[−u(r)/T ]

}
r2 dr (245)
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can be estimated by splitting the integral into two parts, from 0 to r0 (where we
can neglect the exponent assuming u large positive) and from r0 to ∞ (where we
can assume small negative energy, u≪ T , and expand the exponent). That gives

B(T ) = b− a

T
, a ≡ 2π

∫ ∞

r0
u(r)r2dr . (246)

with b = (2/3)πr30 introduced above. Of course, for any particular u(r) it is pretty
straightforward to calculate a2(T ) but (246) gives a good approximation for most
cases. We can now get the first correction to the equation of state:

P =
NT

V

[
1 +

NB(T )

V

]
= nT (1 + bn)− an2 . (247)

Generally, B(T ) is negative at low and positive at high T . For Coulomb inte-
raction the correction to pressure (227) is always negative, while in this case it is
positive at high temperature where molecules hit each other often and negative
at low temperatures when long-range attraction between molecules decreases the
pressure. Since NB/V < Nb/V ≪ 1 the correction is small. Note that a/T ≪ r30
since we assume weak interaction.

r

U

  0r

While by its very derivation the formula (247) is derived for a dilute gas one
may desire to change it a bit so that it can (at least qualitatively) describe the
limit of incompressible liquid. That would require the pressure to go to infinity
when density reaches some value. This is usually done by replacing in (247) 1+ bn
by (1 − bn)−1 which is equivalent for bn ≪ 1 but for bn → 1 gives P → ∞. The
resulting equation of state is called van der Waals equation:(

P + an2
)
(1− nb) = nT . (248)

There is though an alternative way to obtain (248) without assuming the gas
dilute. This is some variant of the mean field even though it is not a first step
of any consistent procedure. The essence of a mean-field approach is to replace
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calculating the partition function of N interacting particles by a partition function
of a single particle in some mean field created by all other particles. One version
of it is to assume that every molecule moves in some effective field Ue(r) which is
a strong repulsion (Ue → +∞) in some region of volume bN and is an attraction
of order −aN/V outside:

Z(T, V,N) =

{∫
e−Ue(r)/T dr

}N

/N ! ≈ [(V − bN)/N ]N exp(aN2/V T ) ,

F ≈ −TN ln

(
V − bN

N

)
+
aN2

V
. (249)

Differentiating (249) with respect to V gives (248). That “derivation” also helps
understand better the role of the parameters b (excluded volume) and a (mean
interaction energy per molecule). From (249) one can also find the entropy of
the van der Waals gas S = −(∂F/∂T )V = Sid + N ln(1 − nb) and the energy
E = Eid − N2a/V , which are both lower than those for an ideal gas, while the
sign of the correction to the free energy depends on the temperature. Since the
correction to the energy is T -independent then CV is the same as for the ideal gas.

Let us now look closer at the equation of state (248). The set of isotherms is
shown on the figure:
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Since it is expected to describe both gas and liquid then it must show phase
transition. Indeed, we see the region with (∂P/∂V )T > 0 at the lower isotherm in
the first figure. When the pressure corresponds to the level NLC, it is clear that
L is an unstable point and cannot be realized. But which stable point is realized,
N or C? To get the answer, one must minimize the Gibbs potential G(T, P,N) =
Nµ(T, P ) since we have T and P fixed. For one mole, integrating the relation
dµ(T, P ) = −sdT+vdP at constant temperature we find: G = µ =

∫
v(P )dP . It is

clear that the pressure that corresponds to D (having equal areas before and above
the horizontal line) separates the absolute minimum at the left branch Q (liquid-
like) from that on the right one C (gas-like). The states E (over-cooled or over-
compressed gas) and N (overheated or overstretched liquid) are metastable, that
is they are stable with respect to small perturbations but they do not correspond
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to the global minimum of chemical potential. We thus conclude that the true
equation of state must have isotherms that look as follows:

c
V

P

T

The dependence of volume on pressure is discontinuous along the isotherm in
the shaded region (which is the region of phase transition). True partition function
and true free energy must give such an equation of state. We were unable to derive
it because we restricted ourselves by the consideration of the uniform systems while
in the shaded region the system is nonuniform being the mixture of two phases.
For every such isotherm T we have a value of pressure P (T ), that corresponds
to the point D, where the two phases coexist. On the other hand, we see that if
temperature is higher than some Tc (critical point), the isotherm is monotonic and
there is no phase transition. Critical point was discovered by Mendeleev (1860)
who also built the periodic table of elements. At critical temperature the depen-
dence P (V ) has an inflection point: (∂P/∂V )T = (∂2F/∂V 2)T = 0. According to
(34) the fluctuations must be large at the critical point (more detail in the next
Chapter).

8.4 Thermodynamic description of phase transitions

The main theme of this Section is the competition (say, in minimizing the free
energy) between the interaction energy, which tends to order systems, and the
entropy, which brings a disorder. Upon the change of some parameters, systems
can undergo a phase transition from more to less ordered states. We first present
a peculiar example of a phase transition due to quantum ”interaction” between
bosons. We then present the general phenomenological approach to the transi-
tions of both first and second orders. After that, we shall proceed to develop a
microscopic statistical theory based on Ising model.

8.4.1 Necessity of the thermodynamic limit

So far we got the possibility of a phase transition almost for free by cooking the
equation of state for the van der Waals gas. But can one really derive the equations
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of state that have singularities or discontinuities? It clear that this is impossible
in a finite system since the partition function is a finite sum of exponents, so it
must be an analytic function of temperature. Indeed, the classical grand partition
function (expressed via fugacity z = exp(µ/T )) is as follows:

Z(z, V, T ) =
∞∑

N=0

zNZ(N,V, T ) . (250)

Here the classical partition function of the N -particle system is

Z(N,V, T ) =
1

N !λ3N

∫
exp[−U(r1, . . . , rN )/T ]dr1, . . . , rN (251)

and the thermal wavelength is λ2 = 2πh̄2/mT . Interaction means that for a finite
volume V there is a maximal number of molecules Nm(V ) that can be accommo-
dated in V . That means that the sum in (250) actually goes until Nm so that the
grand partition function is a polynomial in fugacity with all coefficients positive20.
The equation of state can be obtained by eliminating z from the equations that
give P (v) in a parametric form — see (242,243):

P

T
=

1

V
lnZ(z, V ) =

1

V
ln
[
1 + zZ(1, V, T ) + . . .+ zNmZ(Nm, V, T )

]
,

1

v
=

z

V

∂ lnZ(z, V )

∂z
=
zZ(1, V, T ) + 2z2Z(2, V, T ) . . .+Nmz

NmZ(Nm, V, T )

V [1 + zZ(1, V, T ) +. . .+ zNmZ(Nm, V, T )]
.

Polynomial with all coefficients positive does not turn into zero for real z. The-
refore, for Z(z) being a polynomial, both P (z) and v(z) are analytic functions of
z in a region of the complex plane that includes the real positive axis. Therefore,
P (v) is an analytic function in a region of the complex plane that includes the real
positive axis. Note that V/Nm ≤ v < ∞. One can also prove that ∂v−1/∂z > 0
by using

∑
Aii

2∑Ai ≥ (
∑
Aii)

2, where Ai = ziZ(i, V, T ) > 0 or by noticing that
z∂zn = ⟨n2⟩ − ⟨n⟩2 > 0 for n = 1/v. That gives ∂P/∂v = (∂P/∂z)/(∂v/∂z) < 0
for all v.

For a first-order transition, the pressure must be independent of v in the tran-
sition region. We see that strictly speaking in a finite volume we cannot have that
since P (v) is analytic, nor we can have ∂P/∂v > 0. That means that singularities,
jumps etc can appear only in the thermodynamic limit N → ∞, V → ∞ (where,
formally speaking, the singularities that existed in the complex plane of z can
come to the real axis). Such singularities are related to zeroes of Z(z). When

20Even when one does not consider hard-core models, the energy of repulsion grows so
fast when the distance between molecules are getting less than some scale that Boltzmann
factor effectively kills the contribution of such configurations.
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such a zero z0 tends to a real axis at the limit N → ∞ (like the root e−iπ/2N of
the equation zN + 1 = 0) then 1/v(z) and P (z) are determined by two different
analytic functions in two regions: one, including the part of the real axis with
z < z0 and another with z > z0. These two different regions correspond to dif-
ferent phases (like liquid at z > z0 and gas at 0 ≤ z < z0); changing chemical
potential we pass from one phase to another. Depending on the order of zero of
Z(z), 1/v itself may have a jump or its m-th derivative may have a jump, which
corresponds to the m + 1 order of phase transition. For a simple zero, m = 0,
the singular part of the pressure P ∝ limV→∞ V −1 ln |z − z0 − O(V −1)| turns to
zero at z = z0 and V → ∞; therefore the pressure is continuous at z → z0 but
∂P/∂z and 1/v are discontinuous - this is the transition of the first order21. For a
second-order transition, volume is continuous but its derivative jumps. We see now
what happens as we increase T towards Tc: another zero comes from the complex
plane into real axis and joins the zero that existed there before, turning 1st order
phase transition into the 2nd order transition; at T > Tc the zeroes leave the real
axis. To conclude, we see that the system (242,243) in principle can detect the
phase transition, is we are able to solve it and see that in the limit N → ∞ the
zero of Z(z) comes to the real axis. That one needs N → ∞ for a phase transition
is one of the manifestation of the ”more is different” principle. See more details
in Huang, Sect. 15.1-2.

P

z
z0

z
z0

1/v P

v

P

z
z0

1/v

z
z0

v

P

first order

second order

21For a finite N , zeroes exist as complex-conjugated pairs, so one may wonder how a
simple zero can appear. It can happen, for instance, when at N → ∞ discrete zeroes merge
into a cut and then two cuts

√
z − z0 + i/N and

√
z − z0 − i/N merge into a simple zero:√

(z − z0 + i/N)(z − z0 − i/N) → z − z0.
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8.4.2 First-order phase transitions

Let us now consider equilibrium between phases from a general viewpoint. We
must have T1 = T2 and P1 = P2. Requiring dG/dN1 = ∂G1/∂N1+(∂G2/∂N2)(dN2/dN1) =
µ1(P, T ) − µ2(P, T ) = 0 we obtain the curve of the phase equilibrium P (T ). We
thus see on the P − T plane the states outside the curve are homogeneous while
on the curve we have the coexistence of two different phases. If one changes pres-
sure or temperature crossing the curve then the phase transition happens. Three
phases can coexist only at a point.

On the T−V plane the states with phase coexistence fill whole domains (shaded
on the figure) since different phases have different specific volumes. Different points
on the V −T diagram inside the coexistence domains correspond to different fracti-
ons of phases. Consider, for instance, the point A inside the gas-solid coexistence
domain. Since the specific volumes of the solid and the gas are given by the abscis-
sas of the points 1 and 2 respectively then the fractions of the phases in the state A
are inversely proportional to the lengthes A1 and A2 respectively (the lever rule).

GAS

P

T

L

T

VT

T

tr

tr

Triple point
1 2A

L−S

S G

G−L

LIQUID

Critical point

SOLID

G−S

Changing V at constant T in the coexistence domain (say, from the state 1 to
the state 2) we realize the phase transition of the first order. Phase transitions
of the first order are accompanied by an absorption or release of some (latent)
heat L. Since the transition happens in equilibrium (between phases) and at fixed
temperature then the heat equals simply to L =

∫
Tds = T (s2− s1) (per mole). If

2 is preferable to 1 at higher T , then s2 = −∂µ2/∂T > s1 = −∂µ1/∂T and L > 0
(heat absorbed) upon the 1 → 2 transition:

µ

L>0

µ

µ 1

2 T

It must be so according to the Le Chatelier principle: adding heat we in-
crease temperature which causes the phase transition, which absorbs heat. On
the other hand, differentiating µ1(P, T ) = µ2(P, T ) with respect to T and using
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s = −(∂µ/∂T )P , v = (∂µ/∂P )T , one gets the Clausius-Clapeyron equation

dP

dT
=
s1 − s2
v1 − v2

=
L

T (v2 − v1)
. (252)

Since the entropy of a liquid is usually larger than that of a solid then L > 0
that is the heat is absorbed upon melting and released upon freezing. Most of
the substances also expand upon melting then the solid-liquid equilibrium line has
dP/dT > 0, as on the P-T diagram above. Water, on the contrary, contracts
upon melting so the slope of the melting curve is negative (fortunate for fish
and unfortunate for Titanic, ice floats on water). Note that symmetries of solid
and liquid states are different so that one cannot continuously transform solid into
liquid. That means that the melting line starts on another line and goes to infinity
since it cannot end in a critical point (like the liquid-gas line).

