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This is the first part of the graduate one-semester course. Chapters 1-3
briefly remind what is supposed to be known from the undergraduate courses,
using a bit more sophisticated language. Chapters 4-6 is a new material. The
second part of the course is given by Prof. Mukamel and devoted to phase
transitions.

1 Thermodynamics (brief reminder)

Physics is an experimental science, and laws appear usually by induction:
from particular cases to a general law and from processes to state functions.
The latter step requires integration (to pass, for instance, from Newton equa-
tion of mechanics to Hamiltonian or from thermodynamic equations of state
to thermodynamic potentials). Generally, it is much easier to differentiate
then to integrate and so deduction (or postulation approach) is usually much
more simple and elegant. It also provides a good vantage point for further
applications and generalizations. In such an approach, one starts from pos-
tulating same function of the state of the system and deducing from it the
laws that govern changes when one passes from state to state. Here such a
postulation presentation is presented for thermodynamics following the book
H. B. Callen, Thermodynamics (John Wiley & Sons, NYC 1965).

1.1 Basic notions

We use macroscopic description so that some degrees of freedom remain
hidden. Compare mechanics, electricity and magnetism (as related to the
explicit macroscopic degrees of freedom) versus thermodynamics (as related
to the macroscopic manifestations of the hidden degrees of freedom). When
detailed knowledge is unavailable, physicists use symmetries or conserva-
tion laws. Thermodynamics studies restrictions on the possible properties of
macroscopic matter that follow from the symmetries of the fundamental laws.
Therefore, thermodynamics does not predict numerical values but rather sets
inequalities and establishes relations among different properties.

The basic symmetry is invariance with respect to time shifts which gives
energy conservation'. That allows one to introduce the internal energy F.

IBe careful trying to build thermodynamic description for biological or social-economic
systems, since generally they are not time-invariant. For instance, the amount of money
generally is not conserved.



We define work as the energy change of macroscopic degrees of freedom
and heat as the energy change of hidden degrees of freedom. To be able to
measure energy changes in principle, we need adiabatic processes where there
is no heat exchange. We wish to establish the energy of a given system in
equilibrium states which are those that can be completely characterized by
the static values of extensive parameters like energy F, volume V' and mole
number N (number of particles divided by the Avogadro number 6.02 x
10%). Other extensive quantities may include numbers of different sorts of
particles, electric and magnetic moments etc i.e. everything which value for
a composite system is a direct sum of the values for the components. Word
"static” meant that equilibrium states must be independent of the way they
are prepared. For a given system, any two equilibrium states A and B can
be related by an adiabatic process either A — B or B — A, which allows
to measure the difference in the internal energy by the work W done by the
system. Now, if we encounter a process where the energy change is not equal
to minus the work done by the system, we call the difference the heat flux
into the system:

dE = 6Q — §W . (1)

This statement is known as the first law of thermodynamics. We use ¢
since the heat and work aren’t differentials of any function as they refer to
particular forms of energy transfer (not energy content).

The basic problem of thermodynamics is the determination of the equilib-
rium state that eventually results after all internal constraints are removed
in a closed composite system. The problem is solved with the help of ex-
tremum principle: there exists an extensive quantity S called entropy which
is a function of the extensive parameters of any composite system. The
values assumed by the extensive parameters in the absence of an internal
constraint maximize the entropy over the manifold of constrained equilib-
rium states. Since the entropy is extensive it is a homogeneous first-order
function of the extensive parameters: S(AE,AV,...) = AS(E,V,...). The
entropy is a continuous differentiable function of its variables. This function
(called also fundamental relation) is everything one needs to know to solve
the basic problem (and other problems in thermodynamics as well).

Since the entropy is generally a monotonic function of energy? then S =
S(E,V,...) can be solved uniquely for £ (S, V,...) which is an equivalent fun-

2This is not always so, we shall see in the course of statistical physics that the two-level
system gives a counter-example as well as other systems with a finite phase space.
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damental relation. Indeed, assume (0E/0S)x > 0 and consider S(E, X) and
E(S,X). Then® (05/0X)g =0 = (0E/0X)s = —(0S/0X)g(0E/0S)x =
0. Differentiating the last relation once more time we get (0*°E/0X?)g =
—(0%S8/0X?)g(0E/0S)x, since the derivative of the second factor is zero as
it is at constant X. We thus see that the equilibrium is defined by the energy
minimum instead of the entropy maximum (very much like circle can be de-
fined as the figure of either maximal area for a given perimeter or of minimal
perimeter for a given area). On the figure, unconstrained equilibrium states
lie on the curve while all other states lie below. One can reach the state A
either maximizing entropy at a given energy or minimizing energy at a given

entropy:
S

One can work either in energy or entropy representation but ought to be
careful not to mix the two.

Experimentally, one usually measures changes thus finding derivatives
(called equations of state). The partial derivatives of an extensive variable
with respect to its arguments (also extensive parameters) are intensive pa-
rameters®. For example, for the energy one writes

OF oF oF

— =T(S,V,N —=—-P(S,V,N) — =

o5 = TV 5y (S.V.N) - o =n
These relations are called the equations of state and they serve as definitions
for temperature 7', pressure P and chemical potential p while the respective

extensive variables are S, V, N. From (2) we write

(S,3V,N) ,... (2)

dE = 6Q — W = TdS — PdV + pdN . (3)

3An efficient way to treat partial derivatives is to use jacobians 9(u,v)/d(z,y) =
(Ou/0z)(0v/0y) — (Ov/0x)(0u/dy) and the identity (du/0x), = d(u,y)/0(z,y).

4In thermodynamics we have only extensive and intensive variables (and not, say,
surface-dependent terms oc N2/ 3) because we take thermodynamic limit N — oo, V — oo
keeping N/V finite.



Entropy is thus responsible for hidden degrees of freedom (i.e. heat) while
other extensive parameters describe macroscopic degrees of freedom. The
derivatives (2) are defined only in equilibrium. Therefore, 6Q) = TdS and
OW = PdV — pudN for quasi-static processes i.e such that the system is close
to equilibrium at every point of the process. A process can be considered
quasi-static if its typical time of change is larger than the relaxation times
(which for pressure can be estimates as L/c, for temperature as L?/k, where
L is a system size, ¢ - sound velocity and x thermal conductivity). Finite
deviations from equilibrium make dS > 6@ /T because entropy can increase
without heat transfer.

Let us give an example how the entropy maximum principle solves the basic
problem. Consider two simple systems separated by a rigid wall which is
impermeable for anything but heat. The whole composite system is closed
that is Fy + Ey =const. The entropy change under the energy exchange,
051 095, dF, dF, 1 1
ms_aEﬁEy+&%d@__71+—T2_(Ti—TJdEb

must be positive which means that energy flows from the hot subsystem to
the cold one (77 > To = AE; < 0). We see that our definition (2) is in
agreement with our intuitive notion of temperature. When equilibrium is
reached, dS = 0 which requires T} = T». If fundamental relation is known,
then so is the function T'(F,V’). Two equations, T'(F1,V;) = T(Es, V3) and
Ey + E5 =const completely determine F; and F,. In the same way one can
consider movable wall and get P, = P, in equilibrium. If the wall allows for
particle penetration we get p; = po in equilibrium.

Both energy and entropy are homogeneous first-order functions of its vari-
ables: S(AE,AV,AN) = AS(E,V,N) and E(AS,\V,AN) = AE(S,V,N)
(here V and N stand for the whole set of extensive macroscopic parame-
ters). Differentiating the second identity with respect to A and taking it at
A = 1 one gets the Euler equation

E=TS— PV +uN . (4)

Let us show that there are only two independent parameters for a simple one-
component system, so that chemical potential u, for instance, can be found
as a function of 7" and P. Indeed, differentiating (4) and comparing with (3)
one gets the so-called Gibbs-Duhem relation (in the energy representation)
Ndp = —SdT + VdP or for quantities per mole, s = S/N and v = V/N:
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dpu = —sdT + vdP. In other words, one can choose A = 1/N and use
first-order homogeneity to get rid of N variable, for instance, E(S,V,N) =
NE(s,v,1) = Ne(s,v). In the entropy representation the Gibbs-Duhem
relation is again states that the sum of products of the extensive parameters
and the differentials of the corresponding intensive parameters vanish:

Ed(1/T) + Vd(P/T) — Nd(u/T) = 0 . (5)

One uses u(P,T), for instance, when considering systems in the external
field. One then adds the potential energy (per particle) u(r) to the chemical
potential so that the equilibrium condition is u(P,T) + u(r) =const. Par-
ticularly, in the gravity field u(r) = mgz and differentiating (P, T) under
T = const one gets vdP = —mgdz. Introducing density p = m/v one gets
the well-known hydrostatic formula P = Py — pgz. For composite systems,
the number of independent intensive parameters (thermodynamic degrees of
freedom) is the number of components plus one.

Processes. While thermodynamics is fundamentally about states it is
also used for describing processes that connect states. Particularly important
questions concern performance of engines and heaters/coolers. Heat engine
works by delivering heat from a reservoir with some higher 7} via some system
to another reservoir with 75 doing some work in the process. If the entropy
of the hot reservoir decreases by some AS; then the entropy of the cold one
must increase by some ASy > AS;. The work AW is the difference between
the heat given by the hot reservoir 77AS; and the heat absorbed by the cold
one ToAS;y. It is clear that maximal work is achieved for minimal entropy
change ASy = AS;, which happens for reversible (quasi-static) processes —
if, for instance, the system is a gas which works by moving a piston then the
pressure of the gas and the work are less for a fast-moving piston than in
equilibrium. Engine efficiency is the fraction of heat used for work that is

AW AQ1 — AQy ] THAS, T

=1- <1-2%,
AQl AQI TlAsl Tl

Similarly, refrigerator/heater is something that does work to transfer heat
from cold to hot systems. The performance is characterized by the ratio of
transferred heat to the work done: AQo/AW < T5/(Ty — T).

A specific procedure to accomplish reversible heat and work transfer is
to use an auxiliary system which undergoes so-called Carnot cycle, where
heat exchanges take place only at two temperatures. Engine goes through:
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1) isothermal expansion at 77, 2) adiabatic expansion until temperature falls
to Ty, 3) isothermal compression until the entropy returns to its initial value,
4) adiabatic compression until the temperature reaches T;. The auxiliary
system is connected to the reservoirs during isothermal stages: to the first
reservoir during 1 and to the second reservoir during 3. During all the time it
is connected to our system on which it does work during 1 and 2, increasing
the energy of our system, which then decreases its energy by working on the
auxiliary system during 3 and 4. The total work is the area in the graph.
For heat transfer, one reverses the direction.

T P
Tl : 1
4
4 2
T2 3
S v

Carnot cyclein T-Sand P-V variables

Carnot cycle provides one with an operational method to measure the
ratio of two temperatures by measuring the engine efficiency®.

Summary of formal structure. The fundamental relation (in energy rep-
resentation) E = E(S,V, N) is equivalent to the three equations of state (2).
If only two equations of state are given then Gibbs-Duhem relation may be
integrated to obtain the third up to an integration constant; alternatively
one may integrate molar relation de = T'ds — Pdv to get e(s,v) again with
an undetermined constant of integration.

Example: consider an ideal monatomic gas characterized by two equations
of state (found, say, experimentally with R ~ 8.3 J/mole K ~ 2 cal/mole K ):

PV =NRT, E=3NRT/2. (6)

The extensive parameters here are E/, V, N so we want to find the fundamental
equation in the entropy representation, S(E,V,N). To use (4) we need to
find p using Gibbs-Duhem relation in the entropy representation (5). We
express intensive via extensive variables in the equations of state (6), compute

5Practical needs to estimate the engine efficiency during the industrial revolution led
to the development of such abstract concepts as entropy



d(1/T) = —3Rde/2¢* and d(P/T) = —Rdv/v?, and substitute into (5)

wy §R R o 3R
d(T) = 2—ede —vdv, —T—C’ -5 Ine— Rlnv,
1 P i 3R, e v
SEpet T Tty neo+an0 (™)

Here eq, vy are parameters of the state of zero internal energy used to deter-
mine the temperature units, and sy is the constant of integration.

1.2 Legendre transform

Let us emphasize that the fundamental relation always relates extensive
quantities. Therefore, even though it is always possible to eliminate, say,
S from £ = E(S,V,N) and T' = T(S,V, N) getting E = E(T,V,N), this
1s not a fundamental relation and it does not contain all the information.
Indeed, £ = E(T,V,N) is actually a partial differential equation (because
T = 0F/0S) and even if it can be integrated the result would contain un-
determined function. Still, it is easier to measure, say, temperature than
entropy so it is convenient to have a complete formalism with intensive pa-
rameters as operationally independent variables and extensive parameters
as derived quantities. This is achieved by the Legendre transform: To pass
from the relation Y = Y (X) to that in terms of P = 0Y/0X it is not enough
to eliminate X and consider the function Y = Y (P), which determines the
curve Y = Y (X) only up to a shift along X:

Y Y

X X

For example, the same Y = P?/4 correspond to the family of func-
tions Y = (X + C)? for arbitrary C. To fix the shift one may consider
the curve as the envelope of the family of the tangent lines characterized
by the slope P and the position 1 of intercept of the Y-axis. The func-
tion ¢ (P) = Y[X(P)] — PX(P) completely defines the curve; here one sub-
stitutes X (P) found from P = 0Y(X)/0X (which is possible only when
OP/OX = 0°Y/0X? # 0). The function ¢ (P) is referred to as a Legen-
dre transform of Y(X). From diyp = —PdX — XdP + dY = —XdP one
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gets —X = 0y /OP i.e. the inverse transform is the same up to a sign:
Y = ¢ + XP. In mechanics, we use the Legendre transform to pass from
Lagrangian to Hamiltonian description.

Y= W+ XP

Different thermodynamics potentials suitable for different physical
situations are obtained replacing different extensive parameters by the re-
spective intensive parameters.

Free energy F' = E — TS (also called Helmholtz potential) is that partial
Legendre transform of E which replaces the entropy by the temperature as
an independent variable: dF(T,V,N,...) = —=SdT — PdV + udN + .... Tt
is used to describe a system in a thermal contact with a heat reservoir. The
maximal work that can be done under a constant temperature (equal to that
of the reservoir) is minus the differential of the free energy. Indeed, this is
the work done by the system and the thermal reservoir. That work is equal
to the change of the total energy

d(E + E,) = dE + T,dS, = dE — T.dS = d(E — T,S) = d(E — TS) = dF .

In other words, the free energy is that part of the internal energy which is free
to turn into work, the rest of the energy we must keep to sustain a constant
temperature. The equilibrium state minimizes F', not absolutely, but over
the manifold of states with the temperature equal to that of the reservoir.
Indeed, consider F(T,X) = E[S(T,X),X] —TS(T,X), then (0E/0X)s =
(OF/0X)r that is they turn into zero simultaneously. Also, in the point
of extremum, one gets (0?°E/0X?)s = (0?°F/0X?)r i.e. both E and F are
minimal in equilibrium. Monatomic gas at fixed T, N has F(V) = E —
TS(V) = —=NRT InV+const. If a piston separates equal amounts then the
work done in changing the volume of a subsystem from Vi to V5 is AF =
NRETIn[Va(V = V) /VA(V — V4)].

Enthalpy H = E + PV is that partial Legendre transform of £ which re-
places the volume by the pressure dH (S, P, N,...) =TdS+VdP+pudN+.. ..

10



It is particularly convenient for situation in which the pressure is maintained
constant by a pressure reservoir (say, when the vessel is open into atmo-
sphere). Just as the energy acts as a potential at constant entropy and the
free energy as potential at constant temperature, so the enthalpy is a poten-
tial for the work done by the system and the pressure reservoir at constant
pressure. Indeed, now the reservoir delivers pressure which can change the
volume so that the differential of the total energy is

d(E + E,) = dE — P,dV, = dE + P,dV = d(E + P,V) = d(E + PV) = dH .

Equilibrium minimizes H under the constant pressure. On the other hand,
the heat received by the system at constant pressure is the enthalpy change:
0Q =dQ =TdS = dH. Compare it with the fact that the heat received by
the system at constant volume is the energy change since the work is zero.

One can replace both entropy and volume obtaining (Gibbs) thermody-
namics potential G = £ — T'S + PV which has dG(T, P,N,...) = —SdT +
VdP + pdN + ... and is minimal in equilibrium at constant temperature
and pressure. From (4) we get (remember, they all are functions of different
variables):

F=-P(T,V)V+uT,VN, H=TS+uN, G=uT,P)N. (8)

When there is a possibility of change in the number of particles (because
our system is in contact with some particle source having a fixed chemical
potential) then one uses the grand canonical potential Q(T,V,u) = E—TS—
1N which has dQ2 = —SdT' — PdV — Ndu. The grand canonical potential
reaches its minimum under the constant temperature and chemical potential.

Since the Legendre transform is invertible, all potentials are equivalent
and contain the same information. The choice of the potential for a given
physical situation is that of convenience: we usually take what is fixed as a
variable to diminish the number of effective variables.

Maxwell relations. Changing order of taking mixed second derivatives of a
potential creates a class of identities known as Maxwell relations. For exam-
ple, 9*E [0S0V = 0?E [0V dS gives (0P/3S)y = —(0T/0V )s. That can be
done for all three combinations (SV, SN,V N) possible for a simple single-
component system and also for every other potential (F,H,G). Maxwell
relations for constant N can be remembered with the help of the mnemonic
diagram with the sides labelled by the four common potentials flanked by
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their respective natural independent variables. In the differential expression
for each potential in terms of the natural variables arrow pointing away from
the variable implies a positive sign while pointing towards the variable implies
negative sign like in dE = TdS — PdV:

Vv F T

S H P

Maxwell relations are given by the corners of the diagram, for example,
(0V/0S)p = (0T /OP)g etc. If we consider constant N then any fundamental
relation of a single-component system is a function of only two variables and
therefore have only three independent second derivatives. Traditionally, all
derivatives are expressed via the three basic ones (those of Gibbs potential),
the specific heat and the coefficient of thermal expansion, both at a constant
pressure, and isothermal compressibility:

. T(@S) T<82G> 0o L <8V> - 1 <6V>
p = | = vy , = — | o5 , kr=—= | =5 .
ar ), arz ), viar), v\or),

In particular, the specific heat at constant volume is as follows:

S TV a?
CV_T<M>V_CP_ N,‘QT . (9)

That and similar formulas form a technical core of thermodynamics and
the art of deriving them ought to be mastered. It involves few simple rules
in treating partial derivatives:

(v ). (o) = (v )= )/ G

<g§£)z<g§)x(§f{>y =1 (10)

An alternative (and more general) way to manipulate thermodynamic
derivatives is to use jacobians and identity 9(T, S)/d(P,V) =1 ©.

6Taking, say, S,V as independent variables, (T, S)/0(P,V) = —(0T/dV)(0S/OP) =
Esv/EBvs =1
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1.3 Stability of thermodynamic systems

Consider entropy representation. Stationarity of equilibrium requires dS = 0
while stability requires d?S < 0. In particular, that means concavity of
S(E, X). Indeed, for all AE one must have S(E+AE, X)+S(E—AFE, X) <
2S(F, X) otherwise our system can break into two halves with the energies
E + AFE thus increasing total entropy. For AE — 0 the stability require-
ment means (92S/0E%)xy < 0 = (0T/OF)x > 0 — increase of the en-
ergy must increase temperature. This can be also recast into (0T /OE)y =
O(TV)/O(EV)][O(SV)/O(SV)] = T-H0T/dS)y = 1/c, > 0 (adding heat
to a stable system increases temperature). The same concavity require-
ment is true with respect to changes in other parameters X, in particular,
(02S/0V?*)p < 0= (OP/OV)r < 0 that is isothermal expansion must reduce
pressure for the stable system. Considering both changes together we must
require Spp(AE)? + 25y AEAS + Syy(AV)? < 0. This quadratic form
has a definite sign if the determinant is positive: SggSyvy — S?EV > 0. Ma-
nipulating derivatives one can show that this is equivalent to (0P/0V)s <
0. Alternatively, one may consider the energy representation, here stabil-
ity requires the energy minimum which gives Egs = T/c, > 0, Eyy =
—(0P/0V)s > 0. Considering both variations one can diagonalize d*F =
Ess(dS)*+ Eyy (dV)?*+2EsydSdV by introducing the temperature differen-
tial dT = EgsdS+ EsydV so that 2d*E = Egg(dT)*+(Eyy —E%, Egd)(dV)2.
It is thus clear that Fyy — E%,Egs = (0°E/OV?)y = —(OP/OV )1 and we
recover all the same inequalities.

N7 A
2NN

Lines of constant entropy in unstable and stable cases

The physical content of those stability criteria is known as Le Chatelier’s
principle: if some perturbation deviates the system from a stable equilibrium
that induces spontaneous processes that reduce the perturbation.

Phase transitions happen when some stability condition is not satisfied
like in the region with (OP/0V)r > 0 as at the lowest isotherm in the below
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figure. When the pressure corresponds to the level NLC, it is clear that L is
an unstable point and cannot be realized. But which stable point is realized,
N or C? To get the answer, one must minimize the Gibbs potential since we
have T and P fixed. For one mole, it is the chemical potential which can
be found integrating the Gibbs-Duhem relation, du(T, P) = —sdT + vdP,
under the constant temperature: G = u = [v(P)dP. The chemical potential
increases up to the point (after E) with infinite dV//dP. After that we move
along the isotherm back having dP < 0 so that the integral decreases and
then passes through another point of infinite derivative and start to increase
again. It is clear that to the intersection point D correspond to equal areas
below and above the horizontal line on the first figure and before and after
vertical line in the second figure. The pressure that corresponds to this point
separates the absolute minimum at the left branch marked Q (solid-like) from
that on the right one marked C (liquid-like). The dependence of volume on
pressure is discontinuous along the isotherm.

