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Abstract

In 1937 Ettore Majorana hypothesized the existence of a putative fermionic par-
ticle whose its own antiparticle. Whether this particle, which has received the
name Majorana fermion, exists in nature as an elementary particle is still unknown.
In condensed matter physics, however, we are not limited by what nature is kind
enough to offer. Indeed, Majorana fermions (usually called Majorana zero modes
or Majorana bound states in the context of condensed matter physics) can emerge
as a zero-energy excitation at the boundaries of a new phase of matter known as
a topological superconductor. This phase of matter can arise in low-dimensional
systems due to interplay between superconductivity, magnetism and spin-orbit in-
teraction. Much of the interest in Majorana bound states comes from their nonlocal
nature, a property which makes them insensitive to local perturbations and to de-
coherence. This, along with their non-abelian exchange statistics, makes them a
potential platform for fault-tolerant quantum information processing.

When studying Majorana bound states in condensed matter physics, either from
an application point of view, or from a purely theoretical one, several questions arise.
First, what are the physical systems which give rise to topological superconductivity?
In particular, what are the setups which are most robust and allow maximal control
of the Majorana bound states? Second, what would be the physical signatures of the
Majorana mode in these systems? and in particularly, can we witness their nonlocal
nature? In the thesis presented here, we attempt to shed light on these issues.

We begin in chapter 1 by introducing the subject of topological states of matter,
and by briefly reviewing the recent developments leading to the current status in the
study of Majorana bound states. We focus in particular on realizations of topological
superconductivity in semiconducting nanowires and signatures of Majorana bound
states in these systems in differential conductance measurements.

Chapter 2 deals with the realization of a time-reversal invariant topological su-
perconductor (TRITOPS). We show that, unlike the time-reversal broken case, here
repulsive electron-electron interactions are crucial for realizing the topological phase.
In particular, one cannot realize this phase in a noninteracting system coupled to a
conventional s-wave superconductor. We then turn to study the effect of repulsive
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interactions. We present and study a general low-energy model for a one-dimensional
proximity-coupled system, showing that it is driven into the TRITOPS phase in the
presence of short-ranged repulsive interactions. The effect of interactions is stud-
ied using both a mean-field approach and a renormalization group analysis. We
further propose two experimental setups and show that they realize this model at
low-energies. To test our conclusions we study a microscopic model for one of this
setups using a numerical Hartree-Fock calculation and the density-matrix renormal-
ization group.

In chapter 3 we study signatures of Majorana bound states. The first two sections
therein discuss current cross correlations in a setup which we term Majorana beam
splitter. This is a T -junction composed of a grounded topological superconductor
and of two normal-metal leads which are biased at a voltage V . We show that the
existence of an isolated Majorana bound state in the junction dictates a universal
behavior for the cross correlation of the currents through the two normal-metal
leads of the junction. The cross correlation is negative and approaches zero at high
bias voltages as −1/V . This behavior is robust in the presence of disorder and
multiple transverse channels, and persists at finite temperatures. In contrast, an
accidental low-energy Andreev bound state gives rise to nonuniversal behavior of
the cross correlation. We analyze in detail the special case of spin-resolved current
correlations, where the distinction between the case of a Majorana bound state and
that of a trivial Andreev bound state becomes most pronounced. In the last section
of the chapter we examine the case of a long but finite topological superconductor, in
which the two Majorana bound states at the boundaries of the system have a small
overlap. While in an infinite system the Majorana bound state carries no charge,
this is no longer true in a finite system, when the two Majorana bound states begin
to overlap. We show that even though the density of states is peaked near the
ends of the system, the acquired charge density is delocalized across the wire. This
nonintuitive behavior can serve to identify weakly-coupled Majorana bound states
in finite systems.

In chapter 4 we explore theoretically the possibility of realizing Majorana bound
states in a robust and controllable setup. We propose achieving this by splitting
the system into a chain of quantum dots, which are then tuned to the conditions
under which the chain can be viewed as an effective Kitaev model, so that it is
in a robust topological phase with well-localized Majorana states in the outermost
dots. This setup overcomes the obstacles that disorder and high density of states
pose to the creation of unpaired Majorana bound states in one-dimensional systems.
The tuning algorithm that we develop involves controlling the gate voltages and the
superconducting phases. Resonant Andreev spectroscopy allows us to make the
tuning adaptive, so that each pair of dots may be tuned independently of the other.
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The calculated quantized zero bias conductance serves then as a signature of the
topological nature of the tuned phase.
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Chapter 1