Clausius-Clapeyron equation allows one, in particular, to obtain the pressure
of vapor in equilibrium with liquid or solid. In this case, v1 ≪ v2. We may
treat the vapor as an ideal so that v2 = T/P and (252) gives d lnP/dT = L/T 2.
We may further assume that L is approximately independent of T and obtain
P ∝ exp(−L/T ) which is a fast-increasing function of temperature. Landau &
Lifshitz, Sects. 81–83.

8.4.3 Second-order phase transitions

As we have seen, in the critical point, the differences of specific entropies and
volumes turn into zero. Considering µ(P ) at T = Tc one can say that the
chemical potential of one phase ends where another starts and the derivative
v(P ) = (∂µ/∂P )Tc is continuous.

P

µ v

P

µ
µ

1
2

Another examples of continuous phase transitions (i.e. such that correspond
to a continuous change in the system) are all related to the change in symmetry
upon the change of P or T . Since symmetry is a qualitative characteristics, it can
change even upon an infinitesimal change (for example, however small ferromagne-
tic magnetization breaks isotropy). Here too every phase can exist only on one side
of the transition point. The transition with first derivatives of the thermodynamic
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potentials continuous is called second order phase transition. Because the phases
end in the point of transition, such point must be singular for the thermodynamic
potential, and indeed second derivatives, like specific heat, are generally discon-
tinuous. One set of such transitions is related to the shifts of atoms in a crystal
lattice; while close to the transition such shift is small (i.e. the state of matter is
almost the same) but the symmetry of the lattice changes abruptly at the transi-
tion point. Another set is a spontaneous appearance of macroscopic magnetization
(i.e. ferromagnetism) below Curie temperature. Transition to superconductivity
is of the second order. Variety of second-order phase transitions happen in li-
quid crystals etc. Let us stress that some transitions with a symmetry change are
first-order (like melting) but all second-order phase transitions correspond to a
symmetry change.

It is important to stress that we are talking about symmetries (i.e. invariance
under transformations) of the thermodynamic and statistical properties. In this
respect, solid phase is less symmetric than liquid or gas. Indeed, the properties
of a disordered medium are invariant under arbitrary translations and rotations
in space, while the properties of a crystal are invariant only under translations by
lattice spacings and rotation by the angles of the crystal lattice. In other words, dis-
ordered media are invariant with respect to continuous symmetries, while crystals
have discrete symmetries. Of course, would we be interested in the symmetries
of a medium as a geometric set of objects then crystal coincides with itself after
discrete transformations while disordered medium does not have any exact sym-
metry at all, this is why we think about crystals as more symmetric. In statistical
physics, however, appearance of any order makes the state less symmetric.

8.4.4 Landau theory

To describe general properties of the second-order phase transitions and also to
distinguish when symmetry-breaking transition can be of the first order, Landau
developed a phenomenological theory based on a very powerful idea: focus on what
is changing qualitatively and assume everything else constant (that idea also works
in many other cases like flow instabilities in fluid mechanics). For that, Landau
suggested to characterize symmetry breaking by some order parameter η, which
is zero in the symmetrical phase and is nonzero in nonsymmetric phase. Example
of an order parameter is magnetization. The choice of order parameter is non-
unique; to reduce arbitrariness, it is usually required to transform linearly under
the symmetry transformation. The idea is to formally consider the thermodynamic
potential as G(P, T, η), even though η is not an independent parameter and must
itself be found as a function of P, T from requiring the minimum of G. We can
now expand the thermodynamic potential near the transition as a series in small
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η:
G(P, T, η) = G0 +A(P, T )η2 +B(P, T )η4 . (253)

The linear term is absent to keep the first derivative continuous at η = 0. The
coefficient B must be positive since arbitrarily large values of η must cost a lot of
energy. The coefficient A must be positive in the symmetric phase when minimum
in G corresponds to η = 0 (left figure below) and negative in the non-symmetric
phase where η ̸= 0. Therefore, at the transition Ac(P, T ) = 0 and Bc(P, T ) > 0:

η
A<0

η

G G

A>0

We assume that the symmetry of the system requires the absence of η3-term,
then the only requirement on the transition is Ac(P, T ) = 0 so that the transition
points fill the line in P − T plane. If the transition happens at some Tc then
generally near transition22 A(P, T ) = a(P )(T − Tc). Writing then the potential

G(P, T, η) = G0 + a(P )(T − Tc)η
2 +B(P, T )η4 , (254)

and requiring ∂G/∂η = 0 we get

η̄2 =
a

2B
(Tc − T ) . (255)

G(P, T, η) = G0 − a(P )(T − Tc)
2/4B for T < Tc .

In the lowest order in η, the entropy is S = −∂G/∂T = S0 + a2(T − Tc)/2B at
T < Tc and S = S0 at T > Tc. Here we realized the main idea: focused on the
temperature dependence of A(P, T ) treating everything else (in this case B) as
a constant. Entropy is lower at lower-temperature phase (which is generally less
symmetric). Specific heat Cp = T∂S/∂T has a jump at the transitions: ∆Cp =
a2Tc/2B. Specific heat increases when symmetry is broken since more types of
excitations are possible.

If symmetries allow the cubic term C(P, T )η3 (like in a gas or liquid near the
critical point discussed in Sect. 4.2 below) then one generally has a first-order
transition, say, when A < 0 and C changes sign:

22We assume a > 0 since in almost all cases the more symmetric state corresponds to
higher temperatures; rare exceptions exist so this is not a law.
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η ηη
C>0 C=0 C<0

GG

It turns into a second-order transition, for instance, when A = C = 0 i.e. only
in isolated points in P − T plane.

Consider now what happens when there is an external field (like magnetic field)
which contributes the energy (and thus the thermodynamic potential) by the term
−hηV . Equilibrium condition,

2a(T − Tc)η + 4Bη3 = hV , (256)

has one solution η(h) above the transition and may have three solutions (one
stable, two unstable) below the transition:

T=T

h

T>Tc
T<Tc

h

η

h

ηη

c

The similarity to the van der Waals isotherm is not occasional: changing the
field at T < Tc one encounters a first-order phase transition at h = 0 where the
two phases with η = ±

√
a(Tc − T )/2B coexist. We see that p− pc is analogous to

h and 1/v − 1/vc to the order parameter (magnetization) η.
Susceptibility diverges at T → Tc:

χ =

(
∂η

∂h

)
h=0

=
V

2a(T − Tc) + 12Bη2
=

{
[2α(T − Tc)]

−1 at T > Tc
[4α(Tc − T )]−1 at T < Tc

(257)

Comparing to χ ∝ 1/T obtained in (37) for noninteracting spins we see that the
paramagnetic phase corresponds to T ≫ Tc. Experiments support the Curie law
(257). Since a ∝ V we have introduced α = a/V in (257).

We see that Landau theory (based on the only assumption that the thermo-
dynamic potential must be an analytic function of the order parameter) gives
universal predictions independent on space dimensionality and of all the details of
the system except symmetries. Is it true? Considering specific systems we shall
see that Landau theory actually corresponds to the behavior near Tc of a mean-
field approximation i.e. to neglecting the fluctuations. The potential is getting flat
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near the transition then the fluctuations grow. In particular, the probability of the
order parameter fluctuations around the equilibrium value η̄ behaves as follows

exp

[
−(η − η̄)2

Tc

(
∂2G

∂η2

)
T,P

]
,

so that the mean square fluctuation of the order parameter, ⟨(η− η̄)2⟩ = Tc/2A =
Tc/2a(T − Tc). Remind that a is proportional to the volume under consideration.
Fluctuations are generally inhomogeneous and are correlated on some scale. To
establish how the correlation radius depends on T − Tc one can generalize the
Landau theory for inhomogeneous η(r), which is done in Sect. 4.2 below, where we
also establish the validity conditions of the mean field approximation and of the
Landau theory. Landau & Lifshitz, Sects. 142, 143, 144, 146.

8.5 Ising model

We now descend from phenomenology to real microscopic statistical theory. Our
goal is to describe how disordered systems turn into ordered one when interaction
prevails over thermal motion. Different systems seem to be having interaction of
different nature with their respective difficulties in the description. For example,
for the statistical theory of condensation one needs to account for many-particle
collisions. Magnetic systems have interaction of different nature and the technical
difficulties related with the commutation relations of spin operators. It is remar-
kable that there exists one highly simplified approach that allows one to study
systems so diverse as ferromagnetism, condensation and melting, order-disorder
transitions in alloys, phase separation in binary solutions, and also model phe-
nomena in economics, sociology, genetics, to analyze the spread of forest fires
etc. This approach is based on the consideration of lattice sites with the nearest-
neighbor interaction that depends upon the manner of occupation of the neighbo-
ring sites. We shall formulate it initially on the language of ferromagnetism and
then establish the correspondence to some other phenomena.

8.5.1 Ferromagnetism

Experiments show that ferromagnetism is associated with the spins of electrons
(not with their orbital motion). Spin 1/2 may have two possible projections, so
we consider lattice sites with elementary magnetic moments ±µ. In Sect. 2.5.1,
we considered this system in an external magnetic field H without any interaction
between moments and got the magnetization (36):

M = Nµ
exp(µH/T )− exp(−µH/T )
exp(µH/T ) + exp(−µH/T )

. (258)
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Of course, this formula gives no first-order phase transition upon the change of the
sign of H, in distinction from the Landau theory (256). The reason is that (258)
does not account for interaction (i.e. B-term in the Landau theory). First pheno-
menological treatment of the interacting system was done by Weiss who assumed
that there appears some extra magnetic field, proportional to magnetization per
particle. One adds that field to H and thus describes the influence that M causes
upon itself:

M = Nµ tanh
µ(H + ξM/N)

T
) . (259)

And now put the external field to zero H = 0. The resulting equation can be
written as

η = tanh
Tcη

T
, (260)

where we denoted η = M/µN and Tc = ξµ2 - that this is indeed the critical
temperature must follow from the fact that at higher temperatures only zero mag-
netization is possible. Indeed, there is a single solution η = 0 at T > Tc, while
at T < Tc there are two more nonzero solutions which exactly means the appea-
rance of the spontaneous magnetization. In the figure below, the left panel shows
graphic solution of (260): the broken line shows the left side and the two solid
lines show the right side respectively at T > Tc and T < Tc. At Tc − T ≪ Tc one
has η2 = 3(Tc − T ) exactly as in Landau theory (255).

1
ηη

c

cT/T
1

c

η

T>T
T<T

One can compare Tc with experiments and find surprisingly high ξ ∼ 103÷104.
That means that the real interaction between moments is much higher than the
interaction between neighboring dipoles µ2n = µ2/a3. Frenkel and Heisenberg
solved this puzzle (in 1928): it is not the magnetic energy but the difference of
electrostatic energies of electrons with parallel and antiparallel spins, so-called
exchange energy, which is responsible for the interaction (parallel spins have an-
tisymmetric coordinate wave function and much lower energy of interaction than
antiparallel spins).

To develop a regular procedure starting from the mean-field approximation, one
must formulate the microscopic model. The so-called Ising model was formulated
by Lenz in 1920 and solved in one dimension by his student Ising in 1925. It deals
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with the discrete spin variable σi = ±1 at every lattice site. The energy includes
interaction with the external field and between nearest neighbors (n.n.):

H = −µH
N∑
i

σi +
J

2

∑
ij−n.n.

(1− σiσj) . (261)

We assume that every spin has γ neighbors (γ = 2 in one-dimensional chain, 4
in two-dimensional square lattice, 6 in three dimensional simple cubic lattice etc).
We see that parallel spins have zero interaction energy while antiparallel have J
(which is comparable to Rydberg).