P
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2 Basic statistical physics (brief reminder)

Here we introduce microscopic statistical description in the phase space and
describe three principal ways (microcanonical, canonical and grand canoni-
cal) to derive thermodynamics from statistical mechanics.

2.1 Distribution in the phase space

We consider macroscopic bodies, systems and subsystems. We define prob-
ability for a subsystem to be in some ApAgqg region of the phase space as
the fraction of time it spends there: w = limy_,o, At/T. We introduce the
statistical distribution in the phase space as density: dw = p(p, q)dpdq. By
definition, the average with the statistical distribution is equivalent to the
time average:

f= /fp, p(p,q dpdq—hmf/f (11)

The main idea is that p(p, ¢) for a subsystem does not depend on the initial
states of this and other subsystems so it can be found without actually solving
equations of motion. We define statistical equilibrium as a state where macro-
scopic quantities equal to the mean values. Assuming short-range forces we
conclude that different macroscopic subsystems interact weakly and are sta-
tistically independent so that the distribution for a composite system pqs is
factorized: pi12 = p1po.

Now, we take the ensemble of identical systems starting from different
points in phase space. In a flow with the velocity v = (p, ) the density
changes according to the continuity equation: dp/0t + div (pv) = 0. If the
motion is considered for not very large time it is conservative and can be
described by the Hamiltonian dynamics: ¢; = OH/0p; and p; = —OH /Dq;.
Hamiltonian flow in the phase space is incompressible: divv = 9¢;/0q; +
Op;/0p; = 0. That gives the Liouville theorem: dp/dt = dp/0t + (v - V)p =
—pdiv (pv = 0. The statistical distribution is thus conserved along the phase
trajectories of any subsystem. As a result, equilibrium p is an integral of
motion and it must be expressed solely via the integrals of motion. Since In p
is an additive quantity then it must be expressed linearly via the additive
integrals of motions which for a general mechanical system are energy E(p, q),
momentum P(p, ¢) and the momentum of momentum M(p, ¢):

Inp, =, + BE.(p,q) +¢-Pu(p,q) +d-M(p,q) . (12)
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Here o, is the normalization constant for a given subsystem while the seven
constants 3, c,d are the same for all subsystems (to ensure additivity) and
are determined by the values of the seven integrals of motion for the whole
system. We thus conclude that the additive integrals of motion is all we
need to get the statistical distribution of a closed system (and any sub-
system), those integrals replace all the enormous microscopic information.
Considering system which neither moves nor rotates we are down to the sin-
gle integral, energy. For any subsystem (or any system in the contact with
thermostat) we get Gibbs’ canonical distribution

p(p,q) = Aexp[-BE(p,q)] - (13)
See Landau & Lifshitz, Sects 1-4.

2.2 Microcanonical distribution

For a closed system with the energy Ej, Boltzmann assumed that all mi-
crostates with the same energy have equal probability (ergodic hypothesis)
which gives the microcanonical distribution:

p(p,q) = AS[E(p, q) — Eb] . (14)

Usually one considers the energy fixed with the accuracy A so that the mi-
crocanonical distribution is

_{1/F for E € (Ey, Ey + A) (15)
- 0 fOI‘Eg(Eo,EO—f—A),
where I' is the volume of the phase space occupied by the system
T(E,V,N,A) = / PNpdNg (16)
E<H<E+A

For example, for N noninteracting particles (ideal gas) the states with the
energy E = Y p?/2m are in the p-space near the hyper-sphere with the
radius v2mFE. Remind that the surface area of the hyper-sphere with the
radius R in 3N-dimensional space is 273V/2R3N=1/(3N/2 — 1)! and we have

T(E,V,N,A) o< E3N?*WWNA/(3BN/2 — 1) = (E/N)*M2VNA . (17)

To link statistical physics with thermodynamics one must define the fun-
damental relation i.e. a thermodynamic potential as a functions of respective

16



variables. It can be done using either canonical or microcanonical distribu-
tion. We start from the latter and introduce the entropy as

S(E,V,N) =InT(E,V,N) . (18)

This is one of the most important formulas in physics” (on a par with F =
ma,E =mc* and E = hw).

Noninteracting subsystems are statistically independent so that the sta-
tistical weight of the composite system is a product and entropy is a sum.
For interacting subsystems, this is true only for short-range forces in the
thermodynamic limit N — oo. Consider two subsystems, 1 and 2, that
can exchange energy. Assume that the indeterminacy in the energy of any
subsystem, A, is much less than the total energy E. Then

E/A

I'(E) = Z I (B2 (E — E;) (19)

We denote E, Fy = E — E; the values that correspond to the maximal
term in the sum (19). The derivative of it is proportional to (OI';/OE;)'s —
(0T2/OFE;)Ty = (I'11'9) " [(8S1/0E1) 5, — (0S2/Es)g,]. Then the extremum
condition is evidently (051/0F1)p, = (0S2/0Es)g,, that is the extremum
corresponds to the thermal equilibrium where the temperatures of the subsys-
tems are equal. The equilibrium is thus where the maximum of probability is.
It is obvious that I'(E})T(Ey) < T'(E) < T(Ey)T(Ey)E/A. If the system con-
sists of N particles and Ny, Ny — oo then S(E) = S1(E;)+S5(Ey)+0O(logN)
where the last term is negligible.

Identification with the thermodynamic entropy can be done consider-
ing any system, for instance, an ideal gas. The problem is that the log-
arithm of (17) contains non-extensive term N InV. The resolution of this
controversy is that we need to treat the particles as indistinguishable, oth-
erwise we need to account for the entropy of mixing different species. We
however implicitly assume that mixing different parts of the same gas is
a reversible process which presumes that the particles are identical. For
identical particles, one needs to divide I' (17) by the number of transmu-
tations N! which makes the resulting entropy of the ideal gas extensive:
S(E,V,N)=(3N/2)In E/N 4+ N IneV/N+const. Note that quantum parti-
cles (atoms and molecules) are indeed indistinguishable, which is expressed

"It is inscribed on the Boltzmann’s gravestone
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by a proper symmetrization of the wave function. One can only wonder
at the genius of Gibbs who introduced N! long before quantum mechan-
ics (see, L&L 40 or Pathria 1.5 and 6.1). Defining temperature in a usual
way, T-!' = 0S/OF = 3N/2FE, we get the correct expression £ = 3NT/2.
We express here temperature in the energy units. To pass to Kelvin de-
grees, one transforms 7" — kT and S — kS where the Boltzmann constant
k =1.38-10%® J/K. The value of classical entropy (18) depends on the units.
Proper quantitative definition comes from quantum physics with I" being the
number of microstates that correspond to a given value of macroscopic pa-
rameters. In the quasi-classical limit the number of states is obtained by
dividing the phase space into units with ApAq = 27h.

The same definition (entropy as a logarithm of the number of states)
is true for any system with a discrete set of states. For example, consider
the set of N two-level systems with levels 0 and e. If energy of the set is
E then there are L = F/e upper levels occupied. The statistical weight is
determined by the number of ways one can choose L out of N: I'(N, L) =
CL = N!/LI(N — L)!. We can now define entropy (i.e. find the fundamental
relation): S(E,N) = InI'. Considering N > 1 and L > 1 we can use the
Stirling formula in the form dInL!/dL = In L and derive the equation of
state (temperature-energy relation),

) N N-L
T =08/0E =t n— =)
O = i vy~

and specific heat C' = dE/dT = N(¢/T)?2cosh ?(¢/T). Note that the ratio
of the number of particles on the upper level to those on the lower level is
L/(N — L) = exp(—¢/T) (Boltzmann relation). Specific heat turns into zero
both at low temperatures (too small portions of energy are ”in circulation”)
and in high temperatures (occupation numbers of two levels already close to
equal).

The derivation of thermodynamic fundamental relation S(E,...) in the
microcanonical ensemble is thus via the number of states or phase volume.

2.3 Canonical distribution

Let us re-derive the canonical distribution from the microcanonical one which
allows us to specify 5 = 1/T in (12,13). Consider a small subsystem or
a system in a contact with the thermostat (which can be thought of as
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consisting of infinitely many copies of our system — this is so-called canonical
ensemble, characterized by N,V,T). Here our system can have any energy
and the question arises what is the probability W (E). Let us find first the
probability of the system to be in a given microstate a with the energy F.
Assuming that all the states of the thermostat are equally likely to occur
we see that the probability should be directly proportional to the statistical
weight of the thermostat I'g(Ey— E) where we evidently assume that F < Ey,
expand ['y(Ey — E) = exp[So(Fo — E)] =~ exp[Sy(Fy) — F/T)| and obtain

we(E) = Z " exp(—E/T) , (20)
Z =) exp(—E,/T) . (21)

Note that there is no trace of thermostat left except for the temperature.
The normalization factor Z (7T, V, N) is a sum over all states accessible to the
system and is called the partition function.

The probability to have a given energy is the probability of the state (20)
times the number of states:

W(E) = T(E)wa(E) = T(E)Z ' exp(~E/T) . (22)

Here I'( E) grows fast while exp(—FE/T) decays fast when the energy E grows.
As a result, W(FE) is concentrated in a very narrow peak and the energy
fluctuations around E are very small (see Sect. 2.4 below for more details).
For example, for an ideal gas W (E) oc E*N/2exp(—FE/T). Let us stress again
that the Gibbs canonical distribution (20) tells that the probability of a given
microstate exponentially decays with the energy of the state while (22) tells
that the probability of a given energy has a peak.

An alternative and straightforward way to derive the canonical distri-
bution is to use consistently the Gibbs idea of the canonical ensemble as a
virtual set, of which the single member is the system under consideration
and the energy of the total set is fixed. The probability to have our system
in the state a with the energy E, is then given by the average number of
systems n, in this state divided by the total number of systems N. The set
of occupation numbers {n,} = (ng,n1,n2...) satisfies obvious conditions

Zna:N, ZEana:E:eN. (23)
Any given set is realized in W{n,} = N!/nglni!ns! ... number of ways and
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the probability to realize the set is proportional to the respective W:

X nW{ng}

"= W <24>

where summation goes over all the sets that satisfy (23). We assume that
in the limit when N,n, — oo the main contribution into (24) is given by
the most probable distribution that is maximum of W (we actually look at
the maximum of In W which is the same yet technically simpler) under the
constraints (23). Using the method of Lagrangian multipliers we look for
the extremum of InW — a Y ,n, — Y, Eane. Using the Stirling formula
Inn! = nlnn —n we write InW = NIn N — Y, n,Inn, and the extremum
n; corresponds to Inn} = —a — 1 — BE, which gives

ny  exp(—pE,)

Lo . 25
N  Y.,exp(—pE,) (25)
The parameter (3 is given implicitly by the relation
E Ea - Ea
N > exp(—LE,)

Of course, physically €(5) is usually more relevant than J(e). See Pathria,
Sect 3.2.

To get thermodynamics from the Gibbs distribution one needs to define
the free energy because we are under a constant temperature. This is done
via the partition function Z (which is of central importance since macroscopic
quantities are generally expressed via the derivatives of it):

F(T,V,N)=—-TZ(T,V,N) . (27)

To prove that, differentiate the identity Y-, exp[(F' — E,)/T] = 1 with respect
to temperature which gives

_ OF
poper(2)

equivalent to F' = F — T'S in thermodynamics.
One can also come to this by defining entropy. Remind that for a closed
system we defined S = InT" while the probability of state was w, = 1/I". For
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a system in a contact with a thermostat that has a Gibbs distribution we
have Inw, is linear in E so that

S(E) =— Iw,(E) =—(lnw,) = - w,Inw, (28)
= > w(E,/T+mZ)=E/T+InZ.

Even though we derived the formula for entropy, S = — > w, Inw,, for
an equilibrium, this definition can be used for any set of probabilities w,,
since it provides a useful measure of our ignorance about the system, as we
shall see later.

See Landau & Lifshitz (Sects 31,36).

2.4 Grand canonical ensemble

Let us now repeat the derivation we done in Sect. 2.3 but in more detail
and considering also the fluctuations in the particle number N. Consider a
subsystem in contact with a particle-energy reservoir. The probability for a
subsystem to have N particles and to be in a state E,y can be obtained by
expanding the entropy of the reservoir. Let us first do the expansion up to
the first-order terms as in (20,21)

way = Aexp[S(Ey — Eun, No — N)] = Aexp[S(Ey, No) + (uN — E.n)/T]
= expl(Q+ uV — Ea)/T] (29)

Here we used 0S/0F = 1/T, 0S/ON = —pu/T and introduced the grand
canonical potential which can be expressed through the grand partition func-
tion

AT, V,p) = =Tn) exp(uN/T) Y exp(—Eun)/T) - (30)

That this is equivalent to the thermodynamic definition, Q@ = £ — TS — uN
can be seen calculating the mean entropy similar to (28):

S=-> woyInwey =(uN+Q—E)/T . (31)

a,N

The grand canonical distribution must be equivalent to canonical if one
neglects the fluctuations in particle numbers. Indeed, when we put N = N
the thermodynamic relation gives Q2 + uN = F so that (29) coincides with
the canonical distribution w, = exp[(F — E,)/T).
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Generally, there is a natural hierarchy: microcanonical distribution ne-
glects fluctuations in energy and number of particles, canonical distribution
neglects fluctuations in N but accounts for fluctuations in F, and eventu-
ally grand canonical distribution accounts for fluctuations both in £ and N.
The distributions are equivalent only when fluctuations are small. In de-
scribing thermodynamics, i.e. mean values, the distributions are equivalent,
they just produce different fundamental relations, S(F, N) for microcanoni-
cal, (T, N) for canonical, Q(T, ) for grand canonical, which are related by
the Legendre transform.

To describe fluctuations one needs to expand the respective thermody-
namic potential around the mean value, using the second derivatives 92S/0FE?
and 9?S/ON? (which must be negative for stability). That will give Gaus-
sian distributions of £ — F and N — N. A straightforward way to find the
energy variance (E — F)? is to differentiate with respect to 3 the identity
E — E = 0. For this purpose one can use canonical distribution and get

0 _ _ oF oE
o B(F—Eq) _ _ _ B(F—Ea) _ —
55 2B~ B)e Za (E, E)(F+6aﬁ Ea>e 55 =0
(E— B2 = —gg = T2Cy . (32)

Magnitude of fluctuations is determined by the second derivative of the re-
spective thermodynamic potential (which is Cy/). This is natural: the sharper
the extremum (the higher the second derivative) the better system parame-
ters are confined to the mean values. Since both F and Cjy are proportional
to N then the relative fluctuations are small indeed: (E — E)2/E? oc N7
Note that any extensive quantity f = >V, f; which is a sum over indepen-
dent subsystems (i.e. f;fr = fifx) have a small relative fluctuation:

- _S@E-7) 1

2 f2 TN

Let us now discuss the fluctuations of particle number. One gets the
probability to have N particles by summing (29) over a:

W(N) o exp{B[u(T, V)N = F(T,V,N)]}

where F(T,V,N) is the free energy calculated from the canonical distribu-
tion for N particles in volume V' and temperature 7. The mean value N
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is determined by the extremum of probability: (0F/ON)y = p. The sec-
ond derivative determines the width of the distribution over N that is the
variance:

I 2 -1 —1
(N - N)2=2T (g)]é) — 2T N2 (gf) x N . (33)

Here we used the fact that F(T,V,N) = N f(T,v) with v = V/N so that
P = (0F/0V)y = Of/0v, and substituted the derivatives calculated at
fixed V: (OF/ON)y = f(v) —vdf/dv and (9*F/ON?)y = N~ 2?02 f /ov? =
—~N"120P(v)/0v. As we discussed in Thermodynamics, OP(v)/0v < 0
for stability. We see that generally the fluctuations are small unless the
isothermal compressibility is close to zero which happens at the first-order
phase transitions. Particle number (and density) strongly fluctuate in such
systems which contain different phases of different densities. This is why one

uses grand canonical ensemble in such cases.
See also Landau & Lifshitz 35 and Huang 8.3-5.

2.5 Two simple examples

Here we consider two examples with the simplest structures of energy levels
to illustrate the use of microcanonical and canonical distributions.

2.5.1 Two-level system

Assume levels 0 and e. Remind that in Sect. 2.2 we already considered
two-level system in the microcanonical approach calculating the number of
ways one can distribute L = F/e portions of energy between N particles
and obtaining S(E, N) = InC% = In[N!/LY(N — L)!] ~ NIn[N/(N — L)] +
LIn[(N — L)/L]. The temperature in the microcanonical approach is as
follows:

oS

T 1=_"2 =
oFE

e Y(0/OL)m[N!/LY(N — L) = e 'In(N —L)/L .  (34)

The entropy as a function of energy is drawn on the Figure:
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T=+0,

0 NE

Indeed, entropy is zero at £ = 0, Ne when all the particles are in the same
state. The entropy is symmetric about £ = Ne/2. We see that when
E > Ne¢/2 then the population of the higher level is larger than of the
lower one (inverse population as in a laser) and the temperature is negative.
Negative temperature may happen only in systems with the upper limit of
energy levels and simply means that by adding energy beyond some level we
actually decrease the entropy i.e. the number of accessible states. Available
(non-equilibrium) states lie below the S(E) plot, notice that the entropy
maximum corresponds to the energy minimum for positive temperatures and
to the energy maximum for the negative temperatures part. A glance on
the figure also shows that when the system with a negative temperature is
brought into contact with the thermostat (having positive temperature) then
our system gives away energy (a laser generates and emits light) decreasing
the temperature further until it passes through infinity to positive values and
eventually reaches the temperature of the thermostat. That is negative tem-
peratures are actually "hotter” than positive. By itself though the system is
stable since 92S/0FE? = —N/L(N — L)e? < 0.

Let us stress that there is no volume in S(E, N) that is we consider only
subsystem or only part of the degrees of freedom. Indeed, real particles have
kinetic energy unbounded from above and can correspond only to positive
temperatures [negative temperature and infinite energy give infinite Gibbs
factor exp(—E/T)].

Apart from laser, an example of a two-level system is spin 1/2 in the mag-
netic field H. Because the interaction between the spins and atom motions
(spin-lattice relaxation) is weak then the spin system for a long time (tens of
minutes) keeps its separate temperature and can be considered separately.

External fields are parameters (like volume and chemical potential) that
determine the energy levels of the system. They are sometimes called gen-
eralized thermodynamic coordinates, and the derivatives of the energy with
respect to them are called respective forces. Let us derive the generalized
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force M that corresponds to the magnetic field and determines the work
done under the change of magnetic field: dE(S,H) = T'dS — MdH. Since
the projection of every magnetic moment on the direction of the field can
take two values £ then the magnetic energy of the particle is FuH and
E = —pu(Ny — N_)H. The force (the partial derivative of the energy with
respect to the field at a fixed entropy) is called magnetization or magnetic
moment of the system:

exp(uH/T) — exp(—pH/T)
exp(uH/T) + exp(—pd/T) -

M=—<8E> — u(N, = N_) = Np (35)
S

0OH
The derivative was taken at constant entropy that is at constant popula-
tions N, and N_. Note that negative temperature for the spin system
corresponds to the magnetic moment opposite in the direction to the ap-
plied magnetic field. Such states are experimentally prepared by a fast re-
versal of the magnetic field. We can also define magnetic susceptibility:
X(T) = (0M/OH) = = Nyi?/T.
At weak fields and positive temperature, uH < T, (35) gives the formula
for the so-called Pauli paramagnetism

M _pH (36)
Ny T
Para means that the majority of moments point in the direction of the
external field. This formula shows in particular a remarkable property of
the spin system: adiabatic change of magnetic field (which keeps constant
Ny, N_ and thus M) is equivalent to the change of temperature even though
spins do not exchange energy. One can say that under the change of the
value of the homogeneous magnetic field the relaxation is instantaneous in
the spin system. This property is used in cooling the substances that contain
paramagnetic impurities. Note that the entropy of the spin system does
not change when the field changes slowly comparatively to the spin-spin
relaxation and fast comparatively to the spin-lattice relaxation.

To conclude let us treat the two-level system by the canonical approach
where we calculate the partition function and the free energy:

Z(T,N) = Z_j Cf exp[—Le/T) = [1 4 exp(—¢/T)|V, (37)
F(T,N) = —Tn Z = —NTIn[l + exp(—e/T)] . (38)
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We can now re-derive the entropy as S = —0F/JT and derive the (mean)
energy and specific heat:

_8an _ T281nZ

E = Z'Y E,exp(—BE,) = 5 5T (39)
Ne

T 1+exp(e/T) o)

o — dE. Nexp(e/T) e (41)

AT~ [L+exp(e/T)2T?

Note that (39) is a general formula which we shall use in the future. Specific
heat turns into zero both at low temperatures (too small portions of energy
are ”in circulation”) and in high temperatures (occupation numbers of two
levels already close to equal).

C/IN

- 1/2

2 Tle

A specific heat of this form characterized by a peak is observed in all systems
with an excitation gap.
More details can be found in Kittel, Section 24 and Pathria, Section 3.9.

2.5.2 Harmonic oscillators

Small oscillations around the equilibrium positions (say, of atoms in the
lattice or in the molecule) can be treated as harmonic and independent. The
harmonic oscillator is a particle in the quadratic potential U(q) = mw?¢?/2,
it is described by the Hamiltonian

1

Hg.p) = o - (0 +wg*m?) . (42)

We start from the quasi-classical limit, hw < T, when the single-oscillator
partition function is obtained by Gaussian integration:

() = ety [~ ap [~ dgesp(—H/T) = F‘Z} | (43)
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We can now get the partition function of N independent oscillators as Z(T', N) =
ZN(T) = (T/hw)N, the free energy F' = NT In(fiw/T) and the mean energy
from (39): E = NT — this is an example of the equipartition (every oscillator
has two degrees of freedom with 7/2 energy for each)®. The thermodynamic
equations of state are u(7') = T'In(hw/T') and S = N|[In(7T'/hw)+ 1] while the
pressure is zero because there is no volume dependence. The specific heat
Cp=Cy=N.