Introduction

1.1 Topological Phases of Matter

One of the main themes in condensed matter physics is the study of phases and
of phase transitions. That is, the study of the various ways in which interaction
between the constituents of matter can lead to distinct physical behaviors known
as phases. One of the accomplishments of physics in the previous century was
the understanding and classification of phases based on the notion of spontaneous
symmetry breaking. Within this paradigm, due to Landau, a phase is characterized
according to the symmetry which is spontaneously broken at the transition. For
example, the ferromagnetic phase breaks spin-rotational symmetry, even though the
interactions between the electrons are SU(2) symmetric. As another example, in a
transition from a liquid to a solid the ions arranged themselves in a lattice, thereby
spontaneously breaking translational symmetry.

The discovery of the quantum Hall effect (QHE) in 1980 by von Klitzing et al. [1]
introduced a new notion of phase transitions which goes beyond Landau’s paradigm.
In the QHE, the transverse (Hall) conductance in a two-dimensional electron gas
exhibits a series of plateaus as a function of magnetic field, in which it is precisely
quantized to an integer value in units of e2/h. Within these plateaus the spectrum
of the system has a bulk gap and the longitudinal conductance drops to zero. The
transition between plateaus is a second-order phase transition accompanied by a
closing of the gap and a diverging correlation length. However, unlike continuous
phase transitions which are described within Landau’s theory, here no symmetry is
broken, and no local order parameter exists. Instead, the distinction between the
phases on both sides of the transition is topological [2]; one cannot go smoothly
between the two phases (say by varying system’s parameters) without closing the
bulk gap in the process. The precise quantization of the Hall conductance has
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its roots in the fact that it is a topological invariant ; namely it cannot change in
response to smooth variation of system parameters, so long as the bulk gap remains
open. Although the bulk is gapped, current in the QHE is conducted through
gapless modes which reside at the edge, and whose number corresponds to the Hall
conductance. The existence of these edge modes is dictated by the topological nature
of the bulk [3], and is a manifestation of the bulk-edge correspondence.

For a while it was thought that breaking of time-reversal symmetry (TRS) is
crucial in order to have a topological phase, such as the QHE. The reason might
be the fact that the Hall conductance vanishes in the presence of TRS. Following
progress by Haldane [4], a breakthrough was made in 2005 when Kane et al. [5]
introduced a model for a topological insulator (TI) with protected edge modes that,
however, does not break TRS. While the Hall conductance indeed vanishes in this
model, there is a different topological invariant which can only take one of two values,
and cannot change as long as the bulk gap remains intact. While the topological
invariant in the case of the QHE is a Z invariant (the Hall conductance can assume
any integer value), the invariant in the case of the topological insulator is Z2; namely
there are only two topologically distinct phases. The phase which supports edge
modes is called the topological phase, while the one having gapped edges is called
trivial.

In the case of quadratic Hamiltonians of fermions∗ a full topological classifica-
tion exists [6, 7]. It is based on the presence or absence of time-reversal symmetry,
particle-hole symmetry and their combination - the chiral symmetry. Time-reversal
symmetry is defined as an antiunitary operator, Θ, which commutes with the Hamil-
tonian, [H,Θ] = 0. Particle-hole symmetry (PHS) is an antiunitary symmetry which
anticommutes with the Hamiltonian, {H,Ξ} = 0. The multiplication of these two
symmetries forms a unitary operator, Π = ΘΞ. Chiral symmetry is said to exists
if {H,Π} = 0. It can be shown [8] that in the absence of ordinary symmetries
(i.e. unitary operators which commute with the Hamiltonian), there can be at most
only one TRS, and one PHS. It can further be shown, in this case, that acting with
the same antiunitary symmetry twice is equivalent to the identity operator up to
a sign, Θ2 = ±1, Ξ2 = ±1. For each of the symmetries Θ and Ξ there are three
options: absent, present and squares to +1, or present and squares to −1. Naively,
one might conclude there is a total of nine options, however, one should note that
the case where both Θ and Ξ are absent actually contains two scenarios; the chiral
symmetry, Π = ΘΞ, can either be absent or present in this case. This leaves us
with a classification of topological phases according to ten symmetry classes (and
according to dimensionality), as presented in Table. 1.1.