Let us start from H = 0. Magnetization is completely determined by the
numbers of spins up: M = µ(N+ − N−) = µ(2N+ − N). We need to write the
free energy F = E − TS and minimizing it find N+. The competition between
energy and entropy determines the phase transition. Entropy is determined by
N+ explicitly: S = lnC

N+

N = ln[N !/N+!(N − N+)!]. However, the energy of
interaction depends on the number of neighbors with opposite spins N+−. The
crudest approximation (Bragg and Williams, 1934) is, of course, mean-field, i.e.
replacing N-particle problem with a single-particle problem. It consists of saying
that every up spin has the number of down neighbors equal to the mean value
γN−/N so that the energy ⟨H⟩ = E = JN+− ≈ γN+(N − N+)J/N . Requiring
the minimum of the free energy, ∂F/∂N+ = 0, we get:

γJ
N − 2N+

N
− T ln

N −N+

N+
= 0 . (262)

Here we can again introduce the variables η = M/µN and Tc = γJ/2 and reduce
(262) to (260). We thus see that indeed Weiss guess gave the same equation of state
as the mean field approximation. The addition is that now we have the expression
for the free energy, F/2N = Tc(1 − η2) − T (1 + η) ln(1 + η) − T (1 − η) ln(1 − η),
so that we can indeed make sure that the nonzero η at T < Tc correspond to
minima. Here is the free energy plotted as a function of magnetization, we see
that it has exactly the form we assumed in the Landau theory (which corresponds
to the mean field approximation at T close to Tc). The energy is symmetrical with
respect to flipping all the spins simultaneously. The free energy is symmetric with
respect to η ↔ −η. But the system at T < Tc lives in one of the minima (positive
or negative η). When the symmetry of the state is less than the symmetry of the
potential (or Hamiltonian) it is called spontaneous symmetry breaking.
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We can also calculate the specific heat using E = γN+(N − N+)J/N =
(TcN/2)(1− η2) and obtain the jump exactly like in Landau theory:

η =
√
3(Tc − T ) , ∆C = C(Tc − 0) = −TcNη

dη

dT
= 3N/2 .

At T → 0, we have η ≈ 1 − 2 exp(−2Tc/T ) and the specific heat vanishes expo-
nentially: C(T ) ≈ 4N(Tc/T )

2 exp(−2Tc/T ).
The mean-field approach is exact for the infinite-range Ising model, where every

spin interacts equally with all others:

H{σi} = − J

2N

∑
i,j

σiσj − h
∑
i

σi = −Jx
2

2N
− hx . (263)

Here we denoted x =
∑

i σi. In that case we can also see explicitly see how phase
transition and singularity appear in the thermodynamic limit. It is clear that
Z(β) =

∑
σi=±1 exp[−βH{σi}] is an analytic function since it is a finite sum of

exponents for any finite N . One can calculate this function and see how singularity
appears at N → ∞, using the so-called Hubbard-Stratonovich trick of completing
the square,

exp(−βJx2/2N ] =

√
βJN

2π

∫ ∞

−∞
dy exp(−βJNy2/2 + βxy] .

That allows one to have in the exponent terms linear in x, which makes it straig-
htforward to compute the sum

∑
σi=±1:

Z(β) =

√
βJN

2π

∫ ∞

−∞
dy exp(−βJNy2/2)

∑
σi=±1

exp[β(Jy + h)
∑
i

σi]

=

√
βJN

2π

∫ ∞

−∞
dy exp[−NβF (y)] ,

F (y) =
Jy2

2
− 1

β
ln[2 coshβ(h+ Jy)] .

At h = 0, the mean magnetization,∑
i

⟨σi⟩
N

=
∂ lnZ

N∂h
∝
∫ ∞

−∞
dy exp(−βJNy2/2)[2 cosh(βJy)]N−1 sinh(βJy) = 0,
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is zero for any β. However, in the limit N → ∞ the integral over dy is determined
by the extremum of F (y) that is by the equation y0 = tanh(βJy0), which we met
before - (260). At β < 1/J we have two minima and need to choose one of them,
which breaks symmetry and provides for a nonzero magnetization.

Note that in the mean-field approximation, when the long-range order (i.e.
N+) is assumed to completely determine the short-range order (i.e. N+−), the
energy is independent of temperature at T > Tc since N+ ≡ N/2. We do not
expect this in reality. Moreover, let us not delude ourselves that we proved the
existence of the phase transition for a realistic model where every spin interacts
with a finite number of neighbors. How wrong is the mean-field approximation one
can see comparing it with the exact solution for the one-dimensional chain where
each spin interact with two neighbors. Consider again H = 0. It is better to think
not about spins but about the links between spins. Starting from the first spin,
the state of the chain can be defined by saying whether the next one is parallel to
the previous one or not. If the next spin is opposite it gives the energy J and if
it is parallel the energy is zero. There are N − 1 links. The partition function is
that of the N − 1 two-level systems (38):

Z = 2[1 + exp(−βJ)]N−1 . (264)

Here 2 because there are two possible orientations of the first spin.
One can do it for a more general Hamiltonian

H =−
N∑
i=1

[
Hσi +

J

2
(1−σiσi+1)

]
=−

N∑
i=1

[
H

2
(σi+σi+1) +

J

2
(1−σiσi+1)

]
. (265)

To avoid considering the open ends of the chain (which must be irrelevant in the
thermodynamic limit), we consider it on a ring so that σN+1 = σ1 and write the
partition function as a simple sum over spin value at every cite:

Z =
∑
{σi}

exp

[
β

N∑
i=1

{
H

2
(σi+σi+1)−

J

2
(1−σiσi+1)

}]
(266)

=
∑
{σi}

N∏
i=1

exp

[
β

{
H

2
(σi+σi+1)−

J

2
(1−σiσi+1)

}]
(267)

Every factor in the product can have four values, which correspond to four different
choices of σi = ±1, σi+1 = ±1. Therefore, every factor can be written as a matrix
element of 2 × 2 matrix: ⟨σj |T̂ |σj+1⟩ = Tσjσj+1 = exp[β{H(σi + σi+1)/2 − J(1 −
σiσi+1)/2}. It is called the transfer matrix because it transfers us from one cite to
the next.

T =

(
T1,1 T1,−1

T−1,1 T−1,−1

)
(268)
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where T11 = eβH , T−1,−1 = e−βH , T−1,1 = T1,−1 = e−βJ . For any matrices Â, B̂
the matrix elements of the product are [AB]ik = AijBjk. Therefore, when we sum
over the values of the intermediate spin, we obtain the matrix elements of the
matrix squared:

∑
σi
Tσi−1σiTσiσi+1 = [T 2]σi−1σi+1 . The sum over N −1 spins gives

TN−1. Because of periodicity we end up with summing over a single spin which
corresponds to taking trace of the matrix:

Z =
∑
{σi}

Tσ1σ2Tσ2σ3 . . . TσNσ1 =
∑

σ1=±1

⟨σ1|T̂N−1|σ1⟩ = traceTN−1 . (269)

The eigenvalues λ1, λ2 of T are given by

λ1,2 = cosh(βH)±
√
sinh2(βH) + e−2βJ . (270)

The trace is the sum of the eigenvalues

Z = λN−1
1 + λN−1

2 . (271)

Therefore

F = −T log(λN−1
1 + λN−1

2 ) = −T
[
(N − 1) log(λ1)

+ log

(
1 +

(
λ2
λ1

)N−1
)]

→ −NT log λ1 as N → ∞ (272)

Note that the partition functions (271) at H = 0 and (264) give the same free
energies only at the thermodynamics limit when a ring is indistinguishable from a
chain with open ends.

Now, as we know, there is no phase transitions for a two-level system. In
particular one can compare the mean-field energy E = Tc(1 − η2) with the exact
1d expression (41) which can be written as E(T ) = NJ/(1 + eJ/T ) and compare
the mean field specific heat with the exact 1d expression:

mean−field

1d

C

T

We can improve the mean-field approximation by accounting exactly for the
interaction of a given spin σ0 with its γ nearest neighbors and replacing the inte-
raction with the rest of the lattice by a new mean field H ′ (this is called Bethe-
Peierls or BP approximation):

Hγ+1 = −µH ′
γ∑

j=1

σj − (J/2)
γ∑

j=1

σ0σj . (273)
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The external field H ′ is determined by the condition of self-consistency, which
requires that the mean values of all spins are the same: σ̄0 = σ̄i. To do that, let
us calculate the partition function of this group of γ + 1 spins:

Z =
∑

σ0,σj=±1

exp

(
η

γ∑
j=1

σj + ν
γ∑

j=1

σ0σj

)
= Z+ + Z− ,

Z± =
∑

σj=±1

exp

[
(η ± ν)

γ∑
j=1

σj

]
= [2 cosh(η ± ν)]γ , η = µH ′/T , ν = J/2T .

Z± correspond to σ0 = ±1. Requiring σ̄0 = (Z+ − Z−)/Z to be equal to

σ̄j =
1

γ

⟨ γ∑
j=1

σj

⟩
=

1

γZ

∂Z

∂η

= Z−1
{
[2 cosh(η + ν)]γ−1 sinh(η + ν) + [2 cosh(η − ν)]γ−1 sinh(η − ν)

}
,

we obtain

η =
γ − 1

2
ln

[
cosh(η + ν)

cosh(η − ν)

]
(274)

instead of (260) or (262). Condition that the derivatives with respect to η at zero
are the same, (γ − 1) tanh ν = 1, gives the critical temperature:

Tc = J ln−1
(

γ

γ − 2

)
, γ ≥ 2 . (275)

It is lower than the mean field value γJ/2 and tends to it when γ → ∞ —
mean field is exact in an infinite-dimensional space. More important, it shows
that there is no phase transition in 1d when γ = 2 and Tc = 0 (in fact, BP
is exact in 1d). Note that now the magnetization is not η but the mean spin
σ̄0 = sinh(2η)/[cosh(2η) + exp(−2ν)]. BP gives nonzero energy and specific heat
at T > Tc (despite η = σ̄0 = 0): Z = 2γ+1coshγ(βJ/2) and F = −T lnZ =
−(γ/β) ln cosh(βJ/2). The energy is E = ∂(Fβ)/∂β = (γJ/2) tanh(βJ/2) and
the specific heat, C = (γJ2/8T 2) cosh2(J/2T ), such that C ∝ T−2 at T → ∞ (see
Pathria 11.6 for more details):

Bragg-Williams and Bethe-Peierls approximations are the first and the second
steps of some consistent procedure. When the space dimensionality is large, then
1/d is a small parameter whose powers determine the contributions of the subse-
quent approximations. Mean-field corresponds to the total neglect of fluctuations,
while BP accounts for them in the first approximation. One can also say that it
corresponds to the account of correlations: indeed, correlations make fluctuations
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Figure 4: Specific heat of the Ising model in two dimensions.

(like having many spins with the same direction in a local neighborhood) more pro-
bable and require us to account for them. We see that subsequent approximations
shift the critical temperature down and make the specific heat at the transition
higher. This is natural as we increase the number of the degrees of freedom we ac-
count for. The two-dimensional Ising model was solved exactly by Onsager (1944).
The exact solution shows the phase transition in two dimensions. The main quali-
tative difference from the mean field and BP is the divergence of the specific heat
at the transition: C ∝ − ln |1−T/Tc|. This is the result of fluctuations: the closer
one is to Tc the stronger are the fluctuations. The singularity of the specific heat is
integrable that is, for instance, the entropy change S(T1)−S(T2) =

∫ T2
T1
C(T )dT/T

is finite across the transition (and goes to zero when T1 → T2) and so is the energy
change. Note also that the true Tc = J/2 ln[(

√
2 − 1)−1] is less than both the

mean-field value Tc = γJ/2 = 2J and BP value Tc = J/ ln 2 also because of fluc-
tuations (one needs lower temperature to “freeze” the fluctuations and establish
the long-range order).

8.5.2 Equivalent models

The anti-ferromagnetic case has J < 0 and the ground state at T = 0 corresponds
to the alternating spins. We may break our lattice into two sublattices, one having
all spins up, another down. Without an external magnetic field, the magnetization
of every sublattice is the same as for Ising model with J > 0. That follows from
the fact that the energy is invariant with respect to the transformation J → −J
and flipping all the spins of one of the sublattices. Therefore we have the second-
order phase transition at zero field and at the temperature which is called Neel
temperature. The difference from ferromagnetic is that there is a phase transition
also at a nonzero external field (there is a line of transition in H − T plane.