Apart from thermodynamic quantities one can write the probability dis-
tribution of coordinate of the particle with a finite temperature (i.e. in
contact with the thermostat). The distribution is given by the Gibbs distri-
bution using the potential energy:

dw, = \/mw? /27T exp(—mw?q*/2T)dq . (44)

Using kinetic energy and simply replacing ¢ — p/mw one obtains a similar
formula dw, = (2rmT) =2 exp(—p?/2mT)dp which is the Maxwell distribu-
tion.

For a quantum case, the energy levels are given by E, = hw(n + 1/2).
The single-oscillator partition function

Zy(T) = exp[—hw(n + 1/2)/T] = 2sinh ™" (hw/2T) (45)
n=0
gives again Z(T,N) = ZN(T) and F(T,N) = NTIn[sinh(hw/2T)/2] =
Nhw/2 + NT In[l — exp(—hw/T). The energy now is
E = Nhw/2 + Nhwlexp(hw/T) — 1]7!

where one sees the contribution of zero quantum oscillations and the break-
down of classical equipartition. The specific heat is as follows:

Cp = Cy = N(hw/T)? exp(hw/T)[exp(hw/T) — 1]72 . (46)

Note that zero oscillations do not contribute the specific heat. Comparing
(46) with (41) we see the same behavior at T < hw: Cy o exp(—hw/T)
because “too small energy portions are in circulation” and they cannot move
system to the next level. At large T the specific heat of two-level system

8If some variable = enters energy as 22" then the mean energy associated with that
degree of freedom is [ 2" exp(—2?"/T)dz/ [ exp(—a*"/T)dx = T2~ ™ (2n — 1)IL.
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turns into zero because the occupation numbers of both levels are almost
equal while for oscillator we have classical equipartition (every oscillator has
two degrees of freedom so it has 7" in energy and 1 in Cy/).

CIN
I

2 Tle

Quantum analog of (44) must be obtained by summing the wave functions
of quantum oscillator with the respective probabilities:

= adg 3 i) expl~heo(n +1/2)/7]. (47)

Here a is the normalization factor. Straightforward (and beautiful) calcula-
tion of (47) can be found in Landau & Lifshitz Sect. 30. Here we note that
the distribution must be Gaussian dw, o exp(—¢*/2¢?) where the mean-
square displacement ¢2 can be read from the expression for energy so that
one gets:

w ho\ 2 w hw
dw, = <7rh tanh 2T> exp <—q2h tanh 2T> dq . (48)

At hw < T it coincides with (44) while at the opposite (quantum) limit gives
dw, = (w/mh)? exp(—q*w/h)dg which is a purely quantum formula [¢),|? for
the ground state of the oscillator.

See also Pathria Sect. 3.7 for more details.

3 Gases (brief reminder)

We now go on to apply a general theory given in the Chapter 2. Here we
consider systems with the kinetic energy exceeding the potential energy of
inter-particle interactions: (U(r; —13)) < (mv?/2).

3.1 Ideal Gases

We start from neglecting the potential energy of interaction completely. Note
though that molecules in the same state do have quantum interaction so gen-
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erally one cannot consider particles completely independent. If however we
consider all molecules in the same state as a subsystem then such subsys-
tems do not interact. Since the number of particles in a given state n, is not
fixed, we need to describe such set by a grand canonical ensemble. Using the
distribution (29) with N = n, and E = n,e, one expresses the probability of
occupation numbers:

w(ng) = exp{ B[ + na(pt — €,)]} - (49)

Consider now a dilute gas, when all n, < 1. Then the probability of no
particles in the given state is close to unity, wy = exp(8€,) ~ 1, and the

probability of having one particle and the average number of particles is given
by

e =Y w(ng)ne, = wi ~ exp (,u ;%) , (50)
which is called Boltzmann distribution. It is the same as (26) for independent
systems, only the normalization factor is expressed here via the chemical
potential.

3.1.1 Boltzmann (classical) gas

is such that one can also neglect quantum exchange interaction of particles
(atoms or molecules) in the same state which requires the occupation num-
bers of any quantum state to be small, which in turn requires the number of
states Vp3/h?® to be much larger than the number of molecules N. Since the
typical momentum is p ~ v/mT we get the condition

(mT)*? > h’n . (51)

To get the feeling of the order of magnitudes, one can make an estimate with
m = 1.6-10"?*g (proton) and n = 10*'em ™2 which gives T' > 0.5K. Another
way to interpret (51) is to say that the mean distance between molecules
n~'/3 must be much larger than the wavelength h/p. In this case, one can
pass from the distribution over the quantum states to the distribution in the
phase space:

52
2 (52)
In particular, the distribution over momenta is always quasi-classical for the
Boltzmann gas. Indeed, the distance between energy levels is determined by

n(p, q) = exp l/H(p’q)] :
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the size of the box, AE ~ h?m~'V~%/3 < h?m~'(N/V)?/® which is much less
than temperature according to (51). To put it simply, if the thermal quantum
wavelength h/p ~ h(mT)~'/2 is less than the distance between particles it is
also less than the size of the box. We conclude that the Boltzmann gas has the
Maxwell distribution over momenta. If such is the case even in the external
field then n(q, p) = exp{[n—e(p,q)]/T} = exp{[n—Ul(q) —p?/2m]/T}. That
gives, in particular, the particle density in space n(r) = ngexp|—U(r)/T]
where ng is the concentration without field. In the uniform gravity field we
get the barometric formula n(z) = n(0) exp(—mgz/T).

Since now molecules do not interact then we can treat them as members
of the Gibbs canonical ensemble (you probably noticed by now that we are
consistently looking for ways to divide every new system we consider into
independent parts). The partition function of the Boltzmann gas can be
obtained from the partition function of a single particle (like we did for two-
level system and oscillator) with the only difference that particles are now
real and indistinguishable so that we must divide the sum by the number of
transmutations:

Z- |2 exp(—eamr .

Using the Stirling formula In N! &~ N In(N/e) we write the free energy

F:—NTln[ Zexp ea/T] : (53)

Since the motion of the particle as a whole is always quasi-classical for the
Boltzmann gas, one can single out the kinetic energy: €, = p?/2m + €.
If in addition there is no external field (so that €, describes rotation and
the internal degrees of freedom of the particle) then one can integrate over
d®*pd®q/h? and get for the ideal gas:

3/2
> Zexp —e /T)| . (54)

F=_NTh [eV < ml

N \27h?
To complete the computation we need to specify the internal structure of the
particle. Note though that Y-, exp(—¢,/T") depends only on temperature so
that we can already get the equation of state P = —0F/0V = NT/V.

Mono-atomic gas. At the temperatures much less than the distance to
the first excited state all the atoms will be in the ground state (we put ¢y = 0).
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That means that the energies are much less than Rydberg ey = ¢?/ap =
me'/h? ~ 4 -10"'erg and the temperatures are less than go/k ~ 3 - 10°K
(otherwise atoms are ionized).

If there is neither orbital angular momentum nor spin (L = S = 0 —
such are the atoms of noble gases) we get >, exp(—¢,/T) = 1 as the ground
state is non-degenerate and

eV [ mT \*/? eV
3 m

» =3/2, =—-In——=5.

©=3/2, (=3l
Here ( is called the chemical constant. Note that for F'= AT + BT InT the
energy is linear £ = F —TOF/JT = BT that is the specific heat, C, = B, is
independent of temperature. The formulas thus derived allow one to derive
the conditions for the Boltzmann statistics to be applicable which requires
N, < 1. Evidently, it is enough to require exp(u/T") < 1 where

N [ 27h? 3/2
\% ( mT )
Using such p we get (mT)*? > h3n. Note that p < 0.

If there is a nonzero spin, it can be in 25 + 1 states. Even though all
these states have the same energy, they must be counted in the partition
function, which adds (s = In(2S + 1) to the chemical constant (56). If both
L and S are nonzero then the total angular momentum .J determines the
fine structure of levels €;. This is the energy of spin-orbital and spin-spin
interactions, both relativistic effects, so that the energy can be estimated
as €5 =~ go(v/c)? =~ e9(Z,€*/hc)?. For not very high nuclei charge Z,, it is
generally comparable with the room temperature €;/k ~ 200+ 300K . Every
such level has a degeneracy 2.J + 1 so that the respective partition function

z=> (2J+1)exp(—es/T) .

(56)

_E-TS+PV F+PV F+NT
a N N N

1 =TIn

Without actually specifying e€; we can determine this sum in two limits of
large and small temperature. If V.J one has T > ¢, then exp(—e;/T) ~ 1
and z = (25 + 1)(2L + 1) which is the total number of components of the
fine level structure. In this case

Csr =In(2S+1)(2L +1) .
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In the opposite limit of temperature smaller than all the fine structure level
differences, only the ground state with €;, = 0 contributes and one gets

¢y=m(2Jy+1),

where Jj is the total angular momentum in the ground state.
4 SL/—
¢
v

Note that ¢, = 3/2 in both limits that is the specific heat is constant at
low and high temperatures (no contribution of electron degrees of freedom)
having some maximum in between (due to contributions of the electrons).
We have already seen this in considering two-level system and the lesson is
general: if one has a finite number of levels then they do not contribute to
the specific heat both at low and high temperatures.

Specific heat of diatomic molecules. We need to calculate the sum
over the internal degrees of freedom in (54). We assume the temperature to
be smaller than the energy of dissociation (which is typically of the order
of electronic excited states). Since most molecules have S = L = 0 in the
ground state we disregard electronic states in what follows. The internal
excitations of the molecule are thus vibrations and rotations with the energy
e, characterized by two quantum numbers, j and K:

e = hw(j+1/2) + (h2/2])K(K 1) (57)

Here w is the frequency of vibrations and I is the moment of inertia for
rotations. We estimate the parameters here assuming the typical scale to
be Bohr radius ag = h*/me? ~ 0.5 - 10~%cm and the typical energy to be
Rydberg gy = €%/ap = me!/h® ~ 4 - 10 "erg. Note that m = 91072 is
the electron mass here. Now the frequency of the atomic oscillations is given
by the ratio of the Coulomb restoring force and the mass of the ion:

€0 €2
W~ = .
2 3
anpM apM
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Rotational energy is determined by the moment of inertia I ~ Ma%. We
may thus estimate the typical energies of vibrations and rotations as follows:

[ n? m
h(&)ﬁ@o M’ 7 ZEOM . (58)

Since m/M =~ 10~ then both energies are much smaller than the energy of
dissociation ~ ¢, and the rotational energy is smaller than the vibrational one
so that rotations start to contribute at lower temperatures: q/k ~ 3-10°K,
hw/k ~3-10°K and h?/Tk ~ 30 K.

To calculate the contribution of rotations one ought to calculate the par-
tition function

Zrot = ;(ZK +1)exp (—W) . (59)

Again, when temperature is much smaller than the distance to the first
level, T < h? /21, the specific heat must be exponentially small. Indeed,
retaining only two first terms in the sum (59), we get 2, = 1-+3 exp(—h*/IT)
which gives in the same approximation Fl.o; = —3NT exp(—h?/IT) and ¢, =
3(R*/IT)? exp(—h?/IT). We thus see that at low temperatures diatomic gas
behaves an mono-atomic.

At large temperatures, T > h? /21, the terms with large K give the main
contribution to the sum (59). They can be treated quasi-classically replacing
the sum by the integral:

(60)

00 K(K +1 2IT
Zrot :/ dK(2K + 1) exp (—h (K + )> = .
0

2IT B2

That gives the constant specific heat ¢, = 1. The harmonic oscillator was
considered in Sect. 2.5.2. In the quasi-classical limit, hw < T', the partition
function of N independent oscillators is Z(T, N) = ZN(T) = (T /hw)", the
free energy F' = NT In(hw/T) and the mean energy from (39): £ = NT.
The specific heat Cyy = N.

For a quantum case, the energy levels are given by E,, = hw(n + 1/2).
The single-oscillator partition function

Z\(T) = i exp[—hw(n +1/2)/T) = 2sinh ™! (hw/2T) (61)

n=0
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gives again Z(T,N) = ZN(T) and F(T,N) = NTln[sinh(fiw/2T)/2] =
Nhw/2+ NTIn[l — exp(—hw/T'). The energy now is

E = Nhw/2 + Nhwlexp(hw/T) — 1]

where one sees the contribution of zero quantum oscillations and the break-
down of classical equipartition. The specific heat (per molecule) of vibrations
is thus as follows: ¢, = (fiw/T)? exp(fiw/T)[exp(hw/T) — 1]72. At T < hw:
we have Cy o< exp(—hw/T). At large T' we have classical equipartition (every
oscillator has two degrees of freedom so it has T" in energy and 1 in Cy/).

The resulting specific heat of the diatomic molecule, ¢, = 3/2+ ¢yt + Cyipr,
is shown on the figure:

U2

5/2
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Note that for 7%/ < T < hw the specific heat (weakly) decreases be-
cause the distance between rotational levels increases so that the level density
(which is actually ¢,) decreases.

For (non-linear) molecules with A/ > 2 atoms we have 3 translations, 3
rotations and 6 — 6 vibrational degrees of freedom (3N momenta and out
of total 3N coordinates one subtracts 3 for the motion as a whole and 3 for
rotations). That makes for the high-temperature specific heat ¢, = ¢+ o+
Coib = 3/2+ 3/2 + 3N — 3 = 3N. Indeed, every variable (i.e. every degree
of freedom) that enters €(p,q), which is quadratic in p,q, contributes 1/2
to ¢,. Translation and rotation each contributes only momentum and thus
gives 1/2 while each vibration contributes both momentum and coordinate
(i.e. kinetic and potential energy) and gives 1.

Landau & Lifshitz, Sects. 47, 49, 51.
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3.2 Fermi and Bose gases

Like we did at the beginning of the Section 3.1 we consider all particles at
the same quantum state as Gibbs subsystem and apply the grand canonical
distribution with the potential

Qu = T Y explna( — e)/T] . (62)

Na

Here the sum is over all possible occupation numbers n,. For fermions, there
are only two terms in the sum with n, = 0,1 so that

Qp = —Thh{l+exp[B(p—e)]} -

For bosons, one must sum the infinite geometric progression (which converges
when 1 < 0) to get Q, =T In{1l — exp[f(p — €,)]}. Remind that 2 depends
on T,V u. The average number of particles in the state with the energy ¢ is

thus
— 89@ 1
n(e) = — = :
Op  expBle—p)]£1
Upper sign here and in the subsequent formulas corresponds to the Fermi
statistics, lower to Bose. Note that at exp[8(e — u)] > 1 both distributions

turn into Boltzmann distribution (50). The thermodynamic potential of the
whole system is obtained by summing over the states

(63)

Q=FTY In |1+ 0] (64)

Fermi and Bose distributions are generally applied to elementary particles
(electrons, nucleons or photons) or quasiparticles (phonons) since atomic
and molecular gases are described by the Boltzmann distribution (with the
exception of ultra-cold atoms in optical traps). For elementary particle, the
energy is kinetic energy, € = p?/2m, which is always quasi-classical (that is
the thermal wavelength is always smaller than the size of the box but can
now be comparable to the distance between particles). In this case we may
pass from summation to the integration over the phase space with the only
addition that particles are also distinguished by the direction of the spin s
so there are g = 2s 4+ 1 particles in the elementary sell of the phase space.
We thus replace (63) by

gdp.dp,dp.dzdydzh=
dN =
PO = eplie—p)] £ 1
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Integrating over volume we get the quantum analog of the Maxwell dis-

tribution:
_ gVm?? Vede

~ VemhexplBle — )] £ 1
In the same way we rewrite (64):
o IV Tm”
V2r2h3
2 gVm3/% oo 2 de 2
T 32m2B /0 exp[Ble—p)]£1 3
Since also 2 = — PV we get the equation of state

PV — §E | (68)

dN (€)

(66)

/OO Veln {1 + eﬂ(“_e)} de
0

E. (67)

We see that this relation is the same as for a classical gas, it actually is true for
any non-interacting particles with € = p?/2m in 3-dimensional space. Indeed,
consider a cube with the side . Every particle hits a wall |p,|/2ml times per
unit time transferring the momentum 2|p,| in every hit. The pressure is the
total momentum transferred per unit time p?/ml divided by the wall area [?
(see Kubo, p. 32):

N 2 N .2
; : 2F
P = o o — —— | 69
= mil3 ; 3ml3 3V (69)

In the limit of Boltzmann statistics we have £ = 3NT/2 so that (68)
reproduces PV = NT. Let us obtain the (small) quantum corrections to the
pressure assuming exp(u/7) < 1. Expanding integral in (67)

T e T, 3T

~ /2 B(n—e) B(u—e) — B —5/2 Bu

/eﬁ(efu)il N/E € [IZFB ]de 455/26 (1$2 € ) ,
0

and substituting Boltzmann expression for p we get
AN

29 V (mT)¥ 2]

Non-surprisingly, the small factor here is the ratio of the thermal wavelength

to the distance between particles. We see that quantum effects give some
effective attraction between bosons and repulsion between fermions.

PV = NT [1 + (70)

Landau & Lifshitz, Sects. 53, 54, 56.
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3.2.1 Degenerate Fermi Gas

The main goal of the theory here is to describe the electrons in the metals
(it is also applied to the Thomas-Fermi model of electrons in large atoms,
to protons and neutrons in large nucleus, to electrons in white dwarf stars,
to neutron stars and early Universe). Drude and Lorents at the beginning
of 20th century applied Boltzmann distribution and obtained decent results
for conductivity but disastrous discrepancy for the specific heat (which they
expected to be 3/2 per electron). That was cleared out by Sommerfeld in
1928 with the help of Fermi-Dirac distribution. The energy of an electron in
a metal is comparable to Rydberg and so is the chemical potential (which
is positive for degenerate Fermi gas in distinction from Boltzmann and Bose
gases, since one increases energy by putting extra particle into the system,
see below). Therefore, for most temperatures we may assume 7' < u so that
the Fermi distribution is close to the step function:

n

T

< - - - - - - - - - =

€
F
At T = 0 electrons fill all the momenta up to pr that can be expressed
via the concentration (g = 2 for s = 1/2):

N  _4m (pF P

— 2 0y —
VBl P o =
which gives the Fermi energy
hZ N 2/3
er = (2P (v) . (72)

The chemical potential at 7' = 0 coincides with the Fermi energy (putting
already one electron per unit cell one obtains ex/k ~ 10*K). Condition
T < ep is evidently opposite to (51). Note that the condition of ideality
requires that the electrostatic energy Ze?/a is much less than e where Ze
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is the charge of ion and a ~ (ZV/N)'? is the mean distance between elec-
trons and ions. We see that the condition of ideality, N/V > (e*m/h*)3Z2,
surprisingly improves with increasing concentration. Note nevertheless that
in most metals the interaction is substantial, why one can still use Fermi
distribution (only introducing an effective electron mass) is the subject of
Landau theory of Fermi liquids to be described in the course of condensed
matter physics (in a nutshell, it is because the main effect of interaction is
reduced to some mean effective periodic field).

To obtain the specific heat, C, = (0F /0T )y, y one must find E(T,V,N)
i.e. exclude p from two relations, (66) and (67):

Y

N 2Vm?/? /00 Vede
Vo2 o exp[Ble —p)] + 1

B 2V m?/? /00 €32 de
V2rht o explBle—p)] +1°

At T < u = e this can be done perturbatively using the formula

/000 exp[ﬁj(ce(ezif)] 1 /0“ f(e) de + 7%T2f’(/~t) , (73)

which gives

C2VmPP2 g
= \/§7T2h3 gu
B 2Vm3/2 2 5/2
= Jonh? gﬂ

From the first equation we find (N, T') perturbatively

(1 + 7T2T2/8,u2> :

+ 572 wo o
(1+57°7%/81:%)

L= €F (1 — 7T2T2/86?;)2/3 R Ep (1 - 7T2T2/12€%;~) :

We see that the chemical potential of the Fermi gas decreases with tempera-
ture. Since it must be negative at large 7' when Boltzmann statistics apply,
it changes sign at T' ~ ep. We now substitute p(7) into the second equation:

3
E=:Nep (145772 /12¢7) (74)
2 T
Cy=-"—N=—. 75
v=o N (75)
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We see that Cyy < N and it goes to zero when 7' — 0 (as well as entropy)
since the number of electrons that can participate in thermal motion de-
creases 1. Another important point to stress is that the energy (and PV)
are much larger than NT', the consequence is that the fermionic nature of
electrons is what actually determines the resistance of metals (and neutron
stars) to compression. For a typical electron density in metals, n ~ 10?2cm ™3,
we get ,
_ 2ner 22/32 5/3 ~ 104
P~ E = (37) BT ~ 10%atm .

Landau & Lifshitz, Sects. 57, 58 and Pathria 8.3.

3.2.2 Photons

Consider electromagnetic radiation in an empty cavity kept at the temper-
ature 7. Since electromagnetic waves are linear (i.e. they do not interact)
thermalization of radiation comes from interaction with walls (absorption
and re-emission)’. One can derive the equation of state without all the for-
malism of the partition function. Indeed, consider the plane electromagnetic
wave with the fields having amplitudes E and B. The average energy density
is (F? + B?)/2 = E? while the momentum flux modulus is |E x B| = E.
The radiation field in the box can be considered as incoherent superposi-
tion of plane wave propagating in all directions. Since all waves contribute
the energy density and only one-third of the waves contribute the radiation
pressure on any wall then

PV =FE/3. (76)

In a quantum consideration we treat electromagnetic waves as photons
which are massless particles with the spin 1 that can have only two inde-
pendent orientations (correspond to two independent polarizations of a clas-
sical electromagnetic wave). The energy is related to the momentum by
¢ = cp. Now, exactly as we did for particles [where the law € = p?/2m gave
PV =2FE/3 — see (69)] we can derive (76) considering'® that every incident

Tt is meaningless to take perfect mirror walls which do not change the frequency of
light under reflection and formally correspond to zero T

10This consideration is not restricted to bosons. Indeed, ultra-relativistic fermions have
e =cpand P = E/3V, e.g. electrons in graphene. In the relativistic theory energy and
momentum are parts of the energy-momentum tensor whose trace must be positive which
requires cp < e and P < E/3V where E is the total energy including the rest mass Nmc?,
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photon brings momentum 2pcosé to the wall, that the normal velocity is
ccos § and integrating [ cos? §sinf df. Photon pressure is relevant inside the
stars, particularly inside the Sun.

Let us now apply the Bose distribution to the system of photons in a
cavity. Since the number of photons is not fixed then a minimum of the free
energy, F'(T,V,N), requires zero chemical potential: (0F/ON)ry = p =
0. The Bose distribution over the quantum states with fixed polarization,
momentum ik and energy € = hw = hck is called Planck distribution

1

nx = ST (77)
At T > hw it gives the Rayleigh-Jeans distribution hwn, = T which is
classical equipartition. Assuming cavity large we consider the distribution
over wave vectors continuous. Multiplying by 2 (the number of polarizations)

we get the spectral distribution of energy

2V 4rk2dk Vh widw
dE, = th(Qﬂ)s Ghok/T — 1 7208 ghw/T _ 1 ° (78)

The total energy
4
E=-2vT*, (79)
c

where the Stephan-Boltzmann constant is as follows: ¢ = 72/60h°c?. The
specific heat ¢, oc T® - the phase volume is k% and the typical wavenumber
k o< T. Since P = 40T*/3c depends only on temperature, cp does not
exist (may be considered infinite). We consider fixed temperature so that
the relevant thermodynamics potential is the free energy (which coincides
with Q for p = 0). It is derived from energy using S = —0F/0T and
F+TS=F—-TOF/0T = —T?0(F/T)/dT = E, which gives F = —E/3
VT* and entropy S = —0F/JT oc VT? that is the Nernst law is satisfied:
S — 0 when T" — 0. Under adiabatic compression or expansion of radiation,
entropy constancy requires VT = const and PV*%/3 = const.

If one makes a small orifice in the cavity then it absorbs all the incident
light like a black body. Therefore, what comes out of such a hole is called
black-body radiation. Of course, it is not black, but has a color depending
on the temperature. Indeed, the distribution (78) has a maximum at hw, =
2.8T (one can estimate the Sun surface temperature by looking at its color).

L&L 61.
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The energy flux from a unit surface of the hole is the energy density times ¢
and times the geometric factor
cE (/2 cE

[:7 ; cos@sin@d@zZV:UT‘l. (80)

Landau & Lifshitz, Sect. 63 and Huang, Sect. 12.1.

3.2.3 Phonons

The specific heat of a crystal lattice can be calculated using the powerful
idea of quasi-particles: turning the set of strongly interacting atoms into a
set of weakly interacting waves. In this way one considers the oscillations of
the atoms as acoustic waves with three branches (two transversal and one
longitudinal) w; = u;k where wu; is the respective sound velocity. Debye took
this expression for the spectrum and imposed a maximal frequency w,qe SO
that the total number of degrees of freedom is equal to 3 times the number
of atoms:

ArV ST wdw VWl

) ud 2723
Here we introduced some effective sound velocity u defined by 3u=3 = 2u; * +
u; . One usually introduces the Debye temperature

O = hwmae = hu(67>N/V)V? ~ hu/a (82)

where a is the lattice constant.
We can now write the energy of lattice vibrations using the Planck dis-
tribution (since the number of phonons is indefinite, © = 0)

3V 1 1 IN®© S
B0 /h - 2= 22 3NTD(>, 83
22t w<2+exp(hw/T)—1>w ety T 7) &)
D()—3/x z3dz_{1 for z<1,
V=8 )y 1 7t /523 for z>1.

At T < © for the specific heat we have the same cubic law as for photons:

1274 713
5 ©3°

C=N (84)
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For liquids, there is only one (longitudinal) branch of phonons so C' =
N (471 /5)(T/©)? which works well for He IV at low temperatures.

At T > O we have classical specific heat (Dulong-Petit law) C' = 3N.
Debye temperatures of different solids are between 100 and 1000 degrees
Kelvin. We can also write the free energy of the phonons as a sum/integral
over frequencies of the single oscillator expression:

4, 0/T
F=9NT (g) /;:2 n(1—e*)dz=NT[3In(1-e ®")=D(6/T)], (85)

and find that, again, at low temperatures S = —9F/0T o T? i.e. Nernst
theorem. An interesting quantity is the coefficient of thermal expansion
a = (0InV/0T)p. To get it one must pass to the variables P, T', u introducing
the Gibbs potential G(P,T) = E — T'S + PV and replacing V = 9G/0P.
At high temperatures, F' ~ 3NT'In(0©/T). It is the Debye temperature
here which depends on P, so that the part depending on 7" and P in both
potentials is linearly proportional to T: §F(P,T) = 6G(P,T) = 3NT ln©.
That makes the mixed derivative

092G _?ﬂaln@
OPOT "V OP

independent of temperature. Omne can also express it via so-called mean
geometric frequency defined as follows: Inw = (3N)™' Y Inw,. Then §F =
0G =Ty ,In(hw,/T) = NTInhw(P), and a = (N/Vw)dw/dP. When the
pressure increases, the atoms are getting closer, restoring force increases and
so does the frequency of oscillations so that a > 0.

Note that we've got a constant contribution 9NO/8 in (83) which is due
to quantum zero oscillations. While it does not contribute the specific heat,
it manifests itself in X-ray scattering, Mossbauer effect etc. Incidentally,
this is not the whole energy of a body at zero temperature, this is only the
energy of excitations due to atoms shifting from their equilibrium positions.
There is also a negative energy of attraction when the atoms are precisely in
their equilibrium position. The total (so-called binding) energy is negative
for crystal to exists at T' = 0.

One may ask why we didn’t account for zero oscillations when considered
photons in (78,79). Since the frequency of photons is not restricted from
above, the respective contribution seems to be infinite. How to make sense
out of such infinities is considered in quantum electrodynamics; note that

a=V"1
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the zero oscillations of the electromagnetic field are real and manifest them-
selves, for example, in the Lamb shift of the levels of a hydrogen atom. In
thermodynamics, zero oscillations of photons are of no importance.

Landau & Lifshitz, Sects. 64-66; Huang, Sect. 12.2

3.2.4 Bose gas of particles and Bose-Einstein condensation

Consider an ideal Bose gas of massive particles, like atoms, with the fixed
number of particles. The chemical potential now must not be identically zero
as for massless particles whose number was not conserved. Moment reflection
upon n(e) = [exp[B(e — )] — 1] tells that the chemical potential of massive
bosons must be non-positive, otherwise one would have negative or infinite
occupation numbers. As usual, one determines the chemical potential as a
function of temperature and the specific volume by equaling the total number
of particles to the sum of Bose distribution over all states (the same as finding
a thermodynamic potential and differentiating it with respect to N). It is
more convenient here to work with the function z = exp(u/T") which is called
fugacity:

B 1 AxV e pPdp 2 Vggp(z) 2
N—;ﬁ@—m_r = /0 + + . (86)

2=lep?/2mT 1 1 —z )3 1—2

We introduced the thermal wavelength A\ = (27/%/mT)"/? and the function

1 o ¢ ldx O
= . 87
I'(a) /0 (87)

ga(’z) = S—ler — - — ZTZ

One may wonder why we single out the contribution of zero-energy level as
it is not supposed to contribute at the thermodynamic limit V' — oo. Yet
this is not true at sufficiently low temperatures: when z — 1 i.e. u — 0 the
term z/(1 — z) can become macroscopically large. The chemical potential
absolute value is large at high temperatures where it coincides with that of the
Boltzmann gas. The magnitude apparently decreases when the temperature
decreases (at fixed specific volume v). The question is whether the chemical
potential goes to zero only at zero temperature or it can turn into zero at
a finite 7. To analyze that, let us rewrite (86) denoting ng = z/(1 — 2) the
number of particles at p =0
ng 1 93/2(2)

A (88)
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The graphic solution of (88) for a finite V' can be seen in the Figure below by
plotting gs/2(2) (solid line). The function gz/2(2z) monotonically grows while
z changes from zero (u = —o0) to unity (@ = 0). At z = 1, the value is
g3/2(1) = ((3/2) ~ 2.6 and the derivative is infinite. For a given v,T one
knows A*/v and finds z as a point when the horizontal line A*/v cross the
solid line (at V' — o00) or the broken line (at finite V). The distance between
the solid and broken lines determines ng. For high temperatures, A\?/v is
small and so is z. Note, however, that by lowering temperature we can make
A arbitrarily large. When the temperature and the specific volume v = V/N
are such that A*/v > gs/5(1) (the thermal wavelength is now larger than the
inter-particle distance) then there is a finite fraction of particles that occupies
the zero-energy level.

26/ oy (V)
B (W) I C& ,,,,,,,,,,,,,,,,,,,
)\3 77777777777777777777 1 3
v N
O30 126 viN®
0 1 z When V — oo

we have a sharp transition at A*/v = g35(1) i.e. at T =T, = 27h*/m[vgs/2(1)]
at T < T, we have z = 1 that is u = 0. At T > T, we obtain z solving
A Jv = g3/2(2). Therefore, at the thermodynamic limit we put ny = 0 at
T > T, and ng/N = 1 — (T/T,)*? as it follows from (88). All thermody-
namic relations have now different expressions above and below T, (upper
and lower cases respectively):

3 2mV e ptdp [ BVT/2X3)g52(2)
b= §PV B W/o zlexp(p?/2mT) —1 { (3VT/2)\3)95;2(1)  (89)
c = { (150/4X%)g5/2(2) — 9g3/2(2) /4g1/2(2) (90)
O | (150/4X%) g5 2(1)

At low T, ¢, oc A% oc T3/2, it decreases faster than ¢, o< T' for electrons yet
slower than ¢, oc T® (that we had for €, = ¢p). Simply speaking, the specific
heat (as the effective number of degrees of freedom) of the ideal Bose gas
behaves as the phase volume p3.; for massless bosons, pr oc T and ¢, oc T
while for massive pr oc T2 and ¢, oc T%2. One can also say that the particle
levels, €, = p?/2m, are denser at lower energies, that is why the specific heat
is larger for massive particles. The other side of the coin is that the same

44

2/3.



increase of the distance between levels €, = p?/2m with p makes ¢, decreasing
with T" at high temperatures, as for rotators in Sect. 3.1.1:

c, P sansiionline PvEconst

Y2 A

T v(T)
Note that the pressure given by the upper line of (89) depends on V via z.
However, the lower line shows that the pressure is independent of the volume
at T' < T,.. That prompts the analogy with a phase transition of the first
order. Indeed, this reminds the properties of the saturated vapor (particles
with nonzero energy) in contact with the liquid (particles with zero energy):
changing volume at fixed temperature we change the fraction of the particles
in the liquid but not the pressure. This is why the phenomenon is called the
Bose-Einstein condensation. Increasing temperature we cause evaporation
(particle leaving condensate in our case) which increases c,; after all liquid
evaporates (at T' = T.) ¢, starts to decrease. It is sometimes said that it
is a “condensation in the momentum space” but if we put the system in a
gravity field then there will be a spatial separation of two phases just like in
a gas-liquid condensation (liquid at the bottom).
We can also obtain the entropy, above T, by usual formulas that fol-
low from (67) and below T, just integrating specific heat S = [dE/T =
N [¢,(T)dT /T =5E/3T = 2N¢,/3:

S [ (50/20%)g52(2) — log(2)
N { (50/2X%)gs/2(1) (51)

The entropy is zero at T' = 0 which means that the condensed phase has no
entropy. At finite 7" all the entropy is due to gas phase. Below T, we can
write S/N = (T/T.)*?s = (v/v.)s where s is the entropy per gas particle:
s = 5g5/2(1)/2g3/2(1). The latent heat of condensation per particle is T's that
it is indeed phase transition of the first order. Usual gas-liquid condensation
is caused by the interaction - molecules attract each other at large distances.
We see that the Bose-Einstein condensation takes place already in an ideal
gas and is due to the discreteness of the energy levels, which indeed leads to
some effective attraction as was seen from (70).
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To conclude, we have seen in this Section how quantum effects lead to
switching off degrees of freedom at low temperatures. Fermi and Bose sys-
tems reach the zero-entropy state at T' = 0 in different ways. It is also
instructive to compare their chemical potentials:

]
Fermi

Bose

Landau & Lifshitz, Sect. 62; Huang, Sect. 12.3.
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4 Entropy and information

By definition, entropy of a closed system determines the number of available
states (or, classically, phase volume). Assuming that system spends compa-
rable time in different available states we conclude that since the equilibrium
must be the most probable state it corresponds to the entropy maximum. If
the system happens to be not in equilibrium at a given moment of time [say,
the energy distribution between the subsystems is different from the most
probable Gibbs distribution (26)] then it is more probable to go towards
equilibrium that is increasing entropy. This is a microscopic (probabilistic)
interpretation of the second law of thermodynamics formulated by Clausius
in 1865. The probability maximum is very sharp in the thermodynamic limit
since exp(S) grows exponentially with the system size. That means that
for macroscopic systems the probability to pass into the states with lower
entropy is so vanishingly small that such events are never observed.

Dynamics (classical and quantum) is time reversible. Entropy growth
is related not to the trajectory of a single point in phase space but to the
behavior of finite regions (i.e. sets of such points). The necessity to consider
finite regions follows from the insufficiency of information about the true state
of the system. Consideration of finite regions is called coarse graining and it
is the main feature of stat-physical approach responsible for the irreversibility
of statistical laws.

4.1 Lyapunov exponent

The dynamical background of entropy growth is the separation of trajec-
tories in phase space so that trajectories started from a small finite region
are found in larger and larger regions of phase space as time proceeds. The
relative motion is determined by the velocity difference between neighboring
points in the phase space: dv; = r;0v;/0x; = r;0;;. Here x = (p, q) is the
6 N-dimensional vector of the position and v = (p, q) is the velocity in the
phase space. The trace of the tensor o;; is the rate of the volume change
which must be zero according to the Liouville theorem (that is a Hamil-
tonian dynamics imposes an incompressible flow in the phase space). We
can decompose the tensor of velocity derivatives into an antisymmetric part
(which describes rotation) and a symmetric part (which describes deforma-
tion). We are interested here in deformation because it is the mechanism of
the entropy growth. The symmetric tensor, S;; = (0v;/0x;+0v;/0z;)/2, can
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be always transformed into a diagonal form by an orthogonal transformation
(i.e. by the rotation of the axes), so that S;; = S;d;;. The diagonal compo-
nents are the rates of stretching in different directions. Indeed, the equation
for the distance between two points along a principal direction has a form:
7, = ov; = 1;5; . The solution is as follows:

ri(t) = 1i(0) exp { / "5t dt’] . (92)

For a time-independent strain, the growth/decay is exponential in time. One
recognizes that a purely straining motion converts a spherical element into an
ellipsoid with the principal diameters that grow (or decay) in time. Indeed,
consider a two-dimensional projection of the initial spherical element i.e. a
circle of the radius R at ¢ = 0. The point that starts at zg,yo = /R? — 23
goes into

x(t) = iy
y(t) SQQty _ 6522t /R2 — iL‘ _ 6522t\/R2 (t)€72511t’
:)32(25) —2511t + y2(t)e—2522t — R2 ] (93)

The equation (93) describes how the initial circle turns into the ellipse whose
eccentricity increases exponentially with the rate [S1; — Sao|. In a multi-
dimensional space, any sphere of initial conditions turns into the ellipsoid
defined by S0 22(t)e~2%* =const.

| exp(Sxt)

Figure 1: Deformation of a phase-space element by a permanent strain.

Of course, as the system moves in the phase space, both the strain values
and the orientation of the principal directions change, so that expanding
direction may turn into a contracting one and vice versa. The question
is whether averaging over all possibilities gives a zero net result. One can
show that in a general case an exponential stretching persists on average
and the majority of trajectories separate. Let us first look at that from
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a temporal perspective: even when the average A(t) fi S;(¥')dt' is zero, the
average exponent of it is larger than unity (and generally growing with time):

1 /T ¢
- . / / > .
T/O dt exp [/0 S,(t)dt} > 1

This is because the intervals of time with positive A(t) give more contribu-
tion into the exponent than the intervals with negative A(t¢). Looking from
a spatial perspective, consider the simplest example of a two-dimensional
pure strain, which corresponds to an incompressible saddle-point flow: v, =

Az, v, = —Ay. The vector r = (x,y) (which is supposed to characterize
the distance between two close trajectories) satisfies the equations & = v,
and y = v,. Whether the vector is stretched or contracted after some

time 7" depends on its orientation and on 7. Since z(t) = zgexp(At) and
y(t) = yoexp(—At) = zoyo/x(t) then every trajectory is a hyperbole. A
unit vector initially forming an angle ¢ with the x axis will have its length
[cos? pexp(2AT) + sin? pexp(—2AT)]*/? after time T. The vector will be
stretched if cos p > [1 +exp(2\T)]7Y/2 < 1/4/2, i.e. the fraction of stretched
directions is larger than half. When along the motion all orientations are
equally probable, the net effect is stretching.

y

y(0)

y(m

x(0) x(T X

Figure 2: The distance of the point from the origin increases if the angle is
less than oy = arccos[l + exp(2AT)]"*/2 > /4. Note that for ¢ = ¢, the
initial and final points are symmetric relative to the diagonal.

This is formally proved in mathematics by considering random &(¢) and the
transfer matrix W defined by r(t) = W(t,t)r(t;). It satisfies the equation
dW/dt = 6W. The Liouville theorem tré = 0 means that det'W = 1. The
modulus r of the separation vector may be expressed via the positive symmetric

matrix W2 W. The main result (Furstenberg and Kesten 1960; Oseledec, 1968)
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states that in almost every realization 6(t), the matrix 1 In WT(t,0)W(t,0) tends
to a finite limit as ¢ — oo. In particular, its eigenvectors tend to d fixed orthonor-
mal eigenvectors f;. Geometrically, that precisely means than an initial sphere
evolves into an elongated ellipsoid at later times. As time increases, the ellipsoid
is more and more elongated and it is less and less likely that the hierarchy of the
ellipsoid axes will change. The limiting eigenvalues

Ai = lim ¢~ in WA (94)
t—o00

define the so-called Lyapunov exponents. The sum of the exponents is zero due to
the Liouville theorem so there exists at least one positive exponent which corre-
sponds to stretching. Mathematical lesson to learn is that multiplying N random
matrices with unit determinant (recall that the determinant is the product of
eigenvalues), one generally gets some eigenvalues growing (and some decreasing)
exponentially with N.

The probability to find a ball turning into an exponentially stretching
ellipse goes to unity as time increases. The physical reason for it is that
substantial deformation appears sooner or later. To reverse it, one needs
to contract the long axis of the ellipse, that is the direction of contraction
must be inside the narrow angle defined by the ellipse eccentricity, which is
unlikely. Randomly oriented deformations on average continue to increase
the eccentricity.

Armed with the understanding of the exponential stretching, we now
return to the dynamical foundation of the second law of thermodynamics.
We assume that our finite resolution does not allow us to distinguish between
the states within some square in the phase space. In the figure below, one can
see how such black square of initial conditions (at the central box) is stretched
in one (unstable) direction and contracted in another (stable) direction so
that it turns into a long narrow strip (left and right boxes). Later in time, our
resolution is still restricted - rectangles in the right box show finite resolution
(this is called coarse-graining). Viewed with such resolution, our set of points
occupies larger phase volume (i.e. corresponds to larger entropy) at t = £7T°
than at ¢ = 0. Time reversibility of any particular trajectory in the phase
space does not contradict the time-irreversible filling of the phase space by the
set of trajectories considered with a finite resolution. By reversing time we
exchange stable and unstable directions but the fact of space filling persists.
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After the strip length reaches the scale of the velocity change (when one
already cannot approximate the phase-space flow by a linear profile ), strip
starts to fold, continuing locally the exponential stretching. Eventually, one
can find the points from the initial ball everywhere which means that the
flow is mixing, also called ergodic. Formal definition is that the flow is
called ergodic in the domain if the trajectory of almost every point (except
possibly a set of zero volume) passes arbitrarily close to every other point. An
equivalent definition is that there are no finite-volume subsets of the domain
invariant with respect to the flow except the domain itself. Ergodic flow on an
energy surface in the phase space provides for a micro-canonical distribution
(i.e. constant), since time averages are equivalent to the average over the
surface. While we can prove ergodicity only for relatively simple systems,
like the gas of hard spheres, we believe that it holds for most systems of
sufficiently general nature (that vague notion can be make more precise by
saying that the qualitative systems behavior is insensitive to small variations
of its microscopic parameters).

When the density spreads, entropy grows (as the logarithm of the volume
occupied). If initially our system was within the phase-space volume €%V,
then its density was py = € %V inside and zero outside. After stretching to
some larger volume Ae®" the entropy S = — [ pln pdx has increased by In A.
Another example is the evolution after many uncorrelated steps - in Sect 5.3
below we show that on a timescale where one can consider the motion as a
series of uncorrelated random walks, the spread of the probability density
p(r,t) can be described by a simple diffusion: dp/dt = —kAp. Entropy
increases monotonically under diffusion:

2
dt /p t)In p(r,t) dr :—R/Aplnpdr:ﬁ/(v:) dr > 0. (95)

Two concluding remarks are in order. First, the notion of an exponential
separation of trajectories put an end to the old dream of Laplace to be able
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to predict the future if only all coordinates and momenta are given. Even
if we were able to measure all relevant phase-space initial data, we can do
it only with a finite precision e. However small is the indeterminacy in the
data, it is amplified exponentially with time so that eventually e exp(AT) is
large and we cannot predict the outcome. Mathematically speaking, limits
e — 0 and T" — oo do not commute. Second, the above arguments did not
use the usual mantra of thermodynamic limit, that is even the systems with
a small number of degrees of freedom need statistics for their description
at long times if their dynamics has a positive Lyapunov exponent (which is
generic) - this is sometimes called dynamical chaos.