One can try to describe the condensation transition by considering a regular
lattice with N cites that can be occupied or not. We assume our lattice to be
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in a contact with a reservoir of atoms so that the total number of atoms, Na, is
not fixed. We thus use a grand canonical description with Z(z,N, T ) given by
(236). We model the hard-core repulsion by requiring that a given cite cannot be
occupied by more than one atom. The number of cites plays the role of volume
(choosing the volume of the unit cell unity). If the neighboring cites are occupied
by atoms it corresponds to the (attraction) energy −2J so we have the energy
E = −2JNaa where Naa is the total number of nearest-neighbor pairs of atoms.
The partition function is

Z(Na, T ) =
a∑

exp(2JNaa/T ) , (276)

where the sum is over all ways of distributing Na indistinguishable atoms over N
cites. Of course, the main problem is in calculating how many times one finds the
given Naa. The grand partition function,

Z(z, V, T ) =
∞∑
Na

zNaZ(Na, T )) , (277)

gives the equation of state in the implicit form (like in Sect. 8.4.1): P = T lnZ/N
and 1/v = (z/V )∂ lnZ/∂z. The correspondence with the Ising model can be
established by saying that an occupied site has σ = 1 and unoccupied one has
σ = −1. Then Na = N+ and Naa = N++. Recall that for Ising model, we had
E = −µH(N+ − N−) + JN+− = µHN + (Jγ − 2µH)N+ − 2JN++. Here we
used the identity γN+ = 2N++ +N+− which one derives counting the number of
lines drawn from every up spin to its nearest neighbors. The partition function of
the Ising model can be written similarly to (277) with z = exp[(γJ − 2µH)/T ].
Further correspondence can be established: the pressure P of the lattice gas can
be expressed via the free energy per cite of the Ising model: P ↔ −F/N + µH
and the inverse specific volume 1/v = Na/N of the lattice gas is equivalent to
N+/N = (1 +M/µN)/2 = (1 + η)/2. We see that generally (for given N and T )
the lattice gas corresponds to the Ising model with a nonzero field H so that the
transition is generally of the first-order in this model. Indeed, whenH = 0 we know
that η = 0 for T > Tc which gives a single point v = 2, to get the whole isotherm
one needs to consider the nonzero H i.e. the fugacity different from exp(γJ). In
the same way, the solutions of the zero-field Ising model at T < Tc gives us two
values of η that is two values of the specific volume for a given pressure P . Those
two values, v1 and v2, precisely correspond to two phases in coexistence at the
given pressure. Since v = 2/(1+η) then as T → 0 we have two roots η1 → 1 which
correspond to v1 → 1 and η1 → −1 which corresponds to v1 → ∞. For example,
in the mean field approximation (262) we get (denoting B = µH)

P = B − γJ

4
(1 + η2)− T

2
ln

1− η2

4
, B =

γJ

2
− T

2
ln z ,
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v =
2

1 + η
, η = tanh

(
B

T
+
γJη

2T

)
. (278)

As usual in a grand canonical description, to get the equation of state one expresses
v(z) [in our case B(η)] and substitutes it into the equation for the pressure. On the
figure, the solid line corresponds to B = 0 at T < Tc where we have a first-order
phase transition with the jump of the specific volume, the isotherms are shown by
broken lines. The right figure gives the exact two-dimensional solution.

v

1 02 3 3
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c
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0.2
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c
P/T
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1 2

v

The mean-field approximation (278) is equivalent to the Landau theory near
the critical point. In the variables t = T − Tc, η = n − nc the equation of state
takes the form p = P − Pc = bt+ 2atη + 4Cη3 with C > 0 for stability and a > 0
to have a homogeneous state at t > 0. In coordinates p, η the isotherms at t = 0
(upper curve) and t < 0 (lower curve) look as follows:

1

p

η
η

η 2

The densities of the two phases in equilibrium, η1, η2 are given by the condition

2∫
1

v dp = 0 ⇒
2∫

1

η dp =

η2∫
η11

η

(
∂p

∂η

)
t

dη =

η2∫
η1

η
(
2at+ 12Cη2

)
dη = 0 , (279)

where we have used v = n−1 ∼ n−1
c − ηn−2

c . We find from (279) η1 = −η2 =
(−at/2C)1/2. According to Clausius-Clapeyron equation (252) we get the latent
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heat of the transition q ≈ bTc(η1 − η2)/n
2
c ∝

√
−t. We thus have the phase

transition of the first order at t < 0. As t → −0 this transition is getting close to
the phase transitions of the second order. See Landau & Lifshitz, Sect. 152.

As T → Tc the mean-field theory predicts 1/v1 − 1/v2 ∝ (Tc − T )1/2 while the
exact Onsager solution gives (Tc − T )1/8. Real condensation transition gives the
power close 1/3. Also lattice theories give always (for any T ) 1/v1 + 1/v2 = 1
which is also a good approximation of the real behavior (the sum of vapor and
liquid densities decreases linearly with the temperature increase but very slowly).
One can improve the lattice gas model considering the continuous limit with the
lattice constant going to zero and adding the pressure of the ideal gas.

Another equivalent model is that of the binary alloy that is consisting of two
types of atoms. X-ray scattering shows that below some transition temperature
there are two crystal sublattices while there is only one lattice at higher tem-
peratures. Here we need the three different energies of inter-atomic interaction:
E = ϵ1N11 + ϵ2N22 + ϵ12N12 = (ϵ1 + ϵ2 − 2ϵ12)N11 + γ(ϵ12 − ϵ2)N1 + γϵ2N/2. This
model described canonically is equivalent to the Ising model with the free energy
shifted by γ(ϵ12−ϵ2)N1+γϵ2N/2. We are interested in the case when ϵ1+ϵ2 > 2ϵ12
so that it is indeed preferable to have alternating atoms and two sublattices may
exist at least at low temperatures. The phase transition is of the second order with
the specific heat observed to increase as the temperature approaches the critical
value. Huang, Chapter 16 and Pathria, Chapter 12.

As we have seen, to describe the phase transitions of the second order near Tc
we need to describe strongly fluctuating systems. We shall see how an account
of fluctuations makes them different from either the phenomenology of Landau
theory and the mean-field approximations described above.

8.6 Applicability of Landau theory

We have considered inhomogeneous small fluctuations in Sects. 4.2. To generalize
the Landau theory for inhomogeneous η(r) one writes the thermodynamic potential
uniting (254) and (86) as

F{η(r)} =

∫
dr[g|∇η|2 + α(T − Tc)η

2 + bη4] . (280)

The thermodynamic potential is now a functional since it depends on the whole
function η(r). Addition of the extra term g|∇η|2 means that having an inho-
mogeneous state costs us extra value of the thermodynamic potential. We ac-
counted for that extra cost using only the first spatial derivative, which means
that this expression is obtained by effectively averaging the potential over the
scales large comparing to the inter-atom distances (but small comparing to the
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correlation radius, so that this expression makes sense only not far from the
critical temperature). We again assume that only the coefficient at η2 turns
into zero at the transition. The correlation radius diverges at the transition23:
rc(T ) =

√
g/α(T − Tc) = a

√
Tc/(T − Tc). Here we expressed g ≃ αTca

2 via the
correlation radius a far from the transition. We must now estimate the typical size
of fluctuations for the volume r3c : ⟨(∆η)2⟩ ≃ T/A ≃ T/ϕ0r

3
c . As any thermodyn-

amic approach, the Landau theory is valid only if the mean square fluctuation on
the scale of rc is much less than η̄, so-called Ginzburg-Levanyuk criterium:

Tc
2α(T − Tc)r3c

≪ α(T − Tc)

b
⇒ T − Tc

Tc
≫ b2

α4T 2
c a

6
≡
(
ri
a

)6

. (281)

We introduced r3i = b/α2Tc which can be interpreted as the effective volume of
interaction per degree of freedom: if we divide the energy density of interaction
bη4 ≃ b(αTc/b)

2 by the energy of a single degree of freedom Tc we get the number
of degrees of freedom per unit volume i.e. r−3

i . Since the Landau theory is built at
T − Tc ≪ Tc then it has validity domain only when ri/rc0 ≪ 1 which often takes
place (in superconductors, this ratio can be less than 10−2, since the interaction
scale is a lattice size and the correlation radius is the size of the electron-hole
Cooper pair). In a narrow region near Tc fluctuations dominate. We thus must use
the results of the Landau theory only outside the fluctuation region, in particular,
the jump in the specific heat ∆Cp is related to the values on the boundaries of the
fluctuation region; inside the region Cp can change much, even diverge as we have
seen.

Landau theory predicts rc ∝ (T − Tc)
−1/2 and the correlation function appro-

aching the power law 1/r as T → Tc in 3d. Those scalings are valid under the
condition (281), that is not very close to Tc. As one can see from the exact solu-
tion of 2d Ising model, the true asymptotic at T → Tc (i.e. inside the fluctuation
region) are different: rc ∝ (T − Tc)

−1 and φ(r) = ⟨σ(0)σ(r)⟩ ∝ r−1/4 at T = Tc in
that case. Yet the fact of the radius divergence remains. It means the breakdown
of the Gaussian approximation for the probability of fluctuations since we cannot
divide the system into independent subsystems. Indeed, far from the critical point,
the probability distribution of the density has two approximately Gaussian peaks,
one at the density of liquid nl, another at the density of gas ng. As we approach
the critical point and the distance between peaks is getting comparable to their
widths, the distribution is non-Gaussian. In other words, one needs to describe a
strongly interaction system near the critical point which makes it similar to other
great problems of physics (quantum field theory, turbulence).

23The correlation radius generally stays finite at a first-order phase transition. The
divergence of rc at T → Tc means that fluctuations are correlated over all distances so
that the whole system is in a unique critical phase at a second-order phase transition.
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8.7 Different order parameters and space dimensiona-
lities

Phenomenological treatment in the previous section have shown that above the
critical point (in the symmetric phase) ϕ0(T ) is positive and the critical radius

rc ∝ ϕ
−1/2
0 is finite. At criticality ϕ0 = 0 and the energy of the perturbation goes

to zero with the wave number. What will be below the critical temperature in the
symmetry-broken phase when ϕ0 < 0? Of course, that would be silly to assume
that we have imaginary rc and oscillatory correlation function according to (89) - to
describe fluctuations we now need to expand the free energy near the new minimum
of the thermodynamic potential, where the mean value of the order parameter η̄
is nonzero. At T < Tc the second derivative of the thermodynamic potential is
finite positive at η̄ so the correlation radius must be finite, right? Actually, this
is true only when the order parameter is a real scalar like in the Ising model or
in the simple version of the Landau theory we considered so far. This is because
in the Ising model the symmetry was discrete (up-down, present-absent) and so
was described by a scalar real order parameter. Whether the correlation radius is
finite or infinite depends on the dimensionality of the order parameter, which is
determined by the type of the symmetry. What if the symmetry broken by the
phase transition is continuous?

8.7.1 Goldstone mode and Mermin-Wagner theorem

Here we consider the case when the Hamiltonian is invariant under O(n) rotations.
Now to break a symmetry we need to choose a direction in n-dimensional space, and
the order parameter is a vector (η1, . . . , ηn). The rotational symmetry is continuous
since one can rotate by an infinitesimally small angle. Then the analog of the
Landau thermodynamic potential must have a form g

∑
i |∇ηi|2+α(T−Tc)

∑
i η

2
i +

b
(∑

i η
2
i

)2
. Here we assumed that the interaction is short-range and used the

Ornshtein-Zernicke approximation for the spatial dependence. When T < Tc the
minimum corresponds to breaking the O(n) symmetry, for example, by taking the
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first component η̄ = [α(Tc − T )/2b]1/2 and the other components zero. This is an
example of what is called spontaneous symmetry breaking : the symmetry of the
thermodynamic potential (and of the most probable configuration) is less than the
symmetry of the Hamiltonian. Thermodynamic potential is the log of the partition
function which is the sum (integral in a continuous limit) over configurations of
the exponent of the Hamiltonian. The symmetry of an integral can be less than
the symmetry of the integrand if the integration measure (choice of configurations
over which we sum) breaks the symmetry.

Considering fluctuations we put ([α(Tc−T )/2b]1/2+ η1, η2, . . . , ηn) and obtain
the quadratic terms in the thermodynamic potential as follows:

g
∑
i

|∇ηi|2+4bη̄2η21+[α(T − Tc)+2bη̄2]
∑
i

η2i = g
∑
i

|∇ηi|2+2α(Tc − T )η21.

That form means that only the longitudinal mode η1 has a finite correlation length
rc = [2α(Tc−T )]−1/2. Almost uniform fluctuations of the transverse modes do not
cost any free energy and thus have non-vanishing probability. This is an example
of the Goldstone theorem which claims that whenever continuous symmetry is
spontaneously broken then the mode must exist with the energy going to zero with
the wavenumber. This statement is true beyond the mean-field approximation or
Landau theory as long as the force responsible for symmetry breaking is short-
range. For a spin system, the broken symmetry is rotational and the Goldstone
mode is the excited state where the spin turns as the location changes, as shown
in the Figure. That excitation propagates as a spin wave. For a solid, the broken
symmetry is translational and the Goldstone mode is a phonon.
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Equivalent ground states

Goldstone mode − spin wave

As we have seen, if the symmetry broken is continuous then even below the
critical temperature we have an infinite correlation radius and fluctuations on
all scales like at criticality. Indeed, Goldstone modes are necessarily excited by
thermal fluctuations. Does it mean that there is effectively no long-range order
even below Tc since we can always meet arbitrary long fluctuation? As we have seen
in Sects. 4.2, the answer depends on the space dimensionality. Indeed the integral
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(89) at ϕ0 = 0 describes fluctuations whose variance grows with the system size L:

⟨(∆η)2⟩ ∝
∫ 1/a

1/L
k−2d dk =

a2−d − L2−d

d− 2
. (282)

For d > 2 that growth saturates so the variance is independent of L at the thermo-
dynamic limit. On the contrary, the mean variance of the order parameter diverges
when L → ∞ at d ≤ 2. For example, ⟨(∆η)2⟩ ∝ ln(L/a) in 2d. That means that
in the thermodynamic limit the system is actually disordered: soft (Goldstone)
modes with no energy price for long fluctuations (ϕ0 = 0) destroy long order (this
statement is called Mermin-Wagner theorem). In exactly the same way phonons
with ωk ∝ k make 2d crystals impossible: the energy of the lattice vibrations is
proportional to the squared atom velocity (which is the frequency ωk times dis-
placement uk), T ≃ ω2

ku
2
k; that makes mean squared displacement proportional to

⟨u2⟩ ∝
∫
ddku2k =

∫
ddkT/ω2

k ∝ L2−d — in large enough samples the amplitude of
displacement is getting comparable to the distance between atoms in the lattice,
which means the absence of a long-range order.

Another example of the Goldstone mode destroying the long-range coherence is
the case of the complex scalar order parameter Ψ = ϕ1+ ıϕ2 (say, the amplitude of
the quantum condensate). In this case, the density of the Landau thermodynamic
potential invariant with respect to the phase change Ψ → Ψexp(iα) (called global
gauge invariance) has the (so-called Landau-Ginzburg) form

F = g|∇Ψ|2 + α(T − Tc)|Ψ|2 + b|Ψ|4 . (283)

At T < Tc, the (space-independent) minima of the potential form a circle in
ϕ1 − ϕ2 plane: |Ψ|2 = ϕ21 + ϕ22 = α(Tc − T )/2b = ϕ20. Any ordered (coherent)
state would correspond to some choice of the phase, say ϕ1 = ϕ0, ϕ2 = 0. For
small perturbations around this state, Ψ = ϕ0 + φ + ıξ, the quadratic part of
the potential takes the form g|∇ξ|2 + g|∇φ|2 + 4bϕ20|φ|2. Since there is no term
proportional to ξ2, then fluctuations of ξ have an infinite correlation radius even
at T < Tc; their variance (282) diverges with L → ∞ at d ≤ 2, which means
that phase fluctuations destroy coherence of 2d quantum condensate. That was
a macroscopic way24 to see that the Bose-Einstein condensation is impossible in
2d. To describe the Goldstone mode fluctuations at low temperatures, one can
introduce the phase θ = −i ln(ψ/ϕ0) so that the effective Hamiltonian at low T is
H = gϕ20

∫
|∇θ|2 dr.

Let us summarize. If the system Hamiltonian has a continuous symmetry, like
rotation for spins, translation for atoms or gauge transformation for quantum wave

24One can also see that from microscopic description, observing that the integral (215)
at z = 1 diverges as

∫
0
pdp/p2, that is there is enough states at small momenta to accom-

modate all particles, no need to have macroscopic population at zero momentum.
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function, this symmetry must be spontaneously broken to provide for an ordered
state at low temperatures. In an ordered state, spins look predominantly in one
directions in a ferromagnetic, atoms sit in preferred positions in the crystal lattice
and the quantum phase is fixed. Then the Goldstone theorem claims that since
those ordered states appeared by spontaneously breaking a continuous symmetry
then the mode must exist whose energy goes to zero with the wavenumber (rotation
or translation of the system as a whole costs no energy). This statement is true
as long as the force responsible for symmetry breaking is short-range. For a spin
system, the broken symmetry is rotational and the Goldstone mode is the excited
state where the spin turns as the location changes. That excitation propagates as
a spin wave. For a solid, the broken symmetry is translational and the Goldstone
mode is a phonon. Long -wave variations of quantum phase also propagate as
phonons.

So how actually the correlations look like at low temperatures at d = 2, when
the correlation radius of fluctuations is infinite, on the one hand, but no long-range
order exists, on the other hand? Consider the so-called XY model which descri-
bes a system of two-dimensional spins s = (s cosφ, s sinφ) with ferromagnetic
interaction i.e. with the Hamiltonian

H = −J
∑
i,j

s(i) · s(j) = −Js2
∑
i,j

cos(φi − φj) . (284)

At low enough temperature, we expect |φi−φj | ≪ 2π, which allows one to approx-
imate cos(φi − φj) ≈ 1 − (φi − φj)

2/2 and go into a continuous limit (spin-wave
approximation):

H ≈ −γNJs
2

2
+
Js2

2

∑
i,j

|φi − φj |2

≈ −γNJs
2

2
+
Js2

2

∫
|∇φ(r)|2d2r . (285)

That Hamiltonian can be also written as a sum over Fourier harmonics H +
γNJs2/2 =

∑
kHk = Na2Js2

∑
k k

2|φk|2/2 =
∑

k |φk|2/2⟨|φk|2⟩ with each term
having an Ornstein-Zernike form. Here a is the lattice spacing. There is no φ2

0

term because of the O(2) rotational symmetry of the spins which corresponds to
translational symmetry of the phases φ. In this (low-T ) approximation, the phases
have Gaussian statistics with the pair correlation function which is logarithmic for
distance r ≪ L:

⟨φ(r)φ(0)⟩ =
∑
k

|φk|2eikr = Na2
∫
⟨|φk|2⟩eikr

dk

(2π)2

=

∫
T

Js2k2
J0(kr)

d2k

2π
≈ T

2πJs2
ln(L/r) . (286)
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The variance is ⟨φ2⟩ = (2πβJs2)−1 ln(L/a) and ⟨[φ(r) − φ(0)]2⟩ = ⟨[δφ(r)]2⟩ =
(4πβJs2)−1 ln(r/a) - this is true, of course, for r ≫ a. Let us calculate now the
correlation function between two spins distance r apart:

⟨s(0) · s(r)⟩/s2 = ⟨cos[φ(r)− φ(0)]⟩ = Re⟨eiφ(r)−iφ(0)⟩

= Re

∫
Dφeiδφ(r)−[δφ(r)]2/2⟨[δφ(r)]2⟩ = e−⟨[δφ(r)]2⟩/2 =

(
r

a

)−1/2πβJs2

.

One can do it using Fourier representation from the very beginning:

Re⟨exp[iφ(r)− iφ(0)]⟩ =
∫
dφkdφ

∗
k Re exp

{∑
k

[
iφk

(
ei(kr)− 1

)
− βHk

]}

= exp

[
− T

Na2Js2

∑
k

1− cos(kr)

k2

]
= exp

[
− T

Js2

∫
dk

(2π)2
1− cos(kr)

k2

]

≈ exp
[
−(2πβJs2)−1 ln(πr/a)

]
=

(
πr

a

)−1/2πβJs2

. (287)

Here we used the formula of Gaussian integration∫ ∞

−∞
dφe−Aφ2/2+iJφ =

√
2π/Ae−J2A−1/2 . (288)

We see that the correlation function falls of by a power law at however low tempe-
rature, and it does not approach constant as in a state with a long-range order. We
thus conclude that there is no long-range order at all temperatures. Description
looks practically the same for two dimensional crystals where the energy is pro-
portional to the squared difference between the displacements of the neighboring
atoms.

8.7.2 Berezinskii-Kosterlitz-Thouless phase transition

Still, a power-law decay of correlations (287), found at low T , is very much different
from the exponential decay in a state with a finite correlation radius. That is
the state with a power-law decay formally corresponds to an infinite correlation
radius. A long-range order is absent in that state yet a local order exists, which
means that at sufficiently low temperatures superfluidity and superconductivity
can exist in 2d films, and 2d crystals can support transverse sound (recall that
longitudinal sound exists in fluids as well, so it is transverse sound which is a
defining property of a solid). Remind that our consideration (284-287) was for
sufficiently low temperatures. One then asks if the power-law behavior disappears
and a finite correlation radius appears above some temperature.
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Consider XY model at high temperatures. In this case, the spin correlation
function can be written as follows:

⟨cos[φr − φ0]⟩ = Z−1
N∏
i=1

∫
dφi

2π
cos(φr − φ0)e

βJs2
∑

i,j
cos(φi−φj)

≈ Z−1
N∏
i=1

∫
dφi

2π
cos[φr − φ0]

∏
i,j

[1 + βJs2 cos(φi − φj)] + o(βJs2) .

In the lowest order in βJs2, every bond between neighboring spins contribute either
1 or cos(φi−φj). Since the integral of cosine is zero, any set of bonds (i.e. graph)
with a single bond sticking out of the site, which is neither 0 nor r, is zero. Only
those graphs contribute that start at 0 and end at r. The leading contribution
is from the shortest path of the length r. Internal and end-point integrations are
respectively as follows:∫

dφi

2π
cos(φi − φi−1) cos(φi+1 − φi) =

1

2
cos(φi+1 − φi−1) ,∫

dφrdφ0

(2π)2
cos2(φr − φ0) =

1

2
.

Each cosine comes with βJs2 factor so that each bond along the path contributes
βJs2/2:

⟨s(0)·s(r)⟩
s2

= ⟨cos(φr−φ0)⟩ =
(
βJs2

2

)r

=e−r/rc with rc = ln−1(2/βJs2) .

We see that there is a finite correlation radius at high temperatures. We assumed
that the shortest path is unique, while in reality there are many, their number
growing exponentially with r - that renormalizes the correlation radius but not
the fact of the exponential decay. To get a power-law decay of correlations at low
temperatures we need to turn the correlation radius into infinity at some finite
temperature. That must be a phase transition. What causes it? The answer
is that, apart from Goldstone modes, there is another set of excitations, which
destroy an order even more effectively and lead to a finite correlation radius. For a
2d crystal, an order is destroyed by randomly placed dislocations while for a spin
system or condensate by vortices. In considering spin waves in the XY model we
neglected the periodic nature of the angle φ. Since fluctuations of the angle increase
(logarithmically) at large distances, one needs to account for large variations of the
angle and for topological effects due to angle periodicity. Vortex is a configurations
of spins for which the angle rotates by 2πm when one goes around a closed path, see
Figure 5. The integer m is called the topological charge since it does not change
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upon smooth deformations, and the vortex is then a topological defect. Such
defects appear in all models where a compact group defines the order parameter
whose space is thus compact. Order parameter space for a magnet is a sphere
(circle for XY model). Crystal order parameter is a displacement field defined
modulo crystal (Bravais) lattice, which for 2d crystal is a torus.

To describe the vortex analytically, we can consider a large circle around the
vortex center, then the variations of the angle φ along the circle are smooth and can
be described in the continuous approximation (285). The energy can be minimized
not only by a uniform φ =const but also by an inhomogeneous configuration, which
is a vortex. Indeed, let us look at the variation:

δ

δφ(r)

∫
|∇φ(r′)|2 dr′ = ∆φ = 0 .