4.2 Adiabatic processes and the third law

The second law of thermodynamics is valid not only for isolated systems but
also for systems in the (time-dependent) external fields or under external
conditions changing in time as long as there is no heat exchange, that is
for systems that can be described by the microscopic Hamiltonian H(p, ¢, A)
with some parameter A\(¢) slowly changing with time. That means that the
environment is not a macroscopic body with hidden degrees of freedom but
is completely determined by the value of the single parameter A, that is the
entropy of the environment is zero. In particular, A can be the system volume
since the walls can be thought of as confining potential. If temporal changes
are slow enough then the entropy of the system change only a little i.e. the
process is adiabatic. Indeed, the positivity of S = dS/dt requires that the
expansion of S()\) starts from the second term,
2
dSZdS.CM:ACM) N (96)
dt  dx dt dt d\ dt

We see that when d\/dt goes to zero, entropy is getting independent of A.
That means that we can change A (say, volume) by finite amount making the
entropy change whatever small by doing it slow enough.

During the adiabatic process the system is assumed to be in thermal
equilibrium at any instant of time (as in quasi-static processes defined in
thermodynamics). Changing A (called coordinate) one changes the energy
levels E, and the total energy. Respective force (pressure when A is volume,
magnetic or electric moments when A is the respective field) is obtained as the
average (over the equilibrium statistical distribution) of the energy derivative
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with respect to A:

OH(p,q, ) oE, 0 OE(S, A, ...)
) Za RS ) Za WaLa B3\ . (97)

We see that the force is equal to the derivative of the thermodynamic energy
at constant entropy. It is an important formula since instead of calculating
averages over statistical distributions one can just differentiate the thermo-
dynamic potential. Let us also stress that we assumed that in an adiabatic
process all probabilities w, do not change i.e. the entropy of any subsys-
tem us conserved. This is more restrictive than the condition of reversibility
which requires only the total entropy to be conserved. In other words, the
process can be reversible but not adiabatic. See Landau & Lifshitz (Section
11) for more details.

The last statement we make here about entropy is the third law of thermo-
dynamics (Nernst theorem) which claims that S — 0 as T'— 0. A standard
argument is that since stability requires the positivity of the specific heat
¢, then the energy must monotonously increase with the temperature and
zero temperature corresponds to the ground state. If the ground state is
non-degenerate (unique) then S = 0. The ground can be degenerate yet
generally that degeneracy grows slower than exponentially with NV, then the
entropy per particle is zero in the thermodynamic limit. While this argument
is correct it is relevant only for temperatures less than the energy difference
between the first excited state and the ground state. As such, it has nothing
to do with the third law established generally for much higher temperatures
and related to the density of states as function of energy (as we have seen
in Chapter 3, entropy goes to zero as T, T%/?,T® for fermions, massive and
massless bosons respectively). See Huang (Section 9.4) and L&L (Section 45)
for more details.

4.3 Information theory approach

Here I briefly re-tell the story of statistical physics using a different language.
An advantage of using different formulations is that it helps to understand
things better and triggers different intuition in different people.

Consider first a simple problem in which we are faced with a choice among
n equal possibilities (say, in which of n boxes a candy is hidden). How much
we do not know? Let us denote the missing information by I(n). Clearly,
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the information is an increasing function of n and I(1) = 0. If we have
few independent problems then information must be additive. For example,
consider each box to have m compartments: I(nm) = I(n)+ I(m). Now, we
can write (Shannon, 1948)

I(n)=1I(e)lnn=Fklnn (98)

That it must be a logarithm is clear also from obtaining the missing informa-
tion by asking the sequence of questions in which half we find the box with
the candy, one then needs log,n of such questions and respective one-bit
answers. We can easily generalize the definition (98) for non-integer ratio-
nal numbers by I(n/l) = I(n) — I(l) and for all positive real numbers by
considering limits of the series and using monotonicity.

If we have an alphabet with n symbols then every symbol we receive brings
the information klInn. If symbols come independently then the message of
the length N can potentially be one of n”V possibilities so that it brings the
information kN Inn. If all the 25 letters of the English alphabet were used
with the same frequency then the word ”love” would bring the information
equal to 4k In 25 or 4 log, 25 bits. Here and below we assume that the receiver
has no other prior knowledge on subjects like correlations between letters (for
instance, everyone who knows English, can infer that there is only one four-
letter word which starts with “lov...” so the last letter brings zero information
for such people).

I

Al B L z
Al B o} z
N
Al B V z
Al B E z

In reality though every letter brings even less information than % In 25 since
we know that letters are used with different frequencies. Indeed, consider
the situation when there is a probability w; assigned to each letter (or box)
1 =1,...,n. It is then clear that different letters bring different information.
Now if we want to evaluate the missing information (or, the information that
one symbol brings us on average) we ought to repeat our choice N times.
As N — oo we know that candy in the i-th box in Nw; cases but we do
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not know the order in which different possibilities appear. Total number of
orders is N!/II;(Nw;)! and the missing information is

Iy = kln(NY/IL;(Nw;)!) &~ =Nk> w;Inw; + O(InN) . (99)

The missing information per problem (or per symbol in the language) coin-
cides with the entropy (28):

I(wl...wn):]\}ii{l)O[N/N:—kailnwi. (100)

=1

Incidentally for English language the information per symbol is

z
— Y w;log, w; & 4.11 bits .
1=a

The information (100) is zero for delta-distribution w; = d;;; it is generally
less than the information (98) and coincides with it only for equal probabil-
ities, w; = 1/n, when the entropy is maximum. Indeed, equal probabilities
we ascribe when there is no extra information, i.e. in a state of maximum
ignorance. In this state, we get maximum information per symbol; any prior
knowledge can reduce the information. Mathematically, the property

I(1/n,....,1/n) > I(w; ... w,) (101)

is called convexity. It follows from the fact that the function of a single
variable s(w) = —wlnw is strictly downward convex (concave) since its
second derivative, —1/w, is everywhere negative for positive w. For any
concave function, the average over the set of points w; is less or equal to the
function at the average value (so-called Jensen inequality):

i=1

From here one gets the entropy inequality:

](wl...wn):is(wi) <ns (iziluh) =ns (1> :](1,...,1> .(103)

Pt n n n

The relation (102) can be proven by for any concave function. Indeed, the
concavity condition states that the linear interpolation between two points
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a, b lies everywhere below the function graph: s(Aa+b— A\b) > As(a) + (1 —
A)s(b) for any A € [0,1]. For A = 1/2 it corresponds to (102) fot n = 2. To
get from n = 2 to arbitrary n we use induction. For that end, we choose
A=n—-1)/n,a=(n—-1)"1E"w; and b = w, to see that

()Lt

>

> > s (wy) . (104)
In the last line we used the truth of (102) for n — 1 to prove it for n.

Note that when n — oo then (98) diverges while (100) may well be finite.
We can generalize (100) for a continuous distribution by dividing into cells
(that is considering a limit of discrete points). Here, different choices of
variables to define equal cells give different definitions of information. It is
in such a choice that physics (or other specific knowledge) enters. We use
canonical coordinates in the phase space and write the missing information
in terms of the density, which may also depend on time:

1) = = [ plp. . ) lp(p. ¢.1)] dpdq (105)

If the density of the discrete points in the continuous limit is inhomogeneous,
say m(x), then the proper generalization is

— — [ p(x) lp(x) /m(x)] dx . (106)

Note that (106) is invariant with respect to an arbitrary change of variables
x — y(x) since p(y)dy = p(x)dx and m(y)dy = m(x)dx while (105) was
invariant only with respect to canonical transformations (including a time
evolution according to a Hamiltonian dynamics) that conserve the element
of the phase-space volume.

Mention briefly the application of entropy in communication theory. In-
equality (101) means that a communication channel transmitting bits (ones
and zeros) on average can transmit no more than one unit of the information
(100) per symbol. In other words, Y7 w; log, w; gives the minimum number
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of bits per symbol needed to transmit the ensemble of messages. We can say
that the information content of a symbol number i is log,(1/w;), while the
entropy is the mean information content per symbol. Note that less proba-
ble symbols have larger information content. That suggests a way of signal
compression by coding common letters by short sequences and infrequent
letters by more lengthy combinations - lossless compressions like zip, gz and
gif work this way (you may find it interesting to know that jpeg, mpeg, mp3
and telephone use lossy compression which removes information presumed to
be unimportant for humans).

Apart from restrictions imposed by the statistics of symbols to be trans-
ferred, one also wish to characterize the quality of the channel. Note that in
this context one can view measurements as messages about the value of the
quantity we measure. Here, the message (measurement) A we receive gives
the information about the event (quantity) B as follows:

I(A, B) = In[P(B|A)/P(B)],

where P(BJ|A) is the so-called conditional probability (of B in the presence
of A). The conditional probability is related to the joint probability P(A, B)
by the evident formula P(A, B) = P(B|A)P(A), which allows one to write
the information in a symmetric form

[P(B,A)
l(4.5)=1n [P<A>P<B>] '

When A and B are independent then the conditional probability is indepen-
dent of A and information is zero. When they are dependent, P(B, A) >
P(A)P(B) so that that the information is always positive. It is interesting
to know how much information on average about B one obtains by measuring
A. Summing over all possible By,..., B, and Aq,..., A, we obtain Shan-
non’s “mutual information” used to evaluate the quality of communication
systems (or measurements)

=33 P4 B IP(BA)P(B,)

— 1(Z, Y):/dzdyp(z,y) In lp;(y) ] :/dzdyp(z,y) In [m] .(107)

Here we used p(z,y) = p(z|y)p(y). If one is just interested in the channel as
specified by P(B|A) then one maximizes I (A, B) over all choices of the source
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statistics P(B) and call it channel capacity. Note that (107) is the particular
case of multidimensional (106) where one takes x = (y, 2), m = p(z)p(y).

So far, we defined information via the distribution. Now, we want to
use the idea of information to get the distribution. Statistical mechanics is a
systematic way of guessing, making use of incomplete information. The main
problem is how to get the best guess for the probability distribution p(p, ¢, )
based on any given information presented as (R;(p,q,t)) = r;, i.e. as the
expectation (mean) values of some dynamical quantities. Our distribution
must contain the whole truth (i.e. all the given information) and nothing
but the truth that is it must maximize the missing information I. This is to
provide for the widest set of possibilities for future use, compatible with the
existing information. Looking for the maximum of

1= Y A(Rs(p.0,0)) = [ plp.a.)1lp(p, 0, 0] = 35\ Ryp,0,0)} dpda

we obtain the distribution

p(p,gt) = 27 exp|= 3 NiRi(p,g.t)] (108)

J
where the normalization factor

Z(0) = [ exp[= 3 AiRi(p.a.)] dpda |
J
can be expressed via the measured quantities by using

olnz
S 1
3y 7 (109)

For example, consider our initial ”candy-in-the-box” problem (think of an
impurity atom in a lattice if you prefer physics to candies). Let us denote
the number of the box with the candy j. Different attempts give different j
(for impurity, think of X-ray scattering on the lattice) but on average after
many attempts we find, say, (cos(kj)) = 0.3. Then

p(i) = 271 () expl—Acos(k)

Z(\) = En:exp[/\ cos(kj)], (cos(kj)) =dlogZ/d\ =0.3 .

J=1
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We can explicitly solve this for £ < 1 < kn when one can approximate the
sum by the integral so that Z(\) ~ nly(\) where Iy is the modified Bessel
function. Equation I)(A) = 0.31p()) has an approximate solution A ~ 0.63.

Note in passing that the set of equations (109) may be self-contradictory
or insufficient so that the data do not allow to define the distribution or
allow it non-uniquely. If, however, the solution exists then (105,108) define
the missing information 7{r;} which is analogous to thermodynamic entropy
as a function of (measurable) macroscopic parameters. It is clear that I have
a tendency to increase whenever a constraint is removed (when we measure
less quantities R;).

If we know the given information at some time ¢; and want to make
guesses about some other time ¢y then our information generally gets less
relevant as the distance |t; — 3| increases. In the particular case of guessing
the distribution in the phase space, the mechanism of loosing information
is due to separation of trajectories described in Sect. 4. Indeed, if we know
that at ¢; the system was in some region of the phase space, the set of
trajectories started at t; from this region generally fills larger and larger
regions as |t; — t3| increases. Therefore, missing information (i.e. entropy)
increases with |t; — to|. Note that it works both into the future and into the
past. Information approach allows one to see clearly that there is really no
contradiction between the reversibility of equations of motion and the growth
of entropy. Also, the concept of entropy as missing information!! allows
one to understand that entropy does not really decrease in the system with
Maxwell demon or any other information-processing device (indeed, if at the
beginning one has an information on position or velocity of any molecule,
then the entropy was less by this amount from the start; after using and
processing the information the entropy can only increase). Consider, for
instance, a particle in the box. If we know that it is in one half then entropy
(the logarithm of awailable states) is In(V//2). That also teaches us that
information has thermodynamic (energetic) value: by placing a piston at the
half of the box and allowing particle to hit and move it we can get the work
TAS =T 1In2 done; on the other hand, to get such an information one must
make a measurement whose minimum energetic cost is TAS = T'In 2 (Szilard
1929).

Yet there is one class of quantities where information does not age. They
are integrals of motion. A situation in which only integrals of motion are

that entropy is not a property of the system but of our knowledge about the system
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known is called equilibrium. The distribution (108) takes the canonical form
(12,13) in equilibrium. On the other hand, taking micro-canonical as constant
over the constant-energy surface corresponds to the same approach of not
adding any additional information to what is known (energy).

From the information point of view, the statement that systems approach
equilibrium is equivalent to saying that all information is forgotten except the
integrals of motion. If, however, we possess the information about averages
of quantities that are not integrals of motion and those averages do not
coincide with their equilibrium values then the distribution (108) deviates
from equilibrium. Examples are currents, velocity or temperature gradients
like considered in kinetics.

More details can be found in Katz, Sects. 2-5, Sethna Sect. 5.3 and Kardar
I, Problem 2.6.

4.4 Central limit theorem and large deviations

Mathematical statement underlying most of the statistical physics in the
thermodynamic limit is the central limit theorem, which states that the sum
of many independent random numbers has Gaussian probability distribution.
Recently, however, we are more and more interested in the statistics of not
very large systems or in the statistics of really large fluctuations. To answer
such questions, here we discuss the sum of random numbers in more detail.
Consider the variable X which is a sum of many independent identically
distributed (iid) random numbers X = >V ;. Its mean value (X) = N{y)
grows linearly with N. Here we show that its fluctuations X — (X)) on the
scale less and comparable with O(N'/?) are governed by the Central Limit
Theorem that states that (X — (X))/N'/2 becomes for large N a Gaussian
random variable with variance (y?) — (y)> = A. Note that the statistics of
the quantities that we sum, y;, can be quite arbitrary, the only requirements
that we must impose is that the first two moments, the mean (y) and the
variance A, are finite. Finally, the fluctuations X — (X)) on the larger scale
O(N) are governed by the Large Deviation Theorem that states that the
PDF of X has asymptotically the form

P(X) o e NHE/N=@) (110)

To show this, let us characterize y by its generating function (e®¥) = e5¢)
(assuming that the mean value exists for all complex z). The derivatives of
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S(z) at zero determine the cumulants of y:

S(:) = {exp(e) = 1+ 3 07).
ifexp(en)) = = X2 1 (1= el = - 3 1 (= 3 2
= z(y) + (") - (W); +...= O:i;@”%- (111)

The basic statement is that because all y-s in the sum are independent
then the generating function (e**) of the moments of X has exponential
dependence on N: (e*¥) = eN5() The PDF P(X) is then given by the
inverse Laplace transform ﬁ [ e #X+NSG) d with the integral over any axis
parallel to the imaginary one. For large N, the integral is dominated by the
saddle point zg such that S’(zp) = X/N. This is similar to representing the
sum (19) by its largest term. If there are several saddle-points, the result
is dominated by the one giving the largest probability. We now substitute
X = NS'(z) into zX + NS(z), and obtain the large deviation relation (110)
with

We see that —H and S are related by the Legendre transform. Note that
NdH/dX = z(X) and N2d*H/dX? = Ndzy/dX = 1/5"(z). The function
H of the variable X/N — (y) is called Cramér or rate function since it mea-
sures the rate of probability decay with the growth of N for every X/N. It is
also sometimes called entropy function since it is a logarithm of probability.

Several important properties of H can be established independently of
the distribution P(y) or S(z). It is a convex function as long as S(z) is
a convex function since their second derivatives have the same sign. It is
straightforward to see that the logarithm of the generating function has a
positive second derivative (at least for real z):

2

d
S"(z) = ﬁln/ezyp(y) dy

— fy2ezy7)(y) dyfezyp(y) dy B [f yezyp(y) 7dy]2 > O (113>
= > >0.
[ e P(y) dy]
This uses the CauchyBunyakovskySchwarz inequality which is a generaliza-
tion of (y?) > (y)2. Also, H takes its minimum at zero, i.e. for X taking
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its mean value (X) = N(y) = NS’(0), which corresponds to zop = 0. Since
S(0) = 0 then the minimal value of H is zero. The entropy is quadratic
around its minimum with H”(0) = A, where A = S”(0) is the variance of
y. Quadratic entropy means Gaussian probability near the maximum — this
statement is (loosely speaking) the essence of the central limit theorem. In
the particular case of Gaussian y, X is Gaussian as well. Non-Gaussianity
of the y’s leads to a non-quadratic behavior of H when deviations of X/N
from the mean are large, of the order of A/S"(0).

A simple example is provided by the statistics of the kinetic energy,
E = YV p?/2, of N classical identical unit-mass particles in 1d. We con-
sidered similar problem in the Section 2.2 in the micro-canonical approach
and thermodynamic limit N — oo. Let us now look using canonical Gibbs
distribution which is Gaussian for momenta:

p(p1,...,pn) = (20T) V% exp (- ﬁ:pf/ﬂ) :

The energy probability for any N is done by integration, using spherical
coordinates in the momentum space:

p(EN) = [ olor...on)d (E—ﬁj;pm) doy . dow

Plotting it for different N, one can appreciate how the thermodynamic limit
appears. Taking the logarithm and using the Stirling formula one gets the
large-deviation form for the energy R = E/E, normalized by the mean energy
E = NT/2:

(114)

Inp(E,N) ZEInT—ln—!—TQ—(l—R+1nR) . (115)

This expression has a maximum at R = 1 i.e the most probable value is
the mean energy. The probability of R is Gaussian near maximum when
R —1 < N~'2 and non-Gaussian for larger deviations. Notice that this
function is not symmetric with respect to the minimum, it has logarithmic
asymptotic at zero and linear asymptotic at infinity.

One can generalize the central limit theorem and the large-deviation ap-
proach in two directions: i) for non-identical variables y;, as long as all vari-
ances are finite and none dominates the limit N — oo, it still works with
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the mean and the variance of X being given by the average of means and
variances of y;; ii) if y; is correlated with a finite number of neighboring vari-
ables, one can group such ”correlated sums” into new variables which can be
considered independent.
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5 Fluctuating fields and random walks

In this Chapter, we first consider macroscopic fluctuations of thermodynamic
parameters, then we treat spatially non-uniform fluctuations and end up by
considering microscopic fluctuations.

5.1 Thermodynamic fluctuations

Consider fluctuations of energy and volume of a given (small) subsystem. The
probability of a fluctuation is determined by the entropy change of the whole
system w o< exp(ASy) which is determined by the minimal work needed for
a reversible creation of such a fluctuation: TASy = —R,,in. Just the same,
Ryuin is the maximal work one can extract from the system by bringing it into
equilibrium at a constant total entropy. For example, if the fluctuation is that
the subsystem starts moving as a whole with the velocity v then the minimal
work is the kinetic energy Mv?/2, so that the probability of such a fluctuation
is w(v) o< exp(—Mv?/2T). Generally, R,;, = AE + B AV — ToAS, where
AS,AFE, AV relate to the subsystem. Indeed, the energy change of the
subsystem AF is equal to the work R done on it (by something from outside
the system) plus the work done by the rest of the system —PyAVy = PyAV
plus the heat received from the rest of the system TyAS;. Minimal work
corresponds to ASy; = —AS. In calculating variations we also assume P, T
equal to their mean values which are Py, Ty. Stress that we only assumed the
subsystem to be small i.e. ASy < Sy, F < Ey, V <V, while fluctuations
can be substantial, i.e. AE can be comparable with E.

Vo

If, in addition, we assume the fluctuations to be small (AE < FE) we
can expand AFE(S, V) up to the first non-vanishing terms. The linear terms
of this expansion cancel PAV —TAS, while the quadratic terms give the
Gaussian probability distribution:

Rpin=AE+PAV —TAS=[Ess(AS)*+2Esy ASAV + Eyy (AV)?]/2
= (1/2)(ASAEs + AVAEy) = (1/2)(ASAT — APAV). (116)
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Written in such a way, it shows a sum of contributions of hidden and
mechanical degrees of freedom. Of course, only two variables are indepen-
dent. From that general formula one obtains different cases by choosing
different pairs of independent variables. In particular, choosing an exten-
sive variable from one pair and an intensive variable from another pair (i.e.
either V.T or P,S), we get cross-terms canceled because of the Maxwell
identities like (OP/0T)y = (0S/0V )y = 0?°F/0TOV. That means the ab-
sence of cross-correlation i.e. respective quantities fluctuate independently*?:
(ATAV) = (APAS) = 0. Indeed, choosing T and V' as independent vari-
ables we must express

oS oS C OP
AS=—) AT — ) AV = ZZAT — ] A 11
S (8T>V +(8V)T v T +(3T>V v (117)
and obtain o L op
Gy S A 2
wocexpl S (AT) +2T(6V>T(AV)] . (118)

Mean squared fluctuation of the temperature
(AT)*) =T?/C, .