The vortex is the solution of this equation, which in the polar coordinates r, θ
is simply φ(r, θ) = mθ so that (∇φ)θ = r−1∂φ/∂θ = m/r and the energy
E = (Js2/2)

∫
|∇φ(r)|2d2r = πJs2m2 ln(L/a). We see that the energy of a single

vortex is proportional to the logarithm of a sample size L. But the entropy S
associated with a single vortex is a log of the number of places one can put the
center of the vortex, so it is also logarithmic in area and in size: S = ln(L/a)2.
That means that there exists some sufficiently high temperature T = πJs2m2/2
when the energy contribution into the free energy E − TS is getting less than the
entropy contribution TS. The lowest temperature is for m = 1: TBKT = πJs2/2 -
it corresponds to the so-called Berezinskii-Kosterlitz-Thouless (BKT) phase tran-
sition from a low-T where there are no isolated vortices to a high-T state of free
dislocations/vortices. Free vortices provide for a screening (a direct analog of
the Debye screening of charges) so that the high-T state has a finite correlation
length equal to the Debye radius. Vortices are present at all temperatures. Ho-
wever, at low temperatures, one does not meet isolated vortices but only dipoles,
i.e. pairs with m = ±1, whose energy is determined by the inter-vortex distance
and is independent of the system size L. Indeed, far from the dipole, the field
∇φ = ∇φ+ +∇φ− decays as r−2 so in the energy integral only shorter distances
contribute, E ∝ ln(r/a), where r is the distance between the vortices. As opposite
to initial spins or atoms that create crystal or condensate and interact locally, vor-
tices and dislocations have a long-range (logarithmic) interaction. Dipoles cannot
screen which leads to power-law correlations at low T .

Let us now consider a different system: complex scalar field, which describes,
for instance, quantum wave function of the set of atoms. Close to Bose-Einstein
condensation in 2d it corresponds to the thermodynamic Landau-Ginzburg poten-
tial (283), which contains nonlinearity. That system can have vortices as well. A
vortex is an inhomogeneous state that corresponds to an extremum of the poten-
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Figure 5: Two vortices with m = 1 and m = −1 in the XY model.

tial. Varying the potential (283) with respect to Ψ∗ we get the equation

δF/δΨ∗ = −g∆Ψ+ 2b
(
|Ψ|2 − ϕ20

)
Ψ = 0 . (289)

In polar coordinates, the Laplacian takes the form ∆ = r−1∂rr∂r + r−2∂2θ . Vortex
corresponds to Ψ(r, θ) = A(r) exp(imθ) where A can be chosen real and integer
m determines the circulation. Going around the vortex point in 2d (vortex line in
3d), the phase acquires 2mπ. The dependence on the angle θ makes the condensate
amplitude turning into zero on the axis: A ∝ rm as r → 0. At infinity, we have
a homogeneous condensate: limr→∞(A − ϕ0) ∝ r−2. That this is a vortex is also
clear from the fact that there is a current J = i(ψ∇ψ∗ − ψ∗∇ψ) and the velocity
around it:

Jθ ∝ i

(
ψ
∂ψ∗

r∂θ
− ψ∗ ∂ψ

r∂θ

)
=
A2

r
,

so that the circulation is independent of the distance from the vortex. Second,
notice that the energy of a vortex indeed diverges logarithmically with the sample
size (as well as the energy of dislocations and 2d Coulomb charges): velocity around
the vortex decays as v ∝ 1/r so that the kinetic energy diverges as A2

∫
v2 d 2r ∝∫

d 2r/r2. A single vortex has its kinetic energy proportional to the logarithm
of the sample size L. As we argued, since any charge can be placed in roughly
(L/a)2 different positions, where a is the charge size (vortex core), then the entropy
S = 2 ln(L/a) is also logarithmic. The free energy is as follows:

F = E − TS = (A2 − 2T ) ln(L/a) =

[
α(Tc − T )

2b
− 2T

]
ln(L/a) .
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We find that the second (BKT) phase transition happens at

TBKT = Tc
α

α+ 4b
,

i.e. at the temperature less than Tc, when the condensate appears. At Tc >
T > TBKT , the entropy term TS wins so that the minimum of F corresponds to
proliferation of isolated charges which provide for screening and an exponential
decay of correlations.

The statistics of vortices and similar systems can be studied using a simple
model of 2d Coulomb gas, which is described by the Hamiltonian

H = −
∑
i ̸=j

mimj ln |ri − rj | (290)

with mi = ±1. Since we are interested only in the mutual positions of the vortices,
we accounted only for the energy of their interaction. One can understand it
better if we recall that the Hamiltonian describes also dynamics. The coordinates
ri = (xi, yi) of the point vortices (charges) satisfy the Hamiltonian equations

miẋi =
∂H
∂yi

= mi

∑
j

mj
yi − yj
|ri − rj |2

, miẏi = −∂H
∂xi

= mi

∑
j

mj
xj − xi
|ri − rj |2

,

which simply tell that every vortex moves in the velocity field induced by all other
vortices.

For example, the statistics of the XY-model at low temperatures can be consi-
dered with the Hamiltonian which is a sum of (285) and (290), and the partition
function respectively a product of those due to spin waves and vortices25. In
the same way, condensate perturbations are sound waves and vortices. Goldstone
modes (spin and sound waves) destroy long-range-order in 2d systems with a con-
tinuous symmetry. Since the Gaussian partition function of the waves is analytic,
the phase transition can only originate from the vortices; near such phase transi-
tion the vortex degrees of freedom can be treated separately. Note that this is the
phase transition without symmetry breaking.

In the canonical approach, one writes the Gibbs distribution P = Z−1e−βH.
The partition function,

Z(β) =

∫
exp(−βH)Πid

2ri = V
∏
i ̸=j

∫
r
βmimj

ij d2rij ,

25That there is no cross-term can be appreciated by writing H ∝
∫
v2d2r where the

”velocity” describing distortion consists of potential and solenoidal parts: v = ∇φ+∇×ψ,
where ∆ψ(r) = 2π

∑
miδ(r− r′); then

∫
(∇× ψ) · (∇ϕ) d2r = 0.
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behaves at rij → ϵ → 0 as ϵ2(N−1)−β(N2−N(N−2))/4. Here we took into account
that a neutral system with N vortices must have the following number of pairs:
N+− = (N/2)2 and N++ = N−− = N(N − 2)/8. That is the integral converges
only for β < 4(N − 1)/N . In the thermodynamic limit N → ∞, the convergence
condition is β < 4. When β → 4 with overwhelming probability the system of
vortices collapses, which corresponds to the BKT phase transition.

In the microcanonical approach one considers vortices in a domain with the
area A. The density of states,

g(E,A) =

∫
δ(E −H)Πidzi , (291)

must have a maximum since the phase volume Γ(E) =
∫ E g(E)dE increases

monotonically with E from zero to AN . The entropy, S(E) = ln g(E), there-
fore, gives a negative temperature T = g/g′ at sufficiently high energy. Since
g(E,A) = ANg(E′, 1) where E′ = E + 2 lnA

∑N
i<j mimj we can get the equation

of state

P = T

(
∂S

∂A

)
E
=
NT

A

1 + 1

2NT

N∑
i<j

mimj

 . (292)

For a neutral system with mi = ±1 we find
∑N

i<j mimj = N++ +N−− −N+− =
−N/2 and

P =
NT

A

(
1− β

4

)
, (293)

which shows that pressure turns to zero at the BKT transition temperature.
Note that the initial system had a short-range interaction, which allowed to

use the potential (283) in the long-wave limit. In other words, particles that
create condensate interact locally. However, condensate vortices have a long-range
interaction (290). While BKT transition may seem exotic and particular for 2d, the
lesson is quite general: when there are entities (like vortices, monopoles, quarks)
whose interaction energy depends on the distance similarly to entropy then the
phase transition from free entities to pairs is possible at some temperature. In
particular, it is argued that a similar transition took place upon cooling of the
early universe in which quarks (whose interaction grows with the distance, just
like entropy) bind together to form the hadrons and mesons we see today.

See Kardar, Fields, sect. 8.2.

8.7.3 Higgs mechanism

Let us stress that the previous subsection treated the condensate made of particles
with local interaction. The physics is different, however, if the condensate is made
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of charged particles which can interact with the electromagnetic field, defined by
the vector potential A and the field tensor Fµν = ∇µAν−∇νAµ. That corresponds
to the thermodynamic potential |(∇−ıeA)Ψ|2+α(T −Tc)|Ψ|2+b|Ψ|4−FµνF

µν/4,
which is invariant with respect to the local (inhomogeneous) gauge transformations
Ψ → Ψexp[iφ(r)], A → A+∇φ/e for any differentiable function φ(r). Note that
the term FµνF

µν = (∇ × A)2 does not change when one adds gradient to A.
The equilibrium state is Ψ0 = ϕ0 + exp[ıφ/ϕ0] and A0 = ∇φ/eϕ0, absorbing also
the phase shift into the vector potential. Perturbations can now be defined as
Ψ = (ϕ0 + h) exp[ıφ/ϕ0] and A0 +A. The quadratic part of the thermodynamic
potential is now

|∇h|2 + α(T − Tc)h
2 + e2ϕ20A

2 − FµνF
µν/4 , (294)

i.e. the correlation radii of both modes h,A are finite. The correlation radius of
the gauge-field mode is rc = 1/2eϕ0 =

√
b/α(Tc − T ). This case does not belong to

the validity domain of the Mermin-Wagner theorem since the Coulomb interaction
is long-range.

Thinking dynamically, if the energy of a perturbation contains a nonzero ho-
mogeneous term quadratic in the perturbation amplitude, then the spectrum of ex-
citations has a gap at k → 0. For example, the (quadratic part of the) Hamiltonian
H = g|∇ψ|2 + ϕ20|ψ|2 gives the dynamical equation ıψ̇ = δH/δψ∗ = −g∆ψ + ϕ20ψ,
which gives ψ ∝ exp(ıkx− ıωkt) with ωk = ϕ20+gk

2. Therefore, what we have just
seen is that the Coulomb interaction leads to a gap in the plasmon spectrum in
superconducting transition. In other words, photon is massless in a free space but
has a mass if it has to move through the condensate of Cooper pairs in a supercon-
ductor (Anderson, 1963). Another manifestation of this simple effect comes via
the analogy between quantum mechanics and statistical physics (which we discuss
in more detail in the subsection 6.1). On the language of relativistic quantum
field theory, the system Lagrangian plays a role of the thermodynamic potential
and the vacuum plays a role of the equilibrium. Here, the presence of a constant
term means a finite energy (mc2) at zero momentum, which means a finite mass.
Interaction with the gauge field described by (294) is called Higgs mechanism by
which particles acquire mass in quantum field theory, the excitation analogous to
that described by A is called vector Higgs boson (Nambu, 1960; Englert, Brout,
Higgs, 1964). What is dynamically a finite inertia is translated statistically into a
finite correlation radius. When you hear about the infinite correlation radius, gap-
less excitations or massless particles, remember that people talk about the same
phenomenon. See also Kardar, Fields, p. 285-6.
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8.7.4 Impossibility of long-range order in 1d

The Goldstone mode destroys a long-range order in two dimensions and even more
so in one dimension. The mode, however, does not exist if the order parameter
cannot change continuously but takes only discrete values as in the Ising model. In
this case, ferromagnetic order appears at low temperatures in two and higher di-
mensions but in 1d no temperature is low enough to have a nonzero magnetization
N⟨σ⟩. Is that a general property of one-dimensional systems?

The state of lowest energy has all spins parallel. The first excited state cor-
respond to one spin flip and has an energy higher by ∆E = γJ , where γ is the
number of nearest neighbors (γ = 2d for a cubic lattice). The concentration of
such opposite spins is proportional to exp(−γJ/T ) and is low at low temperatures
so that ⟨σ⟩ ≈ 1 and the magnetization is close to N . In one dimension, however,
the lowest excitation is not the flip of one spin (energy 2J) but flipping all the spins
to the right or left from some site (energy J). Again the mean number of such
flips is N exp(−J/T ) but now long-range is determined by comparing this number
to unity, not to the total number of spins. In sufficiently long chain the number
N exp(−J/T ) is larger than unity. That means that long chains consist of pieces
with different spin signs and the mean magnetization is zero. Note that short
pieces with N < exp(J/T ) are magnetized. Yet the ferromagnetism of the whole
lattice in the thermodynamic limit is possible only starting from two dimensions
and only without the Goldstone mode.

It is physically natural that fluctuations has much influence in one dimension:
it is enough to have a fluctuation in a domain exceeding the radius of interaction to
loose completely the information of the order. It is thus not surprising that long-
range order is impossible in one-dimensional systems with short-range interaction.