In particular, with that accuracy one can define temperature for an isolated
system. Mean squared fluctuation of the volume (for a given number of
particles),

((AV)?) = =T(9V/oP)r,
gives the fluctuation of the specific volume
((Av)*) = N7X((AV)?)

which can be converted into the mean squared fluctuation of the number of
particles in a fized volume:

v VAN
N N2

o NELOVY on
(ANY) =T33 (aP>T =M (ap)m

(), r (3, (3, (%),
op T,V O TV op TV O TV

12Remind that the Gaussian probability distribution w(z,y) ~ exp(—az? — 2bxy — cy?)
corresponds to the second moments (¥?) = 2¢/(ac — b?), (y?) = 2a/(ac — b?) and to the
cross-correlation (zy) = 2b/(b* — ac).

1
Av=A VAN__
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We see that the fluctuations cannot be considered small near the critical
point where OV/OP is large. The mean squared fluctuations of NV, V, P (and
similar thermodynamic quantities having mechanical nature) turn to zero
linearly as 7" — 0.

For a classical ideal gas with V' = NT/P (119) gives ((AN)?) = N.
In this case, we can do more than considering small fluctuations (or large
volumes). We can find the probability of large fluctuations, even comparable
to the mean value N = NyV/V,. The probability for N (noninteracting)
particles to be inside some volume V out of the total volume V; is

)
N NN, — NI, Vo
NN N\M  N¥exp(—N)
~ Do (1o L) P 12
N!( N0> N1 (120)

Here we assumed that Ny > N and Ny! ~ (Ny — N)INY. Note that Ny
disappeared from (120). The distribution (120) is called Poisson law which
takes place for independent events. Mean squared fluctuation is the same as
for small fluctuations:

G - NNN _
((ANP) = (%)~ 2 = exp(-) X0 10— 2
_ NN NN _, -
:eXp(_N) NZ:2M+NZZIW —N“"=N. (121)

This formula also can be used for reading the dependence on the volume.
Recall that the measurement volume is proportional to N. In particular, the
probability that a given volume is empty (N = 0) decays exponentially with
the volume. On the other hand, the probability to cram more than average
number of particles into the volume decays with N in a factorial way, i.e.
faster than exponential: wy o< exp[—N In(N/N)]. One can check that near
the maximum, at |[N — N| < N, the Poisson distribution coincide with the
Gaussian distribution: wy = (2rN)~Y2exp[—(N — N)?/2N].

Of course, real molecules do interact, so that the statistics of their density
fluctuations deviate from the Poisson law, particularly near the critical point
where the interaction energy is getting comparable to the entropy contribu-
tion into the free energy.

Landau & Lifshitz, Sects. 20, 110-112, 114.
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5.2 Spatial correlation of fluctuations

We now consider systems with interaction and discuss a spatial correlation
of fluctuations. Our particular interest is when we can have a long-range
order in a system, and when, on the contrary, fluctuations destroy such an
order. As always, we consider systems with a short radius of interaction
and treat correlations on the scales much larger than this radius. It is clear
that whether fluctuations destroy a long-range order must depend on the
dimensionality. We treat 3d in the next subsection and then consider lower
dimensionalities.

5.2.1 Ornshtein-Zernicke approximation

Let us now regularly consider the correlation function of fluctuations at the
distances much larger than the radius of interaction. Consider, for instance,
the concentration n = N/V. Since the fluctuations of n and T are indepen-
dent, we assume T = const so that the minimal work is the change in the
free energy, which we again expand to the quadratic terms

w o exp(—AF/T), AF = ; / d(ri2) An(r)An(rs) dVidVs.  (122)

Here ¢ is the second (variational) derivative of F' with respect to n(r). Since
we restrict ourselves by the quadratic terms in An then the probability dis-
tribution is Gaussian (in field theory, it is called the case of the free field).
We assumed translational invariance so that ¢(ri2) depends only on a rela-
tive distance. In this case, the free energy can be diagonalized by the Fourier
transform:

An('r’) = zk:Ankeikl"7 Ang = é/An(meikr dr, ¢(k) — /(b(r)efikr dr .

AF = 43 o(k)| Ay ?,
k

which corresponds to a Gaussian probability distribution of independent vari-
ables - amplitudes of the harmonics. The mean squared fluctuation is as
follows

(|Ang|*) = Vol (123)
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Usually, the largest fluctuations correspond to small k£ where we can use the
expansion called the Ornshtein-Zernicke approximation

o(k) ~ ¢o + 29k* . (124)

This presumes short-range interaction which makes large-scale limit regular.
From the previous section, ¢o(T) = n=1(OP/On)r. The free energy must
increase when the concentration is not constant in space, so the coefficient g
is assumed positive.

Not only for the concentration but also for other quantities (like mag-
netization, for instance), (124) is a general form at small k. Consider some
variable 7; defined on the sites i of, say, cubic lattice with the spacing a. The
free energy contains on-cite term and the interaction between neighboring
citessiandite; (j=1,...d):

1

AF = 5 Z(}\ilﬁ? — niniiej/Qd) . (125)

To obtain the continuous limit, we introduce the coordinates x = ia and re-
scale the variable: 7; = v/2da®? 'n(x). We then denote A\™* — 1 = m?a?/2d
and obtain

A= ;/CbCQCCLiCClLQ{/\_177<X)2 - U(X)Cli > [n(x) +a*n(x) + .. } }

Making the inverse Fourier transform of (123) with (124), we find (the
large-scale part of ) the pair correlation function of the concentration in 3d:

(An(0)An(r) = 3 [Angf2e’ | Ay et VR
’ (2m)3

_ /00 T e — ek K24k _ T exp(—r/r.) (127)
0o ¢o+ 29k  ikr  (2m)? 8mgr '

One can derive that by using (k? — A)exp(—rr)/r = 47d(r) or directly:
expand the integral to —oo and then close the contour in the complex up-
per half plane for the first exponent and in the lower half plane for the
second exponent so that the integral is determined by the respective poles
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k = +ik = +ir;'. We defined the correlation radius of fluctuations r. =
[29(T)/¢o(T)]/?2. Far from any phase transition, the correlation radius is
typically the mean distance between molecules.

Note that (126,127) require that ¢o(T) o< m? is non-negative. Near the
critical point, ¢o(T) o (T — T.) decreases, so that the correlation radius
increases and turns into infinite at criticality. We consider phase transitions
in the second part of the course. Here only remark that the radius divergence
means, in particular, the breakdown of the Gaussian approximation for the
probability of fluctuations since we cannot divide the system into independent
subsystems. Indeed, far from the critical point, the probability distribution
of the density has two approximately Gaussian peaks, one at the density
of liquid n;, another at the density of gas n,. As we approach the critical
point and the distance between peaks is getting comparable to their widths,
the distribution is non-Gaussian. In other words, one needs to describe a
strongly interaction system near the critical point which makes it similar to
other great problems of physics (quantum field theory, turbulence).

w

5.2.2 Coulomb interaction and screening

Here we consider the system of charged particles (plasma or electrolyte),
and describe its thermodynamic properties and the correlation functions of
the charge-density fluctuations. The Coulomb energy of interaction is uy, =
€2242/Tay Where z,, 2, are the charges and ry;, is the distance between two
particles.

Interaction of charged particles is long-range and one may wonder how at
all one may use a thermodynamic approach (divide a system into indepen-
dent subsystems, for instance). The answer is in screening. Indeed, if the
system is neutral and the ions and electrons are distributed uniformly then
the total Coulomb energy of interaction is zero. Of course, interaction leads
to correlations in particle positions (particle prefer to be surrounded by the
particles of the opposite charge) which makes for a nonzero contribution to
the energy and other thermodynamic quantities. The semi-phenomenological
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description of such systems has been developed by Debye and Hiickel (1923)
and it works for plasma and electrolytes. Consider the simplest situation
when we have electrons of the charge —e and ions of the charge +e.

We start from a rough estimate for the screening radius rp which we define
as that of a sphere around an ion where the total charge of all particles is of
order —e i.e. compensates the charge of the ion. Particles are distributed in
the field U(r) according to the Boltzmann formula n(r) = ngexp[—U(r)/T]
and the estimate is as follows:

rinolexp(e? /rpT) — exp(—e?/rpT)] ~ 1 . (128)
We obtain what is called the Debye radius
T

noe?

rp ~ (129)
under the condition of interaction weakness, e?/rpT = (6271(1)/ ° JT)*? < 1.
Note that under that condition there are many particles inside the Debye
sphere: nord > 1 (in electrolytes rp is of order 1072 <+ 10™* cm while in
ionosphere plasma it can be kilometers). Everywhere ng is the mean density
of either ions or electrons.

We can now estimate the electrostatic contribution to the energy of the
system of N particles (what is called correlation energy):

B 2 N3/2,3 A
O~ NS 22 2 (130)
D vVT vVT
The (positive) addition to the specific heat
A 2
ACy ~N-“_ < N. (131)

T VIR T U p,T
One can get the correction to the entropy by integrating the specific heat:

AS = —/T = (132)

We set the limits of integration here as to assure that the effect of screening

disappears at large temperatures. We can now get the correction to the free
energy and pressure

_ 2A A

(133)
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Total pressure is P = NT/V — A/3V32TY2 — a decrease at small V (see
figure) hints about the possibility of phase transition which indeed happens
(droplet creation) for electron-hole plasma in semiconductors even though
our calculation does not work at those concentrations.

P

ideal

\Y

The correlation between particle positions (around every particle there
are more particles of opposite charge) means that attraction prevails over
repulsion so that it is necessary that corrections to energy, entropy, free
energy and pressure are negative. Positive addition to the specific heat could
be interpreted as follows: increasing temperature one decreases screening and
thus increases energy.

Now, we can do all the consideration in a more consistent way calculating
exactly the value of the constant A. To calculate the correlation energy of
electrostatic interaction one needs to multiply every charge by the potential
created by other charges at its location. In estimates, we took the Coulomb
law for the potential around every charge, while it must differ as the distance
increases. Indeed, the electrostatic potential ¢(r) around an ion determines
the distribution of ions (4) and electrons (-) by the Boltzmann formula
n4(r) = ngexp[Fep(r)/T] while the charge density e(n, —n_) in its turn
determines the potential by the Poisson equation

8 2
Ap = —4me(ny —n_) = —4meng (e‘eWT — ee¢/T> ~ %Cﬁ , o (134)

where we expanded the exponents assuming the weakness of interaction.
This equation has a central-symmetric solution ¢(r) = (e/r) exp(—rr) where
k% = 87rp%. We are interesting in this potential near the ion i.e. at small 7:
¢(r) ~ e/r — ex where the first term is the field of the ion itself while the
second term is precisely what we need i.e. contribution of all other charges.
We can now write the energy of every ion and electron as —e?x and get the
total electrostatic energy multiplying by the number of particles (N = 2nyV)
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and dividing by 2 so as not to count every couple of interacting charges twice:
N3/203
T

Comparing with the rough estimate (130), we just added the factor /7.

The consideration by Debye-Hiickel is the rlght way to account for the
first-order corrections in the small parameter ¢ no ?/T. One cannot though
get next corrections within the method [further expanding the exponents in
(134)]. That would miss multi-point correlations which contribute the next
orders. Indeed, the existence of an ion at some point influences not only
the probability of having an electron at some other point but they together
influence the probability of charge distribution in the rest of the space. To
account for multi-point correlations, one needs Bogolyubov’s method of cor-
relation functions. Such functions are multi-point joint probabilities to find
simultaneously particles at given places. The correlation energy is expressed
via the two-point correlation function w,, where the indices mark both the
type of particles (electrons or ions) and the positions r, and ry:

U= -—ngVke* = —/7 (135)

5 NN
B= Y R / / e WardVadVy - (136)
a,b

Here u,;, is the energy of the interaction. The pair correlation function is
determined by the Gibbs distribution integrated over the positions of all
particles except the given pair:

Wap = VQ_N/exp lF — Fla=Ulny

T

TN)] dVi ... dVy_s . (137)

Here
U_uab+z uac+ubc + Z Ued -
c,d#a,b
Note that wy, = 1 for an ideal gas. Assuming the interaction weak and
expanding (137) in U/T we get terms like ugwy, and in addition (ug. +
Upe ) Wape Which involves the third particle ¢ and the triple correlation function
that one can express via the integral similar to (137):

F—-—F,;,—U(r;...
Wabe = V3_N/6Xp [ d T (rl TN) d‘/l ... dVN_g . (138)
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We can also see this (so-called closure problem) by differentiating

Owab Wap 8uab 8ubc
_ Z N

= d 1
81‘1, T 8I'b wabc ‘/;7 ( 39)

and observing that the equation on wy, is not closed, it contains wg,.; the
similar equation on wg,. will contain wy,.q etc. Debye-Hiickel approximation
corresponds to closing this hierarchical system of equations already at the
level of the first equation (139) putting wepe & WepWpeWe. and assuming
Wep = Wep — 1 K 1, that is assuming that two particles rarely come close
while three particles never come together:

(9wab . 1 Buab
Grb N T aI‘b

ZN a“bc Wae AV, | (140)

For other contributions to wg., the integral turns into zero due to isotropy.
This is the general equation valid for any form of interaction. For Coulomb
interaction, we can turn the integral equation (140) into the differential equa-
tion by using Ar~t = —4xd(r) 3. For that we differentiate (140) once more:

ATz, 2p€2

Awab( ) T

4
o(r 7sze ZNchac ) (141)

The dependence on ion charges and types is trivial, we(r) = z,2pw(r) and
we get Aw = 4me?d(r)/T + r*w which is (134) with delta-function enforc-
ing the condition at zero. We see that the pair correlation function satis-
fies the same equation as the potential. Substituting the solution w(r) =
—(€?/rT) exp(—kr) into we(r) = 1 + z42w(r) and that into (136) one gets
contribution of 1 vanishing because of electro-neutrality and the term linear
in w giving (135). To get to the next order, one considers (139) together with
the equation for wg,., where one expresses wWypeq Via Wepe.

The correlation function of electron and ion densities are proportional to
Wap, for instance, (n_(0)n_(r)) = n2w__. The correlation functions of the
fluctuations An(r) = n(r) — ng all have the Ornstein-Zernicke form (127):

(An_(0)An_(r)) = (Ani(0)An(r)) = =(An_(0)Any (7))

2
noe
= ngw(r) = _ (o) exp(—kr) . (142)
rT
YIntegrate Laplacian over a region that includes zero: 4x [ r=2(8,720,r~1) r2dr = —1.
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The correlation function of the charge ¢ = e(n; —n.) is 4ndw(r). We see that
the densities of the particles of the same charge and the density of the total
charge anti-correlate: if there is more in one place then there is less around.
Densities of the different-charge particles have positive correlation function
because the particles prefer to be close.

After seeing how screening works, it is appropriate to ask what happens
when there is no screening in a system with a long-range interaction. One
example of that is gravity. Indeed, thermodynamics is very peculiar in this
case. Arguably, the most dramatic manifestation is the Jeans instability of
sufficiently large systems which leads to gravitational collapse, creation of
stars and planets and, eventually, appearance of life.

For more details, see Landau & Lifshitz, Sects. 78,79.

5.2.3 Fluctuations in two dimensions

Not only for the concentration but also for other quantities (like magnetiza-
tion, for instance), (127) is a general form of the correlation function at long
distances. Consider now generally some field 7(r,t) which characterizes the
state of the system. We shall call this field order parameter if (at least at low
enough temperature) it can have a mean value and the correlation function
of its fluctuations decays at large distances. Such state is then called ordered.
Consider the integral (127) at ¢y = 0:

,r,Qfd _ L27d

(An(0)An(r)) « /(1 — *VE2d %k & v E72d %k (143)

1/L d—2
In less than three dimensions, the correlation function grows with the dis-
tance. For example, (An(0)An(r)) o< Inr in 2d. Simply speaking, if at some
point you have some value then far enough from this point the value can
be much larger. That means that the state is actually disordered despite
r. = oo: soft (Goldstone) modes with no energy price for long fluctuations
(o = 0) destroy long order (this statement is called Mermin-Wagner the-
orem). One can state this in another way by saying that the mean vari-
ance of the order parameter, ((An)?) oc L2~%, diverges with the system size
L — oo at d < 2. In exactly the same way phonons with wy o k& make
2d crystals impossible: the energy of the lattice vibrations is proportional
to the squared atom velocity (which is the frequency wy times displace-
ment r3), T ~ wir?; that makes mean squared displacement proportional
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to (r?) o< [dekr} = [d?T/w? < L*~? — in large enough samples the am-
plitude of displacement is getting comparable to the distance between atoms
in the lattice, which means the absence of a long-range order.

Let us demonstrate Ornstein-Zernike approximation using the example
of the so-called XY model which describes a system of two-dimensional spins
s = (scos g, ssin ) with ferromagnetic interaction i.e. with the Hamiltonian

H=—J> s(i) s(j)=—Js*>_ cos(pi — ;) - (144)
,J 2¥)

The interaction is among  neighbors (v = 2d for cubic lattice). Consider now

this system in a contact with the thermostat with sufficiently low temperature

(T < Js?) so that that the neighboring spins are almost aligned, |¢; — ;| <

27, and we may approximate cos and also go into a continuous limit (spin-

wave approximation):

yNJs* Js?
Hox = +72’%—%"2
irj
yNJs* Js?
~ -1 +7/\V<p(r)|2d2r. (145)

Of course, that Hamiltonian can be written as a sum over Fourier harmonics
H+yNJIs?/2 = S He = Na?Js?* Y, k?|or|?/2 with each term having an
Ornstein-Zernike form. Here a is the lattice spacing. There is no m?p? term
because of the O(2) rotational symmetry of the spins, which corresponds to
translational symmetry of the phases ¢ (adding the same constant to all ¢;
makes no change in the energy). In this (low 7') approximation, the phases
have Gaussian statistics with the pair correlation function which is logarith-
mic: {p(r)p(0)) o< (278Js?) LInr. Let us calculate now the correlation
function between two spins distance r apart:

(exlislr) = 19(0)) = [ ddsiexw {3 [ign (¢ -1) - 515}

= exp [—(ﬁNJs%Z)_l > 1_0;8(1(1“)1
K
o\ —1/278Js?
~ exp [~(27875%) " n(rr /)] = (a> e (146)

Here we used the formula of Gaussian integration
/OO dpe= A" /2+00 — \ Jor [ Ae= 7" AT /2 (147)
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We see that the correlation function falls of by a power law at however
low temperature, and it does not approach constant as in a state with a
long-range order. We thus conclude that there is no long-range order at all
temperatures. Description looks practically the same for two dimensional
crystals where the energy is proportional to the squared difference between
the displacements of the neighboring atoms.

Still, a power-law decay of correlations (146) is very much different from
the exponential decay in a state with a finite correlation radius. That is
the state with a power-law decay formally corresponds to an infinite corre-
lation radius. A long-range order is absent in that state yet a local order
exists, which means that at sufficiently low temperatures superfluidity and
superconductivity can exist in 2d films, and 2d crystals can support trans-
verse sound (recall that longitudinal sound exists in fluids as well, so it is
transverse sound which is a defining property of a solid). Remind that our
consideration (144-146) was for sufficiently low temperatures. The power-
law behavior disappears and a finite correlation radius appears above some
temperature (so called, BKT phase transition, to be considered in the second
part of the course).

Let us summarize. If the system Hamiltonian has a continuous symmetry;,
like rotations for spins or translations for atoms, this symmetry must be
spontaneously broken to provide for an ordered state (which we expect al low
temperatures). Spontaneously broken means that the symmetry of the state
is less than the symmetry of the thermodynamic potential or Hamiltonian:
spins look predominantly in one directions in a ferromagnetic, and atoms
sit in preferred positions in the crystal lattice. Then the Goldstone theorem
claims that whenever continuous symmetry is spontaneously broken then the
mode must exist with the energy going to zero with the wavenumber (rotation
or translation of the system as a whole costs no energy). This statement is
true as long as the force responsible for symmetry breaking is short-range.
For a spin system, the broken symmetry is rotational and the Goldstone
mode is the excited state where the spin turns as the location changes, as
shown in the Figure. That excitation propagates as a spin wave. For a solid,
the broken symmetry is translational and the Goldstone mode is a phonon.
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Goldstone modes are easily excited by thermal fluctuations and they de-
stroy long-range order for d < 2 (Mermin-Wagner theorem).

5.2.4 Impossibility of long-range order in 1d

The Goldstone mode does not exist if the order parameter cannot change
continuously but takes only discrete values. Such is the celebrated Ising
model of spins that can have only two values ¢ = 4+1. The interaction is
only between the nearest neighbors so that the Hamiltonian has a form

N
H = _JZUiUi+1 s (148)

=1

This model is used not only for describing ferromagnetism but also for the
condensation transition by considering a regular lattice with cites that can
be occupied or not. We assume our lattice to be in a contact with a reservoir
of atoms so that the total number of atoms is not fixed. We model the hard-
core repulsion by requiring that a given cite cannot be occupied by more than
one atom. If the neighboring cites are occupied by atoms it corresponds to
the (attraction) energy —2J. The correspondence with the Ising model can
be established by saying that an occupied site has ¢ = 1 and unoccupied one
has 0 = —1.