That argument can be generalized for arbitrary systems with the short-range
interaction in the following way (Landau, 1950; Landau & Lifshitz, Sect. 163):
assume we have n contact points of two different phases and that every point
costs the energy ϵ. Those points add nϵ − TS to the thermodynamic potential.
The entropy is lnCn

L where L is the length of the chain. Evaluating entropy
at 1 ≪ n ≪ L we get the addition to the potential nϵ − Tn ln(eL/n). The
derivative of the thermodynamic potential with respect to n is thus ϵ− T ln(L/n)
and it is negative for sufficiently small n/L. That means that one decreases the
thermodynamic potential creating the mixture of two phases all the way until the
derivative comes to zero which happens at L/n = exp(ϵ/T ) — this length can be
called the correlation scale of fluctuations and it is always finite in 1d at a finite
temperature as in a disordered state. We then expect the spin-spin correlation
function in 1d to behave as ⟨σ(0)σ(r)⟩ = exp[−r exp(ϵ/T )]. Let us stress that for
the above arguments it is important that the ground state is non-degenerate so
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that the first excited state has a higher energy (degeneracy leads to criticality).
Let us conclude this section by restating the relation between the space dimen-

sionality and the possibility of phase transition and ordered state for a short-range
interaction. At d > 2 an ordered phase is always possible for a continuous as well
as discrete broken symmetry. For d = 2, one type of a possible phase transition
is that which breaks a discrete symmetry and corresponds to a real scalar order
parameter like in Ising model; another type is the BKT phase transition between
power-law and exponential decrease of correlations. At d = 1, neither symmetry
breaking nor ordered state is possible for system with a short-range interaction.

Landau & Lifshitz, Sects. 116, 152.

8.8 Universality classes and renormalization group

Statistical physics in general is about loss of information. One of the most fruitful
ideas of 20-th century is to look how one looses information about microscopic
properties step by step and what universal features appear in the process. This
is done by averaging over small-scale fluctuations in a procedure called coarse-
graining. A general formalism which describes how to make a coarse-graining to
keep only most salient features in the description is called the renormalization
group (RG). It consists in subsequently eliminating small-scale degrees of freedom
and looking for fixed points of such a procedure. Next two subsections present two
variants of RG, discrete and continuous.

That is particularly useful for describing critical phenomena. Since the corre-
lation radius diverges near the critical point, then fluctuations of all scales (from
the lattice size to rc) contribute the free energy. One therefore may hope that the
particular details of a given system (type of atoms, their interaction, etc) are unim-
portant in determining the most salient features of the phase transitions, what is
important is the space dimensionality and which type of symmetry is broken —
for instance, whether it is described by scalar, complex or vector order parame-
ter. Those salient features must be related to the nature of singularities that is to
the critical exponents which govern the power-law behavior of different physical
quantities as functions of t = (T − Tc)/Tc and the external field h. Every physical
quantity may have its own exponent, for instance, specific heat C ∝ t−α, order
parameter η ∝ (−t)β and η ∝ h1/δ, susceptibility χ ∝ t−γ , correlation radius
rc ∝ t−ν , the pair correlation function ⟨σiσj⟩ ∝ |i− j|2−d−η, etc. Only two expo-
nents are independent since all quantities must follow from the free energy which
is a function of two thermodynamic parameters, for instance F (t, h). Moreover, a
picture of fluctuations at all scales suggests the scaling hypothesis: if we re-scale the
lengthes by the factor k then one can find such numbers a, b that the free energy is
transformed under re-scaling of arguments as follows: F (kat, kbh) = kdF (t, h). In
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other words, a change in t can be compensated up to an overall factor by a change
in h. But that means that the function F (t, h) actually depends on one variable,
rather than two:

F (t, h) = td/ag(h/tb/a) . (295)

One can now express the quantities of interest via the derivatives at h = 0: C =
∂2F/∂t2, η = ∂F/∂h, χ = ∂2F/∂h2 and relate β = (d− b)/a etc.

8.8.1 Block spin transformation

For Ising model, to eliminate small-scale degrees of freedom, we divide all the
spins into groups (blocks) with the side k so that there are kd spins in every
block (d is space dimensionality). We then assign to any block a new variable
σ′ which is ±1 when respectively the spins in the block are predominantly up or
down. We assume that the phenomena very near critical point can be described
equally well in terms of block spins with the energy of the same form as original,
E′ = −h′

∑
i σ

′
i+J

′/4
∑

ij(1−σ′iσ′j), but with different parameters J ′ and h′. Let us
demonstrate how it works using 1d Ising model with h = 0 and J/2T ≡ K. Let us

transform the partition function
∑

{σ} exp
[
K
∑

i σiσi+1

]
by the procedure (called

decimation26) of eliminating degrees of freedom by ascribing (undemocratically) to
every block of k = 3 spins the value of the central spin. Consider two neighboring
blocks σ1, σ2, σ3 and σ4, σ5, σ6 and sum over all values of σ3, σ4 keeping σ

′
1 = σ2 and

σ′2 = σ5 fixed. The respective factors in the partition function can be written as
follows: exp[Kσ3σ4] = coshK + σ3σ4 sinhK, which is true for σ3σ4 = ±1. Denote
x = tanhK. Then only the terms with even powers of σ3 and σ4 contribute the
factors in the partition function that involve these degrees of freedom:∑

σ3,σ4=±1

exp[K(σ′1σ3 + σ3σ4 + σ4σ
′
2)]

= cosh3K
∑

σ3,σ4=±1

(1 + xσ′1σ3)(1 + xσ4σ3)(1 + xσ′2σ4)

= 4 cosh3K(1 + x3σ′1σ
′
2) = e−g(K) coshK ′(1 + x′σ′1σ

′
2) , (296)

g(K) = ln

(
coshK ′

4 cosh3K

)
. (297)

The expression (296) has the form of the Boltzmann factor exp(K ′σ′1σ
′
2) with the

re-normalized constant K ′ = tanh−1(tanh3K) or x′ = x3 — this formula and

26the term initially meant putting to death every tenth soldier of a Roman army regiment
that run from a battlefield.
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(297) are called recursion relations. The partition function of the whole system in
the new variables can be written as∑

{σ′}
exp

[
−g(K)N/3 +K ′∑

i

σ′iσ
′
i+1

]
.

The term proportional to g(K) represents the contribution into the free energy of
the short-scale degrees of freedom which have been averaged out. This term does
not affect the calculation of any spin correlation function. Yet the renormalization
of the constant, K → K ′, influences the correlation functions. Let us discuss this
renormalization. Since K ∝ 1/T then T → ∞ correspond to x → 0+ and T → 0
to x → 1−. One is interested in the set of the parameters which does not change
under the RG, i.e. represents a fixed point of this transformation. Both x = 0
and x = 1 are fixed points of the transformation x → x3, the first one stable
and the second one unstable. Indeed, iterating the process for 0 < x < 1, we
see that x approaches zero and effective temperature infinity. That means that
large-scale degrees of freedom are described by the partition function where the
effective temperature is high so the system is in a paramagnetic state in agreement
with the general argument of Sec. 8.7.4. At this limit we have K,K ′ → 0 so that
the contribution of the small-scale degrees of freedom is getting independent of the
temperature: g(K) → − ln 4.

We see that there is no phase transition since there is no long-range order
for any T (except exactly for T = 0). RG can be useful even without critical
behavior, for example, the correlation length measured in lattice units must satisfy
rc(x

′) = rc(x
3) = rc(x)/3 which has a solution rc(x) ∝ − ln−1 x, an exact result

for 1d Ising. It diverges at x→ 1 (T → 0) as

rc(T ) ∝ − ln−1(tanhK) ≈ − ln−1(1− 2e−2K) ∝ exp(2K) = exp(J/T )

again in agreement with Sec. 8.7.4. The same formulas also describe the antifer-
romagnetic case of K < 0.

T=0 K=0 T=0 cT K=0

2d1d
6σ5σ4σ3σ2σ1σ

We see that spatial re-scaling leads to the renormalization of temperature,
which explains the scaling hypothesis leading to (295); here we used the renorma-
lization factor k = 3.

The picture of RG flow is different in higher dimensions. Indeed, in 1d the zero-
temperature fixed point is unstable i.e. K decreases under RG transformation. Yet
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in the low-temperature region (x ≈ 1,K → ∞) it decreases very slow so that it
does not change in the main order: K ′ = K−const ≈ K ′. This can be interpreted
as due to the interaction between k-blocks being mediated by their boundary
spins that all look at the same direction: K ′ ≈ K⟨σ3⟩σ2=1⟨σ4⟩σ5=1 ≈ K (by the
same token, at high temperatures ⟨σ⟩ ∝ K so that K ′ ∝ K3). However, in d
dimensions, there are kd−1 spins at the block side so that K ′ ∝ kd−1K as K → ∞
(in the case k = 3 and d = 2 we have K ′ ≈ 3K). That means that K ′ > K
that is the low-temperature fixed point is stable at d > 1. On the other hand, the
paramagnetic fixed point K = 0 is stable too, so that there must be an unstable
fixed point in between at some Kc which precisely corresponds to Tc. Indeed,
consider rc(K0) ∼ 1 at some K0 that corresponds to sufficiently high temperature,
K0 < Kc. Since rc(K) ∼ kn(K), where n(K) is the number of RG iterations one
needs to come from K to K0, and n(K) → ∞ as K → Kc then rc → ∞ as T → Tc.
Critical exponent ν = −d ln rc/d ln t is expressed via the derivative of RG at Tc.
Indeed, denote dK ′/dK = ky at K = Kc so that K ′ −Kc ≈ ky(K −Kc). Since
krc(K

′) = rc(K) then we may present:

rc(K) ∝ (K −Kc)
−ν = k(K ′ −Kc)

−ν = k [ky(K −Kc)]
−ν ,

which requires ν = 1/y. We see that in general, the RG transformation of the set
of parameters K is nonlinear. Linearizing it near the fixed point one can find the
critical exponents from the eigenvalues of the linearized RG and, more generally,
classify different types of behavior. That requires generally the consideration of
RG flows in multi-dimensional spaces.

critical surface

RG flow with two couplings

σ
1K

2K

1K

2K

Already in 2d, summing over corner spin σ produces diagonal coupling between
blocks. In addition to K1, that describes an interaction between neighbors, we
need to introduce another parameter, K2, to account for a next-nearest neighbor
interaction. In fact, RG generates all possible further couplings so that it acts in
an infinite-dimensional K-space. An unstable fixed point in this space determines
critical behavior. We know, however, that we need to control a finite number
of parameters to reach a phase transition; for Ising at h = 0 and many other
systems it is a single parameter, temperature. For all such systems (including most
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magnetic ones), RG flow has only one unstable direction (with positive y), all the
rest (with negative y) must be contracting stable directions, like the projection
on K1,K2 plane shown in the Figure. The line of points attracted to the fixed
point is the projection of the critical surface, so called because the long-distance
properties of each system corresponding to a point on this surface are controlled
by the fixed point. The critical surface is a separatrix, dividing points that flow
to high-T (paramagnetic) behavior from those that flow to low-T (ferromagnetic)
behavior at large scales. We can now understand universality of long-distance
critical behavior in a sense that systems in different regions of the parameter K-
space flow to the same fixed point and have thus the same exponents. Indeed,
changing the temperature in a system with only nearest-neighbor coupling, we
move along the line K2 = 0. The point where this line meets critical surface
defines K1c and respective Tc1. At that temperature, the large-scale behavior of
the system is determined by the RG flow i.e. by the fixed point. In another system
with nonzero K2, changing T we move along some other path in the parameter
space, indicated by the broken line at the figure. Intersection of this line with
the critical surface defines some other critical temperature Tc2. But the long-
distance properties of this system are again determined by the same fixed point
i.e. all the critical exponents are the same. For example, the critical exponents
of a simple fluid are the same as of a uniaxial ferromagnetic. In this case (of the
Ising model in an external field), RG changes both t and h, the free energy (per
block) is then transformed as f(t, h) = g(t, h)+ k−df(t′, h′). The part g originates
from the degrees of freedom within each block so it is an analytic function even
at criticality. If we are interested in extracting the singular behavior (like critical
exponents) near the critical point, we consider only singular part, which has the
form (295) with a, b determined by the derivatives of the RG.

Every stage of the renormalization group consists of three steps: coarse-grain,
re-scale, re-normalize. Thee first step is to decrease the resolution by changing
the minimum length scale from the microscopic scale a to ba where b > 1. This is
achieved by integrating out fluctuations of the fields m(x) which occur on length
scales smaller than ba. The result is a renormalization of the Hamiltonian, which
leads to an effective Hamiltonian expressed in terms of a coarse-grained magnetiza-
tion, whose profile smoother than the original and fluctuate less. In other words,
the coarse-grained ”picture” is grainier than the original and has less contrast.
The original resolution can be restored by the second step called re-scaling: de-
creasing all length scales by a factor b. To restore the contrast, renormalizes the
magnetization, multiplying by b-dependent factor.

If we apply RG to the system which is not at criticality, then its localization
length decreases on every step as ξ → ξ/b so that the procedure takes us away from
criticality. One can see the effect of RG procedure of coarse-graining and re-scaling
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for the Ising model in the figure. Here the left column corresponds to T > Tc and
shows that subsequent pictures look more and more disordered that is there is less
correlation between larger blocks. The right column shows that the opposite is
true at T < Tc. Doing this at T = Tc one finds that the picture remains essentially
the same since the critical statistical distribution is the fixed point of the RG proce-
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dure. See Cardy, Sect 3.
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8.8.2 Renormalization group in 4d and ϵ-expansion

Here we present a more general consideration of the universality class having a
symmetry η → −η. In particular, Ising model and all its relatives with K1,K2, ...
belong to this class, when the external magnetic field is absent. Note that in RG
treatment the model with discrete variables σ = ±1 turns to be equivalent to the
model with continuous η, what matters is the type of symmetry (discrete symmetry
in this case). One can understand it, thinking about block spin renormalization
which takes the mean spin over block (instead of choosing the middle spin as we
did in the previous section), the spins of blocks will then be non-integer; after
many steps of such procedure we obtain a model with a continuous macroscopic
magnetization. We assume a single scalar parameter η for simplicity, the results
can be generalized for the vector case in a straightforward way.

Let us describe the formal scheme. We start from the Gibbs distribution that
contains microscopic Hamiltonian: exp[β(F − H)]. After averaging it over mi-
croscopic degrees of freedom at a given order parameter η(r), we obtain macrosco-
pic probability distribution exp[β(F − F)], where the Landau functional F must
depend smoothly on the order parameter as long as η(r) is smooth on atomic scales
(that smoothness also allowed us to use locally equilibrium Gibbs distribution).
Near critical point, when η is small, we can expand

F =
1

2

∫
dr(aη2 + g|∇η|2 + bη4) . (298)

The partition function and the free energy are given now by the normalization
condition:

exp(−βF ) =
∫
Dη exp[−βF(η)] . (299)

In the right-hand side we have a functional (or path) integral since we need to
integrate over all possible (smooth) functions η(r). Such functions can be expanded
into Fourier series, η(r) =

∑
q ηq exp(iqr), containing large but finite number of

wavevectors, from the inverse box size L−1 to the inverse atomic distance Λ = 1/a.
We can thus treat functional integral as a usual multiple integral

∫
dηq1 . . . dηqN

with N = (LΛ)d.
If fluctuations are small and in the functional integral we can neglect all the rea-

lizations except those that correspond to the mean value, then we obtain F = F(η̄)
as was written in (280). That corresponds to Landau theory that is to the mean
field approximation. However, when fluctuations are substantial, integration over
them can make the true free energy very much different from Landau functional,
in particular, not an analytic function of the order parameter (as one can see from
the explicit solution of 2d Ising model). Even more important, while the initial
microscopic a, b, g are expected to depend on temperature in an analytic way, the
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integration over fluctuations may change this dependence. The renormalization
group is the procedure to integrate over fluctuations step-by-step, starting from
highest wave numbers, and looking for the renormalization of the coefficients a, g, b.
It is clear that the main difficulty is in the presence of the nonlinear b-term, which
couples harmonics with different k. We assume that b is small (precise criterium
will be formulated below) but it may increase as we go towards larger and lar-
ger scales doing renormalization group procedure. As we shall now see, the RG
evolution of b and the possibility of perturbative integration over small-scale fluc-
tuations depend on the space dimensionality. Indeed, let us look at the criterium
(281) for the validity of the Landau theory at arbitrary dimensionality d:

⟨(∆η)2⟩ = Tc
2α(T − Tc)rdc

≪ ⟨η⟩2 = α(T − Tc)

b
. (300)

Since in the Landau theory rc ∝ (T − Tc)
−1/2, then the lhs is proportional to

(T − Tc)
d/2−1. We see that d = 4 plays a very special role. For d > 4, the relative

fluctuations are getting smaller as one approaches the critical point so that the
Landau theory (i.e. the mean field approach) is exact near the critical point. On
the contrary, when d < 4, the fluctuations grow relative to the mean value and the
mean-field approximation is invalid at criticality. The case d = 4 is marginal and
is amenable to an explicit renormalization-group analysis as long as the nonlinear
term in the Landau functional is small so that the interaction between fluctuations
of different scales can be considered by a perturbation theory.

Consider now d = 4 (Larkin and Khmelnitskii 1969) and divide η = η′ + ϕ,
where ϕ contains the largest wavenumbers, Λ′ < q < Λ, and η′ contains the rest.
Our goal is to obtain the new functional F ′(η′) determined by

e−βF ′(η′) =

∫
Dϕe−βF(η′+ϕ) = e−βF(η′)

∫
Dϕe−β[F(ϕ)+Fint] , (301)

where Fint contains cross terms i.e. describes interaction between fluctuations
of different scales. If such term was absent, we would have F ′ = F that is∫
Dϕe−βF(ϕ) = 1. We shall make small steps in the elimination procedure, so

that the change of the functional is expected to be small and we can expand it in
powers of Fint:

F ′(η′)−F(η′) =
1

β
log

(∫
Dϕe−β[F(ϕ)+Fint]

)
≈ ⟨Fint⟩ −

β

2
⟨F 2

int⟩c , (302)

As usual, expanding the log of the mean exponent we obtained the cumulant
⟨F 2

int⟩c = ⟨F 2
int⟩ − ⟨Fint⟩2. The angular brackets here mean the averaging over the

statistics of the fast field: ⟨Fint⟩ =
∫
DϕFinte

−βF(ϕ). Since we assumed that b
is small then this statistics is close to Gaussian i.e. determined by the quadratic
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part of the Landau functional. In particular, the spectral density of the second
moment is given by the Ornstein-Zernike expression |ϕ̄q|2 = T (a + gk2)−1. From
now on let us consider the temperature to be at the critical point where a = 0
and use |ϕ̄q|2 = T/gk2. In the interaction term Fint we omit the linear term∫
d4rϕη3 =

∑
k,p,l ηkηpηlϕk+p+l whose contributions into (302) are nonzero only for

ϕq with q ≃ Λ′ and are small comparing to those of the term Fint = 3
∫
d4rbη2ϕ2,

which we take into account. Indeed, the first term in (302) is as follows:

⟨Fint⟩ = 3b⟨ϕ2⟩
∫
d4rη2 ,

⟨ϕ2⟩ =
∫ Λ

Λ′
d4q|ϕ̄q|2 =

∫ Λ

Λ′

d4q

(2π)4
T

gq2
=
TΛ2

4π2g
. (303)

This correction to the a-term is determined by atomic scales, independent of Λ′,
and corresponds to the renormalization of Tc due to fluctuations. Next term in
(302) is much more interesting:

⟨F 2
int⟩c = 24b2

∫
d4r1d

4r2
[
⟨ϕ2(r1)ϕ2(r2)⟩ − ⟨ϕ2(r1)⟩⟨ϕ2(r2)⟩

]
η′2(r1)η

′2(r2)

= 24b2
∫
d4r1d

4r2⟨ϕ(r1)ϕ(r2)⟩2η′2(r1)η′2(r2) . (304)

Here we expressed the fourth moment of the Gaussian fast fields ϕ through the
pair correlation function, which is as follows:

G(r1 − r2) = ⟨ϕ(r1)ϕ(r2)⟩ =
∫ Λ

Λ′
d4q

Teiqr

gq2
≈ T

4π2gr2
for Λ′ ≪ r−1≪Λ . (305)

In the integral (304), the function G(r1 − r2) decays starting from the scale 1/Λ′

while the field η changes over larger scales. Therefore, we can put η′2(r2) → η′2(r1)
which gives

F ′(η′)−F(η′) = −12βb2
∫
d4rη′4(r)

∫
d4RG2(R)

= −96Tb2

π2g2
ln(Λ/Λ′)

∫
d4rη′4(r) , (306)

This is apparently the renormalization of the nonlinear term, that is the change
in the parameter b due to step in ∆ξ = ln(Λ/Λ′):

∆b = −∆ξ
96Tb2

π2g2
.
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Since the changes at every step are small, we can use differential approximation.
Introducing dimensionless interaction parameter (also called coupling constant or
charge), λ = 96bT/π2g2 we obtain the renormalization group equation

dλ

dξ
= −λ2 , λ(ξ) =

λ0
1 + λ0ξ

. (307)

We see that the coupling constant decreases when the scale of averaging grows, such
situation is called ”zero charge”, since it was observed first in quantum electrody-
namics27 (Abrikosov, Khalatnikov and Landau 1956). That means that for d = 4
large-scale degrees of freedom interact weakly and thus have Gaussian statistics,
the situation referred as the Gaussian fixed point. In a similar way, by collecting
terms that contain logarithmic integration, one can show that the functional F ′

preserves the form of the Landau functional and find the renormalization of the
parameters a, g. We thus conclude that our approach works uniformly well when
the coupling constant at the atomic scale, λ0, is small, then it only gets smaller at
larger scales. That allows us to choose Λ,Λ′ in such a way that ∆ξ is large (so we
can pick up only terms with logarithmic integration) and yet λ∆ξ is small so we
can apply the renormalization group approach.

The case d = 3 presents that unfortunate but usual combination of being most
interesting and yet neither amenable to exact solution (as d = 1, 2) nor to a per-
turbative approach (as d = 4). Following the ingenious idea of Wilson (1971), we
can consider d = 4− ϵ, develop perturbation theory in ϵ starting from the known
solution for d = 4 and then put ϵ = 1 praying for the better. In the space with
d = 4 − ϵ the integrals will diverge by a power law instead of logarithmic, but as
long as ϵ is small, the same terms dominate. The main difference is that now we
also need to rescale the field η to preserve the form of the free energy after one
step of the transformation (integrating over ϕ and rescaling r → rΛ/Λ′). Indeed,
the main term in the functional is the quadratic term

∫
ddkgk2|ηk|2, which pre-

serves its form under transformation k → kΛ′/Λ, η → η(Λ/Λ′)1+d/2. Under that
transformation, the nonlinear term b

∫
ddkddpddqηkηpηqη−k−p−q acquires the fac-

tor (Λ′/Λ)4−d, so to preserve its form we need to rescale also the coupling constant:
b→ b(Λ/Λ′)4−d = beϵξ. Such re-scaling was absent in 4d. One can also check that
all higher order terms in interaction decrease upon RG. Therefore, the dimension-
less coupling constant must now be defined as λ(Λ′) = (Λ′/Λ)4−d(96Tb/π2g2) =
96Tbeϵξ/π2g2. Differentiating this with respect to ξ adds an extra term to the

27Effective charge decreases with distance due to screening by vacuum fluctuations.
Opposite situation, when the interaction increases with the scale, is called ”asymptotic
freedom”, it takes place in quantum chromodynamics and is responsible for confinement
of quarks.
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renormalization group equation:

dλ

dξ
= ϵλ− λ2 . (308)

For d > 4 that is for negative ϵ, one has λ→ 0 as ξ → ∞, which corresponds to the
Gaussian fixed point, as for d = 4. On the contrary, when the space dimensionality
is less than four and ϵ > 0, the equation (308) has a nontrivial (i.e. non-Gaussian)
fixed point λ = ϵ, which is stable so that λ → ϵ as ξ → ∞. Remind that we
are already at the critical temperature i.e. study RG flow on the critical surface.
Using ϵ-expansion, one can similarly find the scaling exponents of a, g, which are
ϵ-dependent and thus different from those suggested by the Landau theory. But
the main result of the above consideration is not the specific value of this or that
exponent at d = 3 and ϵ = 1, but a compelling argument for the existence of a
non-trivial fixed point of the renormalization group at d = 3. That fixed point,
that is the form of the free energy, is, of course, very much different from (298)
which reproduces itself under RF transformation only at ϵ ≪ 1. See Wilson and
Kogut for more details.

At the end of this section, let us reiterate the dramatic shift of paradigm
brought by the renormalization group approach. Instead of being interested in
this or that Hamiltonian, we are interested in different RG-flows in the space of
Hamiltonians. Whole families (universality classes) of different systems described
by different Hamiltonians flow under RG transformation to the same fixed point
i.e. have the same large-scale behaviour.
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