Can we make temperature low enough to have a nonzero magnetization
N{o)? The state of lowest energy has all spins parallel. The first excited
state correspond to one spin flip and has an energy higher by AE = ~J,
where v is the number of nearest neighbors (v = 2d for a cubic lattice). The
concentration of such opposite spins is proportional to exp(—v.J/T') and is
low at low temperatures so that (o) ~ 1 and the magnetization is close to
N. In one dimension, however, the lowest excitation is not the flip of one
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spin (energy 2J) but flipping all the spins to the right or left from some
site (energy J). Again the mean number of such flips is N exp(—J/T') and in
sufficiently long chain this number is larger than unity. That means that long
chains consist of pieces with different spin signs and the mean magnetization
is zero. Note that short pieces with N < exp(J/T') are magnetized. Yet the
ferromagnetism of the whole lattice in the thermodynamic limit is possible
only starting from two dimensions

It is physically natural that fluctuations has much influence in one di-
mension: it is enough to have a fluctuation in a domain exceeding the radius
of interaction to loose completely the information of the order. It is thus not
surprising that long-range order is impossible in one-dimensional systems
with short-range interaction.

That argument can be generalized for arbitrary systems with the short-
range interaction in the following way (Landau, 1950; Landau & Lifshitz,
Sect. 163): assume we have n contact points of two different phases and
that every point costs the energy e. Those points add ne — T'S to the ther-
modynamic potential. The entropy is In C} where L is the length of the
chain. Evaluating entropy at 1 < n < L we get the addition to the poten-
tial ne — Tnln(el/n). The derivative of the thermodynamic potential with
respect to n is thus e — T'ln(L/n) and it is negative for sufficiently small
n/L. That means that one decreases the thermodynamic potential creating
the mixture of two phases all the way until the derivative comes to zero which
happens at L/n = exp(e/T) — this length can be called the correlation scale
of fluctuations and it is always finite in 1d at a finite temperature as in a
disordered state. We then expect the spin-spin correlation function in 1d to
behave as (o(0)o(r)) = exp[—rexp(e/T)]. Let us stress that for the above
arguments it is important that the ground state is non-degenerate so that
the first excited state has a higher energy (degeneracy leads to criticality).

5.3 Random walk and diffusion

Many of the properties of the statistical systems, in particularly, the statistics
of fluctuations can be related to a fundamental problem of random walk.
Consider a particle that can hop randomly to a neighboring cite of d-
dimensional cubic lattice, starting from the origin at ¢ = 0. We denote a the
lattice spacing, 7 the time between hops and e; the orthogonal lattice vectors
that satisfy e; - €; = a®d;;. The probability to be in a given cite x satisfies
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the equation

d
P(x,t+ ) ZP xte;,t) . (149)
=1

The first (painful) way to solve this equation is to turn it into averaging
exponents as we always do in statistical physics. This is done using the
Fourier transform, P(x) = (a/27)? [ **P(k) d’k, which gives

Pk,t+ 1) Zcosak P(k,t) . (150)

1
T d =
The initial condition for (149) is P(x,0) = d(x), which gives P(k,0) = 1

t/T
and P(k,t) = (d_1 ¢ | cos ak;z-) " That gives the solution in space as an
integral

t/T
P(x,t) = (a/27) / (Zcosak;) dk (151)

We are naturally interested in the continuous limit a — 0,7 — 0. If
we take 7 — 0 first, the integral tends to zero and if we take a — 0 first,
the answer remains delta-function. A non-trivial evolution appears when the
lattice constant and the jump time go to zero simultaneously. Consider the
cosine expansion,

1 d i t/T
(d > cos aki> = (1-ak?2d+..)"T,
1=1

where k2 = 2% | k2. The finite answer exp(—#tk?) appears only if one takes
the limit keeping constant the ratio k = a?/2dr. In this limit, the space den-
sity of the probability stays finite and is given by the saddle-point calculation
of the integral:

2
p(x,t) = P(x,t)a~ ~ (2m) ¢ / X —tek? gdp — (47iet) =4 exp (-L) (152)
K

The second (painless) way to get this answer is to pass to the continuum
limit already in the equation (149):

1 d

P(x,t —P(x,t) = —
(x,t4+7) (x,1) 2d1:1

P(x+e;,t)+ P(x—e;t) —2P(x,t)] . (153)

79



This is a finite difference approximation to the diffusion equation
(0 — KA)P(x,t) =0 . (154)

Of course, p satisfies the same equation, and (152) is its solution. Note that
(152,153) are isotropic and translation invariant while the discrete version
respected only cubic symmetries. Also, the diffusion equation conserves the
total probability, [ p(x,t) dx, because it has the form of a continuity equation,
Oip(x,t) = —divj with the current j = —xVp.

Another way to describe it is to treat e; as a random variable with (e;) = 0
and (e;e;) = a?d;;, so that x = Zf/q e;.

Random walk is a basis of the statistical theory of fields. One way to see
the relation is to consider the Green function which is the mean time spent

on a given site x:
= ZP(X, t) . (155)
t=0

The most natural question is whether this time if finite or infinite. From,
(152) it is immediately clear that the answer depends on the space dimen-
sionality: [*¢=%? diverges for d < 2. It is instructive to see see it from the
discrete version too. Indeed, summing (151) over ¢ as a geometric series one

gets
eikx ddk’
= . 156
X) / 1 —d=1'> cos(ak;) (156)

It diverges at k — 0 when d < 2. In the limit £ — 0 one can also use the
continuous limit, where the Green function has a form

) - e zkxddk
9(x) = lim(a>"*/2d) G (x/a) = / dt/ o th? gdj. /27T o (157)

We have seen this integral calculating the correlation function of fluctuation
(143). The divergence of this integral in one and two dimensions meant
before that the fluctuation are so strong that they destroy any order. Now,
(157) suggests another interpretation: integral divergence means that the
mean time spent by a random walker on any given site is infinite. In other
words, it means that the walker in 1d and 2d returns to any point infinite
number of times. Analogy between the Green function of a random walker
and the correlation function of fluctuating fields appear in the large-scale
limit exploiting a short-correlated nature of a random walk and short-range
interaction of fields.
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A path of a random walker behaves rather like a surface than a line.
Indeed, surfaces generally intersect along curves in 3d, they meet at isolated
points in 4d and do not meet at d > 4. That is reflected in special properties
of critical phenomena in 2d and 4d. Two-dimensionality of the random walk
is a reflection of the square-root diffusion law: (z) o< v/¢. Indeed, one can
define the dimensionality of a geometric object as a relation between its size
R and the number N of standard-size elements(with fixed volume or area)
needed to cover it . For a line, N oc R, generally N o< R?. For a random
walk, the number of elements is of order of the number of steps, IV o ¢, while
R oc x so that d = 2.

To describe the whole statistics of the (fluctuating) time on a cite, one
can use a slight generalization which gives the generating function for the
time moments:

Gl A) = A NP, t) = / e dh (158)
i ") A —d 1Y cos(ak;)
At A = 1 it coincides with the Green functions while its derivatives give

moments of time:

oG
(L+t/7)") = < n> :
o™ )\,
The continuous limit of the generating function,

6z’kx ddk
(2m)4(k? +m?)

glx,m) = lim(a**/24)G(x/a, \) = | (159)
exactly corresponds to the Ornstein-Zernike approximation of the correlation
function of fluctuations of order parameter away from criticality (with a finite
correlation radius). Here we denoted 1/A = 1+m?a?/2d so that m plays the
role of the inverse radius of correlation or mass of the quantum particle. Note

that this Green function can be presented as an integral of the probability
density (152) taken with x = 1:

g(x,m) = /Ooo e p(x,t) dt . (160)

The properties of random walks can be expressed alternatively in terms
of sums over different paths. Let us write the transition probability indi-
cating explicitly the origin: p(x,t;0,0). Then we can write the convolution
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identity which simply states that the walker was certainly somewhere at an
intermediate time ¢;:

p(x,;0,0) = /p(x,t;xl,tl)p(xl,tl;0,0) dx; . (161)

We now divide the time interval ¢ into an arbitrary large number of intervals
and using (152) we write

dXiq1 (Xi41 — Xi)°
1:0,0) = / iz An(ti — 1)
p(x ) OAmk(ti — )] Y2 o l Ahi(tipr — i)

= / Dx(t') exp —42 /O tdt/x'Z(t’)} . (162)

The last expression is an integral over paths that start at zero and end up at
x at t. We concentrate on the exponential here: it gives the weight of every
trajectory. By virtue of (160) it leads to a path-integral expression for the
Green function:

g(x,m) = /OOO dt/Dx(t') exp {— /Ot dt’ [mz + i:tQ(t’)]} . (163)

Comparison of the Green functions (143,159) shows the relation between
the random walk and a free field. This analogy goes beyond the correlation
function to all the statistics. Indeed, much in the same way, the partition
function of a fluctuating field n(x) that takes continuous values in a con-
tinuum limit can be written as a path integral over all realizations of the

field:
Z= [ dni...dnyexp[-BH( o)) = [ Dnexp[=FH()Y] . (164)

For a Gaussian free field in a discrete case one takes

1
U = L I S — () (165)
1
- - / dkn(K)A" = d1S cos(ak;)|n(—k) | (166)
where Jyx = 1/2d when |x — x| = a and Jyx = 0 otherwise. In the
continuous limit one re-normalizes 7(x/a) — v/2da®? 'n(x)it, and obtains
(164) with
1 2 2 2
pH = i/dx(m n —|—|V77|> : (167)
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In particular, it gives the Ornstein-Zernike correlation function (143,159).
Stochastic dynamics of a random walk can thus be seen as statistical
physics in space-time with trajectories playing the role of configurations.

5.4 Analogy between quantum mechanics and statisti-
cal physics

Looking at the transition probability (162), one can also see the analogy
between the statistical physics of a random walk and quantum mechanics.
According to Feynman, for a quantum non-relativistic particle with a mass
M in the external potential U(x), the transition amplitude 7'(x,¢;0,0) from
zero to x during ¢ is given by the sum over all possible paths connecting
the points. Every path is weighted by the factor exp(iS/h) where S is the
classical action:

T(x,40,0) = /Dx(t’)exp [;/{fdt’(M;QjLU(x))] . (168)

Comparing with (162), we see that the transition probability of a random
walk is given by the transition amplitude of a free quantum particle during
an imaginary time. In quantum theory, one averages over quantum rather
than thermal fluctuations, yet the formal structure of the theory is similar.

This similarity can be also revealed by using the formalism of the transfer
matrix for the systems with nearest neighbor interaction. Indeed, in a nut-
shell, quantum mechanics is done by specifying two sets of states |¢) and (p|,
which has ortho-normality and completeness: (p|q) = dqp and 3, [q)(q| = 1.
Physical quantities are represented by operators, and measurement corre-
sponds to taking a trace of the operator over the set of states: trace P=3" (q|P|q).
One special operator, called Hamiltonian #H, determines the temporal evo-
lution of all other operators according to P(t) = exp(iHt)P(0)exp(—iHt).
The operator T'(t) = exp(iHt) is called time translation operator also called
evolution operator. The quantum-mechanical average of any operator @) is
calculated as a trace with the evolution operator normalized by the trace of
the evolution operator:

_ traceT'(1)Q

Q) = 70 Z(t) = trace T(t) = 2 e tEa (169)

The normalization factor is naturally to call the partition function, all the
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more if we formally consider it for an imaginary time ¢ = i3

Z(B) = trace T(if) = Ze Ea (170)

If the inverse "temperature” [ goes to infinity then all the sums are domi-
nated by the ground state, Z(53) ~ exp(—fEy) and the average in (170) are
just expectation values in the ground state.

That quantum mechanical description can now be compared with an ex-
ample of one dimensional Ising model which is a chain of spins o; = +1
interacting with a nearest neighbors and external magnetic field. The Hamil-
tonian has a form

N

N N H
H=-HY 0i—J> 0i0is1=—) {2(% +0i1) + JUiUi+1} , (171)

i=1 i=1 i=1

which we consider on a ring so that on41 = 0. We now write the partition
function as

Z exp [ﬁ Z { (0 + 0i41) + JUZJZ+1}] (172)

{oi}
H
= > H exp [ { (0; + 0i1) + JO'ZO'1+1} (173)
{oi}i=1
Every factor in the product can have four values, which correspond to four
different choices of 0; = £1,0;41 = £1. Therefore, every factor can be
written as a matrix element of 2 x 2 matrix: (0;|T|oj41) = Toioin =

exp|B{H (o; + 0i11)/2 + Jo;0;41}. Tt is called the transfer matrix because
it transfers us from one cite to the next.

T]. 1 T]. —1
T= ’ ’ 174
( Ty T ) (174)

where Ty, = BUHH) T | = PU-H) T || =T | = e P/, The sum over
o; ==*1 corresponds to taking trace of the matrix:

7= ToosTosos - Togor = 3. (01| TV]o1) = trace TV (175)
{O'i} o1==+1
Therefore
Z =XV 4\ (176)
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where A\; and )\, are eigenvalues of T, given by

Ao = €% cosh(BH) + /€237 sinh®(BH) + =287 (177)

Nlog(A) + log (1 + (i?) N)]

— —NkgTlog\; as N — o0 (178)

Therefore

F = —kgTlog(\Y + \)) = —kpT

For the Ising model, the sum over two values of ¢ at every cite is the analog
of taking trace in quantum-mechanical average. If there are m values on the
cite, then 7" is m X m matrix. For a spin in n-dimensional space (described
by so-called O(n) model), trace means integrating over orientations. We see
that the translations along the chain are analogous to quantum-mechanical
translations in (imaginary) time. This analogy is not restricted to 1d systems,
one can consider 2d strips that way too.

5.5 Brownian motion

Let us see how the properties of the random walk appear for motion of a small
particle in a fluid. The momentum of the particle, p = Mv, changes because
of collisions with the molecules. When the particle is much heavier than the
molecules then its velocity is small comparing to the typical velocities of the
molecules. Then one can write the force acting on it as Taylor expansion
with the parts independent p and linear in p:

p=-Ap+f. (179)

For small particles, resistance is due to viscosity and is given by the Stokes
formula

A=6mR/M | (180)

where 7 is the fluid viscosity and M, R are particle mass and radius respec-
tively. The solution of the linear equation (179) is

p(t) = /_t A (181)

We must treat the force f(¢) as a random function since we do not track
molecules hitting the particle, which makes (179) Langevin equation. We
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assume that (f) = 0 and that (f(¢')-£(¢'+t)) = 3C(t) decays with ¢ during the
correlation time 7 which is much smaller than A~!. Since the integration time
in (181) is of order A~! then the condition A7 < 1 means that the momentum
of a Brownian particle can be considered as a sum of many independent
random numbers (integrals over intervals of order 7) and so it must have a
Gaussian statistics p(p) = (270?)~%/2 exp(—p?/20?) where

o’ = <pi>=<p§>=<p§>=/ooc(t1 — ty)e M) gt dt,
0
[e'e) 2t 1 (&%)
[Teta [ cwyar~g [ cwar (182)
0 —2t 22

—00

Q

On the other hand, equipartition guarantees that (p?) = MT so that we
can express the friction coefficient via the correlation function of the force
fluctuations (a particular case of the fluctuation-dissipation theorem to be
discussed below in Sect. 6.2):

1 o !/ /

Displacement

Ar=r(t+t') —r(t) = /Otl v(t") dt”

is also Gaussian with a zero mean. To get its second moment we need the
different-time correlation function of the velocities

(v(t) - v(0)) = (3T/M) exp(=Alt]) (184)

which can be obtained from (181). Note that the friction makes velocity
correlated on a longer timescale than the force. That gives

((Ar)?) = /Ot/ dtq /Ot/ dta(v(t1)v(ta)) = ]\3§2 (A + oM 1.

The mean squared distance initially grows quadratically (so-called ballistic
regime at At’ < 1). In the limit of a long time (comparing to the relaxation
time A~! rather than to the force correlation time 7) we have the diffusion
growth ((Ar)?) ~ 6Tt /MM. Generally ((Ar)?) = 2dDt where d is space
dimensionality and D - diffusivity. In our case d = 3 and then the diffusivity
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is as follows: D = T/MM — the Einstein relation. Using (180) one can
rewrite it as follows

T T
D=—= :
MXN  6mnR
Note that the diffusivity depends on particle radius, but not mass. Measuring
diffusion of particles with a known size one can determine the temperature!*.

The probability distribution of displacement at A’ > 1,

(185)

p(Ar, ') = (4xDt') /% exp|—(Ar)?/4Dt]

satisfies the diffusion equation 9p/0t' = DV?p. If we have many particles
initially distributed according to n(r,0) then their distribution at any time,
n(r,t) = [ p(r—r',t)n(r’,0) dr’, also satisfies the diffusion equation: On/ot’ =
DV?n.

In the external field V' (q), the particle satisfies the equations
p=-Ap+f—09,V, dq=p/M. (186)

Note that these equations characterize the system with the Hamiltonian H =
p?/2M+V (q), that interact with the thermostat, which provides friction —Ap
and agitation f - the balance between these two terms expressed by (183)
means that the thermostat is in equilibrium.
Consider now the over-damped limit, Ap > p, which gives the first-order
equation:
Ap=AMq=f-09,V. (187)

Let us derive the equation on p(q,t), that is to pass from considering indi-
vidual trajectories to the description of the ”cloud” of trajectories. We know
that without V,

t
a(t) = a(0) = ()~ [ £(t)dr', (lat) - a(0)?) = 2Dt
and the density p(q, t) satisfies the diffusion equation. Consider now dynamic
equation without any randomness, AMq = —9,V/, it corresponds to a flow
in g-space with the velocity w = —9,V/AM. In a flow, density satisfies the

14With temperature in degrees, (185) contains the Boltzmann constant, k = DMM/T,
which was actually determined by this relation and found constant indeed, i.e. independent
of the medium and the type of particle. That proved the reality of atoms - after all, kT is
the kinetic energy of a single atom.
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continuity equation 0;p = —div pw. Together, diffusion and advection give
the so-called Fokker-Planck equation

9p 1 9 v

 _ pvy? i
ot P M 0g." 5

More formally, one can derive this equation by writing the Langevin equa-
tion (187) as ¢; — w; = n; and taking the random force Gaussian delta-
correlated: (n;(0)n;(t)) = 2D4;;0(t). Since it is the quantity ¢ — w which is
Gaussian now, then the path integral representation (162) changes into

= —div] . (188)

]_ t
p(q,t;0,0) = /Dq(t’)eXp [—/ dt’IQ—WIQ} , (189)
4D Jo

To describe the time change, consider the convolution identity (161) for an
infinitesimal time shift ¢, then instead of the path integral we get simply the
integral over the initial position q’. We substitute q = (q — q’)/¢ into (189)
and obtain

pla,t) = /dq/(47rDe)*d/2 exp l_ [q—q — ew(q))]

4De

2] p(d,t—e€) . (190)

What is written here is simply that the transition probability is the Gaussian
probability of finding the noise n with the right magnitude to provide for the
transition from q’ to q. We now change integration variable, y = q —q —
ew(q’), and keep only the first term in e: dq' = dy[l — €dq - w(q)]. Here
Oq W = O;w; = divw. In the resulting expression, we expand the last factor,

pla,t) = (1 — ey - w) / dy(4mDe) "2V P p(q + y — ew,t —¢)

~ (1 — €0q - w) / dy (4w De) =240 p(q, 1) + (y — ew) - Dgpla, 1)
+(yiy; — 2eyiw; + Ewiw;)9,0;p(q, 1) /2 — edip(q, t)]

=(1— €Dy W)[p—ew-dqp+ eDAp — €dip + O(€?)] , (191)

and obtain (188) collecting terms linear in e. Note that it was necessary to
expand until the quadratic terms in y, which gave the contribution linear in
€, namely the Laplacian, i.e. the diffusion operator.

The Fokker-Planck equation has a stationary solution which corresponds
to the particle in an external field and in thermal equilibrium with the sur-
rounding molecules:

p(q) o< exp[=V(q)/AM D] = exp[-V(q)/T] . (192)

88



Apparently it has a Boltzmann-Gibbs form, and it turns into zero the proba-
bility current: J = —pdV/0q — DIp/dq = 0. We shall return to the Fokker-
Planck equation in the next Chapter for the consideration of the detailed
balance and fluctuation-dissipation relations.

Ma, Sect. 12.7; Kardar Fields, Sect 9.1.

6 Response and fluctuations

The mean squared thermodynamic fluctuation of any quantity is determined
by the second derivative of the thermodynamic potential with respect to this
quantity. Those second derivatives are related to susceptibilities with respect
to the properly defined external forces. One can formulate a general relation.

6.1 Static response

Consider a system with the Hamiltonian H and add some small static ex-
ternal force f so that the Hamiltonian becomes H — xf where x is called
the coordinate. The examples of force-coordinate pairs are magnetic field
and magnetization, pressure and volume etc. The mean value of any other
variable B can be calculated by the canonical distribution with the new

Hamiltonian
5 SBewl(ef — #)/T)
Yexpl(zf —H)/T]
Note that we assume that the perturbed state is also in equilibrium. The
susceptibility of B with respect to f is as follows

_ 0B (Bz) — Bz _ (Bux),
=gF= =g (193)

Here the cumulant (also called the irreducible correlation function) is defined
for quantities with the subtracted mean values (zy). = ((z — Z)(y — y)) and
it is thus the measure of statistical correlation between x and y. We thus
learn that the susceptibility is the measure of the statistical coherence of the
system, increasing with the statistical dependence of variables. Consider few
examples of this relation.

Example 1. If x = H is energy itself then f represents the fractional
increase in the temperature: H(1— f)/T ~ H/(1+ f)T. Formula (193) then
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gives the relation between the specific heat (which is a kind of susceptibility)
and the squared energy fluctuation which can be written via the irreducible
correlation function of the energy density €(r):

OH OF
- _T=
of oT

T/ ) drdr’ = T/ (0)).dr (194)

Growth of the specific heat when the temperature approached criticality
is related to the growth of the correlation function of fluctuations. As we
discussed before, the specific heat is extensive i.e. proportional to the volume
(or number of particles), but the coefficient of proportionality actually tells
us how many degrees of freedom are effective in absorbing energy at a given
temperature (recall two-level system where specific heat was small for high
and low temperatures). We see from (194) that the higher the correlation
the larger is the specific heat that is the more energy one needs to spend
to raise the temperature by one degree. In other words, system with more
correlation absorbs more energy under a given temperature difference.

—TC, = (AE)?)/T

Example 2. If f = h is a magnetic field then the coordinate x = M is the
magnetization and (193) gives the magnetic susceptibility

oM M 2

= — = / Yedr .
oh T

Divergence of y near the Curle point means the growth of correlations be-

tween distant spins i.e. the growth of correlation length. For example, the

Ornshtein-Zernicke correlation function (127) gives (m(r)m(0)). o< r*=¢ so

that in the mean-field approximation y oc [7°¢ d%rr?=¢ oc r? o< |T — T,|7".

General remark. These fluctuation-response relations can be related to
the change of the thermodynamic potential (free energy) under the action of
the force:

F=-ThhZ=-Th) exp|(zf—H)/T]
2
=—-TInZy—Tn(exp(xf/T))o = Fo — f{x)o — éfT<x2)oc +...(195)
(r) = —OF/0f, (%),/T = 0(a)/0f = ~0F o>, (196)
Subscript 0 means an average over the state with f = 0, like (exp(zf/T))o =
S exp(af/T)exp(—H/T)/ > exp(—H/T); we don’t write the subscript in the
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expansion (196), which can take place around any value of f. Formula (195)
is based on the cumulant expansion theorem (111):

o0 n

(explaz)) =1+ 3. T1(a").

n 1 > am "
infexp(ar)) = = 3= 1 (1= foxp(a))” = = X0 1 (= 32 e )
= a(z) + ((=%) - <x>2>% T— fjl i;(:ﬂ‘)c = (™ — 1),

In other words, (exp(az)) is the generating function of the moments (z")
while In({exp(ax)) is the generating function of the cumulants.

Example 3. Consider now the inhomogeneous force f(r) and denote
a(r) = z(r) — xyp. The Hamiltonian change is now the integral

/f(r)a(r) dr = fraw /ei(k+k/)'r dr=V>_ fra_y .
k

kk'

The mean linear response a(r) can be written as an integral of the force with
the response (Green) function; again, translation invariance makes the rela-
tion between the response and force diagonal in the Fourier representation:

a(r) = / Glr —v)f(t)dr', ap=Guf . (197)

One relates the Fourier components of the Green function and the correlation
function of the coordinate fluctuations choosing B = ax, * = a_j in (193):

VG, = BEe L fa(eya(e))oe "0 drd’ = ¥, [la(r)a(0))e " dr.
TGk = (CLQ)k .

Example 4. If B =2 = N then f is the chemical potential p:

(%]DTV _ <Z\;>c _ <(A;V> ) _ = [m@n(©)dr . (199

This formula coincides with (119) if one accounts for

L (V) (m) (oY
oP T,N_ oP T7N_ 9P ) 1.,

- (@), Gr), (&), o
O T,V opP TV O T7V'
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Here we used the fact Q(T, u) = PV and N = 0§2/0u. We conclude that the
response of the density to the pressure is expressed via the density fluctua-
tions.

In the simplest case of an ideal gas with (n(r)n(0)). = nd(r), (198,199)
give dn/dP = 1/T. For the pair interaction energy U(r) the first ap-
proximation (neglecting multiple correlations) gives (n(r)n(0)). = n{d(r) +
nle=V™/T — 1]} and the correction to the equation of state

p=nT+ nQT/[l — e U7 gy

More details in Shang-Keng Ma, Statistical Mechanics, Sect. 13.1

6.2 Temporal correlation of fluctuations

We now consider the time-dependent force f(t) so that the Hamiltonian is
H = Ho — xf(t). Time dependence requires more elaboration than space
inhomogeneity'® because one must find the non-equilibrium time-dependent
probability density in the phase space solving the Liouville equation

Op  Opdx Opdp Op  OpdH OpdH

o Tordt Topd ot Tosop apor (200)

Here p is the canonical momentum conjugated to the coordinate z. One can
solve the equation (200) perturbatively in f, denoting p(x,p,t) = po(z,p) +
p1(z, p,t) and assuming p(z,p,t) <K po = Z ' exp(—[FHy) by virtue of zf <
H()I

dp OpO0Hy OpdHy dpy 8,00 87—[0

Oty OpOHo _ dpr _ . 201
o Torop opoxr at opl P (201)

Here, like in Sect. 2.1, d/dt denotes the derivative in the moving reference
frame along an unperturbed trajectory determined by H,. Recall now that
OHy/Op = dz/dt (calculated at f = 0 i.e. also along an unperturbed trajec-
tory). The formal solution of (201) is written as an integral over the past:

o=t [ 1) ar (202)

15As the poet (Brodsky) said, " Time is bigger than space: space is an entity, time is in
essence a thought of an entity.”
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We now use (202) to derive the relation between the fluctuations and
response in the time-dependent case. Indeed, the linear response of the co-
ordinate to the force is as follows

(2(t)) = /_t alt.)f(¥)dr = [ dep(a0), (203)

which defines generalized susceptibility (also called response or Green func-
tion) a(t,t’) = a(t —t') = §(x(t))/0f(t'). Note that causality requires
a(t—t") =0 for t < t'. Substituting (202) into (203) and taking a variational
derivative 0/J f(t') we obtain the fluctuation-dissipation theorem (FDT)

O aal)) = Ta(t,1), 121 (204)

It relates quantity in equilibrium (the decay rate of correlations) to the weakly
non-equilibrium quantity (response to a small perturbation). While it is
similar to the fluctuation-response relations obtained in the previous section,
it is called the fluctuation-dissipation theorem. Pay attention to the fact
that the derivative is with respect to the earlier time, which is related to
causality and is also clear looking at (202). To understand (204) better and
to see where the word ”dissipation” comes from, we introduce the spectral
decomposition of the fluctuations:

T, = /oo w(t)etdt, w(t) = /oO xwe_iwtd—w . (205)
—00 —00 2w
The pair correlation function, (z(#)x(t)) must be a function of the time
difference which requires (r,z./) = 276(w + w’)(z?), — this relation is the
definition of the spectral density of fluctuations (z?),. Linear response in the
spectral form is z,, = a, f,, where

a(w) = / a(t)e™ dt = o + 1"
0

is analytic in the upper half-plane of complex w under the assumption that
a(t) is finite everywhere. Since «(t) is real then a(—w*) = a*(w).

We can now make a Fourier transform of (204) and obtain the spectral
form of the fluctuation-dissipation theorem (Callen and Welton, 1951):

Tozi;w) - /Ooo (2(0)x (1)) exp(iwt)dt,
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OO

-/ ) explict)dt + / (0)a:(t)) exp(iwt)dt

w) <w>] _ 2Ma(w)

Let us show that the imaginary part o” determines the energy dissipation,

dE _ i _ oM _OHdf _ _ df (206)
dt At ot ofdt dt
For purely monochromatic perturbation, f(t) = f, exp(—iwt) + f*exp(iwt),
T = a(w)f, exp(—iwt) + a(—w) f} exp(iwt), the dissipation averaged over a
period is as follows:

dE /2”/ w wdt
0

— =] Solalw) — el fu? = 2wal|LP . (207)

We can now calculate the average dissipation using (202)

(if /xfpl dpdx = —ﬁ/ t)po dpd:c/ B(r =) f(r)dr

o0

— —iw|fu8 [ (@@a(t))e " dt = g LG (208)

where the spectral density of the fluctuations is calculated with py (i.e. at
unperturbed equilibrium). Comparing (207) and (208) we obtain again:

2T (W) = w(z?),, . (209)

This truly amazing formula relates the dissipation coefficient that governs
non-equilibrium kinetics under the external force with the equilibrium fluc-
tuations. The physical idea is that to know how a system reacts to a force
one might as well wait until the fluctuation appears which is equivalent to
the result of that force. Note that the force f disappeared from the final
result which means that the relation is true even when the (equilibrium)
fluctuations of = are not small. Integrating (209) over frequencies we get

oo dw T [~ '(wdw T [ o(w)dw
2 2
= — = — - = ——— =Ta(0). (210

<x > Lw(x ) 21 ™ /700 w 1T /700 w a( ) ( )
The last step used the Cauchy integration formula (for the contour that
runs along the real axis, avoids zero by a small semi-circle and closes at the
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upper half plane). We thus see that the mean squared fluctuation is the
zero-frequency response, which is the integral of the response over time:

a(w:O):/Oooa(t)dt.

We have seen the simplest case of the FDT before - the relation (183)
relating the friction coefficient of the Brownian particle to the variance of
the fluctuating molecular forces and the temperature of the medium. The
same Langevin equation (179) is satisfied by many systems, in particular by
the current I flowing through an electric L-R circuit at a finite temperature:

dl
L—=—-RI+V(T),
7 (T)
where the fluctuating voltage V' (¢) is due to thermal fluctuations. Similar to
(183) we can then relate the resistance to the equilibrium voltage fluctuations
on a resistor R:

/Oo (V(0)V(t))dt = 2RT .

This relation is called Nyquist theorem, note that L does not enter. Equipar-
tition requires L < I* > /2 =T /2, so that similar to (184) we can write the
current auto-correlation function (1(0)1(t)) = (T'/L) exp(— Rt/ L), which cor-
responds to the Lorentzian spectral density: (I?), = 2RT/(L*w? + R?). At
low frequencies it corresponds to a constant spectral density (white noise).

Generally, the spectral density has a universal Lorentzian form in the
low-frequency limit when the period of the force is much longer than the
relaxation time for establishing the partial equilibrium characterized by the
given value z = «(0)f. In this case, the evolution of z is the relaxation
towards T:

i=—-\Nx—7). (211)
For harmonics,
(N —iw)z, = A\ = Aa(0)f,
A
a(w) = a(0); ==, o) = al0) 5 i X (212)

The spectral density of such (so-called quasi-stationary) fluctuations is as

follows:
2\

(20 = (") 77 - (213)
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It corresponds to the long-time exponential decay of the temporal correla-
tion function: (z(¢)z(0)) = (z%)exp(—A|¢|). That exponent is a temporal
analog of the large-scale formula (127). Non-smooth behavior at zero is an
artefact of the long-time approximation, consistent consideration would give
zero derivative at t = 0. The susceptibility is a(t) = exp(—At).

When several degrees of freedom are weakly deviated from equilibrium,
the relaxation must be described by the system of linear equations (consider
all z; = 0 at the equilibrium)

The dissipation coefficients are generally non-symmetric: A;; # Aj;. One
can however find a proper coordinates in which the coefficients are symmet-
ric. Single-time probability distribution of small fluctuations is Gaussian
w(x) ~ exp(AS) = exp(—Bz;zy). The matrix § is symmetric by defini-
tion. Introduce generalized forces X; = —0S/0x; = B;;x; so that &; = v;; X,
Vij = )\ik(ﬁfl)kj with (2, X;) = [dxz; Xjw = — [dxz,0w/0x; = 0;; —
we have seen that the coordinates and the generalized forces do not cross-
correlate already in the simplest case of uniform fluctuations described by
(116) which gave (AT AV') = 0, for instance. Returning to the general case,
note also that (X;X;) = 8, and (z;x) = (3~ ");. If z; all have the same
properties with respect to the time reversal then their correlation function
is symmetric too: (z;(0)x(t)) = (x;(t)zx(0)). Differentiating it with respect
to t at t = 0 we get the Onsager symmetry principle, v,z = 7. For ex-
ample, the conductivity tensor is symmetric in anisotropic crystals without
magnetic field. Also, a temperature difference produces the same electric
current as the heat current produced by a voltage. Such symmetry relations
due to time reversibility are valid only near equilibrium steady state and are
manifestations of the detailed balance (i.e. absence of any persistent currents
in the phase space). Let us stress that this is different from the susceptibil-
ities in equilibrium which were symmetric for the simple reason that they
were second derivatives of the thermodynamic potential; for instance, dielec-
tric susceptibility x;; = 0F,/0E; = xjit where P is the polarization of the
medium - this symmetry is analogous to the (trivial) symmetry of B , not the
(non-trivial) symmetry of 4.

See Landay & Lifshitz, Sect. 119-120 for the details and Sect. 124 for the
quantum case. Also Kittel, Sects. 33-34.

96



6.3 Spatio-temporal correlation function

To have a specific example, let us calculate the correlation function of the
density at different points and times for the simplest case of an ideal gas. We
have N particles with the time-independent momenta p; and the coordinates
Ry (t) = Ri(0)+pit/m. The concentration is just the sum of delta-functions,
corresponding to different particles:

n(r,t) = ]; 5(r = Ry(t)) . (215)

Since the particles do not interact, there is no correlation between differ-
ent particles. Therefore, the only correlation between densities n(r,t) and
n(r’,t') can appear due to a particle that visited both places at respective
times:

(e n(r', ), = <Z 5(r = Ri(t) )3 Rk(t/))>

=1
= N (6(r — Re(1))8(x' = Ry(t) — pr(t — t)/m))
= N {(6(r = Re(t))3(x' —x = pr(t' = 1)/m) ) . (216)
There are two averages here. The first one is over all possible positions within

the space V', which gives <(5<r - Rk(t))) = 1/V. The second average is over
the Maxwell distribution of the momenta:

(n(r, )n(r',t')). = g (6(x' —x —pr(t' —t)/m))
= n(2rMT)~Y? / dpe P15 (v — Ry(t) — pi(t' — )/ M)

/2 2
B a/ m mlr — 1’|

That function determines the response of the concentration to the change
in the chemical potential. In particular, when ¢ — ¢ it tends to nd(r — r’),
which determines the static response described in Sect. 6.1. For coinciding
points it decays by the diffusion law, (n(r,t)n(r,t')). o< |t — /|7, so that the
response decays as [t — t/|747L.
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6.4 General fluctuation-dissipation relation

Consider again the over-damped Brownian particle with the coordinate x(t)
in a time-dependent potential V' (z,t):

i=—8,V +1. (218)

Here the random function 7(t) can be thought of as representing interaction
with a thermostat with the temperature T so that (n(0)n(t)) = 276(¢). This
equation (used very often in different applications) can be applied to any
macroscopic observable, where one can distinguish a systematic and random
part of the evolution.
The Fokker-Planck equation for the probability p(x,t) has the same form
(188): A
Ohp = TPp + 0,(p0.V) = —Hypp . (219)

We have introduced the Fokker-Planck operator,

o (OV 0
HFP=—<+T ) ;

ox \ Ox 0q;

which allows one to exploit another instance of the analogy between quantum
mechanics and statistical physics. We may say that the probability density is
the ¢-function is the z-representation, p(x,t) = (z]i)(t)). In other words, we
consider evolution in the Hilbert space of functions so that we may rewrite
(219) in a Schrodinger representation as d|¢)/dt = —Hpp|tp), which has a
formal solution [¢(t)) = exp(—tHpp)|1(0)). The transition probability is
given by the matrix element:

p(z’ t';z,t) = (2| exp[(t — t')Hpp)|z) . (220)

Without the coordinate-dependent field V' (z), the transition probability is
symmetric, p(2/,t;x,0) = p(x,t;2’,0), which is formally manifested by the
fact that the respective Fokker-Planck operator 97 is Hermitian. This prop-
erty is called the detailed balance. How this is modified in an external field? If
the potential V' is time independent, then we have a Gibbs steady state which
also satisfies the detailed balance: the probability current is the (Gibbs) prob-
ability density at the starting point times the transition probability; forward
and backward currents must be equal in equilibrium:

2 t,0)e VO = ot 2!, 0)e”VENT 221
p( p

<lj|e—tHFp—V/T|$> _ <x|€—tHFp—V/T|$/> _ <x/|€—V/T—tH;P|x> )
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Since this must be true for any x, 2’ then e~tHip = VITe=tHrp o=V/T 414
Hip ="M Hppe V1T, (222)

ie. e/*THppe=V/?T is hermitian, which can be checked directly.

Consider now a time-dependent potential and an ensemble of trajectories
starting from the initial positions taken with the equilibrium Gibbs distribu-
tion corresponding to the initial potential: p(z,0) = Z;'exp[—B8V (x,0)].
As time proceeds and the potential continuously changes, the system is
not in equilibrium anymore so that p(x,t) does not generally have a Gibbs
form. Indeed, even though one can define a time-dependent Gibbs state
Zi Yexp[—BV (x,t)] with Z, = [exp[—BV (x,t)]dz, one can directly check
that it is not any longer a solution of the Fokker-Planck equation (219) be-
cause of the extra term 0;p = —Fpd,V. Still, can we find some use of the
Gibbs factor and also have anything generalizing the detailed balance relation
(221) we had in equilibrium? Such relation was found surprisingly recently
despite its generality and relative technical simplicity of derivation.

To find the quantity that has a Gibbs form, we need to find an equation
which generalizes (219) by having an extra term that will cancel the time
derivative. It is achieved by considering, apart from a position x, another
random quantity defined as the potential energy change (or the external work
done) during the time ¢:

Lo OV (), t)
W, = /0 W= (223)
The time derivative here is partial i.e. taken only with respect to the second
argument. The work is a fluctuating quantity depending on the trajectory
x(t"). Then the remarkable relation holds (Jarzynski 1997):

[exp[—pV (z,t)] dx
[ exp[—BV (z,0)]dz °

Here the bracket means double averaging, over the initial distribution p(z, 0)
and over the different realizations of the Gaussian noise 7(¢) during the time
interval (0,¢). In other words, we take many different realizations of the noise
n(t), choose initial z(0) with the Gibbs probability py and run (218) many
times with every initial data and every noise realization. It will give us many
trajectories having different endpoints x(t) and different energy changes W
accumulated along the way.

(exp(=BWY)) = Zi/Zo = (224)
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Now consider the joint probability p(z, W,t) i.e. the probability to come
to a given value = acquiring energy change W. This two-dimensional prob-
ability distribution satusfies the generalized Fokker-Planck equation, which
can be derived as follows: Similar to the argument preceding (188), we note
that the flow along W in x—W space proceeds with the velocity dW/dt = 0,V
so that the respective component of the current is pd;V' and the equation
takes the form

Op = B~ 02p + 05(p0sV) — 0, POV, (225)
Since Wy = 0 then the initial condition for (225) is

p(x, W,0) = Zy ' exp[—V (z,0)]6(W) . (226)

While we cannot find p(x, W,t) for arbitrary V(¢) we can multiply (225) by
exp(—GW) and integrate over dW. Since V (z,t) does not depend on W, we
get the closed equation for f(z,t) = [ dWp(z, W,t) exp(—LW):

Of = B71OLf + 0u(f0.V) — BfOV (227)

Now, this equation does have an exact time-dependent solution f(x,t) =
Zy texp[—BV (x,t)] where the factor is chosen to satisfy the initial condition
(226). In other words, the distribution weighted by exp(—pgW;) looks like
Gibbs state, adjusted to the time-dependent potential at every moment of
time. Remark that the entropy is defined only in equilibrium, yet the work
divided by temperature is an analog of the entropy change (production), and
the exponent of it is an analog of the phase volume change. Let us stress
that f(x,t) is not a probability distribution, in particular, its integral over
x is not unity. To get (224), what remains is to integrate f(x,t) over x. We
can also obtain all weighted moments of x like (™ exp(—SW,)).

Let us reflect. We started from a Gibbs distribution but considered ar-
bitrary temporal evolution of the potential. Therefore, our distribution was
arbitrarily far from equilibrium during the evolution. Still, to obtain the
mean exponent of the work done, it is enough to know the partition func-
tions of the equilibrium Gibbs distributions corresponding to the potential at
the beginning and at the end (even though the system is not in equilibrium
at the end). Remarkable.

One can obtain different particular results from the general fluctuation-
dissipation relation (224). For example, using Jensen inequality (e4) > (4
and introducing the free energy F, = —T'ln Z;, one can obtain the second
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law of thermodynamics in the following form:
(W) > F,— F, .

Moreover, Jarzynski relation is a generalization of the fluctuation-dissipation
theorem, which can be derived from it for small deviations from equilibrium.
Namely, we can consider V(z,t) = Vo(x) — f(t)z, consider limit of f — 0,
expand (224) up to the second-order terms in f and get (204).

In a multi-dimensional case, there is another way to deviate the system
from equilibrium - to apply a non-potential force f(q,t) (which is not a
gradient of any scalar):

q=1f—-0,V +n. (228)
The new Fokker-Planck equation has an extra term
dp 0 ov ap .
r_ ; T =-H . 229
ot~ g [P (8% + f) + 8%] FPP (229)

Again, there is no Gibbs steady state and the detailed balance (221,222) is
now violated in the following way:

Hbp=e""THppe VT + (£.9)/T , (230)

The last term is again the power divided by temperature i.e. the entropy
production rate. A close analog of the Jarzynski relation can be formulated
for the production rate measured during the time t¢:

1 t

o = ——
t tT Jo

(f-q)dt . (231)

This quantity fluctuates from realization to realization (of the noise 7).
The probabilities P(o;) satisfy the following relation, which we give with-
out derivation (see Kurchan for details)

P(oy)
P(—o)

o et (232)

The second law of thermodynamics states that to keep the system away from
equilibrium, the external force f must on average do a positive work. Over a
long time we thus expect 0; to be overwhelmingly positive, yet fluctuations
do happen. The relation (232) shows how low is the probability to observe a
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negative entropy production rate - this probability decays exponentially with
the time of observation.

The relation similar to (232) can be derived for any system symmetric
with respect to some transformation to which we add anti-symmetric per-
turbation. Consider a system with the variables sq,...,sy and the even
energy: Fy(s) = Ey(—s). Consider the energy perturbed by an odd term,
E = Ey — hM/2, where M(s) = > s; = —M(—s). The probability of the
perturbation P[M (s)] satisfies the direct analog of (232), which is obtained
by changing the integration variable s — —s:

= /dsé[M(s) + a|e”PEo=Pha/2 — p(_g)e=Pha (233)
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