∗That is Hamiltonians of free fermions or of systems which are described within mean-field
theory, such as Bardeen Cooper Schrieffer (BCS) superconductors.
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Symmetry d
Θ Ξ Π 1 2 3 4 5 6 7 8

A 0 0 0 0 Z 0 Z 0 Z 0 Z
AIII 0 0 1 Z 0 Z 0 Z 0 Z 0
AI 1 0 0 0 0 0 Z 0 Z2 Z2 Z

BDI 1 1 1 Z 0 0 0 Z 0 Z2 Z2

D 0 1 0 Z2 Z 0 0 0 Z 0 Z2

DIII -1 1 1 Z2 Z2 Z 0 0 0 Z 0
AII -1 0 0 0 Z2 Z2 Z 0 0 0 Z
CII -1 -1 1 Z 0 Z2 Z2 Z 0 0 0
C 0 -1 0 0 Z 0 Z2 Z2 Z 0 0
CI 1 -1 1 0 0 Z 0 Z2 Z2 Z 0

Table 1.1: Classification of topological insulators and topological superconductors [6,
7]. Symmetry classes of quadratic Hamiltonians are defined according to time-
reversal symmetry, Θ, particles-hole symmetry, Ξ, and the chiral symmetry, Π = ΘΞ.
Within a symmetry class, and for a given dimension, d, all gapped Hamiltonians can
be divided into equivalence classes which form a group structure. Two Hamiltonians
belong to the same equivalence class if and only if they can be smoothly deformed
into each other without closing the gap. When the group structure is marked by
0, it means that all gapped Hamiltonians in the symmetry class can be smoothly
deformed into each other without closing the gap.
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For example, class A in two dimensions (d = 2) corresponds to the QHE with a Z
topological invariant (which is the Hall conductance). It has no TRS, no PHS, and
no chiral symmetry (by convention, the absence of a symmetry is marked by zero in
Table. 1.1). The topological insulator of Kane et al. corresponds to symmetry class
AII in 2d, with a Z2 invariant. The value listed under Θ signifies that it squares to
−1, as appropriate for a system of spinful electrons. A more mundane example is
that of class A in 3d. The corresponding entry contains a zero, signifying that no
distinct topological phases exits. Namely, all gapped Hamiltonians in this symmetry
class in 3d can be smoothly deformed into each other without closing the gap, and
are therefore topologically equivalent.

In the present work we will be mostly interested in symmetry classes D and
DIII, in 1d. Both describe superconducting Hamiltonians whose topological phases
support zero-energy Majorana bound states (to be defined below). The Z2 classifi-
cation corresponds to two distinct phases; with and without Majorana bound states
(MBSs). While both classes have a PHS which squares to 1, class DIII contains in
addition a TRS which squares to −1. This has the consequence that in class DIII
MBSs come in spatially-overlapping degenerate pairs, in accordance with Kramers’
theorem. Below we discuss the origin of particle-hole symmetry in superconductors
and the conditions for them to be in the topological phase which hosts MBSs. In
the rest of the introduction we shall concentrate on class D. Class DIII is covered
in chapter 2 in depth.

1.2 Particle-Hole Symmetry of Superconductors

We consider a general mean-field Hamiltonian describing a superconductor,

H =
∑
ij

hijc
†
icj + ∆ijc

†
ic
†
j + ∆∗ijcjci, (1.1)

where {c†i}Ni=1 creates a fermion in a state labeled by the index i, which can include
momentum, spin, atomic orbitals etc. Here, hij is a hermitian matrix describing
the normal part of the Hamiltonian, and ∆ij is an antisymmetric matrix describing
pairing of electrons∗. Being quadratic in creation and annihilation operators, H can
be written in the following form

H =
1

2

∑
ij

(c†i , ci)Hij

(
cj
c†j

)
+

1

2
Tr(h) , Hij =

(
hij ∆ij

∆∗ji −hji

)
. (1.2)

∗More precisely, the symmetric part of ∆ij cancels upon summing over i and j due to the anti
commutativity of the fermionic operators.
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where H is a 2N × 2N matrix, also known as the Bogoliubov-de Gennes (BdG)
Hamiltonian.

By construction, the matrix H obeys the following anti-unitary particle-hole
symmetry

ΞHΞ−1 = −H , Ξ = τxK (1.3)

where K stands for complex conjugation, τx is the first Pauli matrix, operating on
the particle-hole degree of freedom, and we have used the hermiticity of h and the
antisymmetry of ∆. Notice that we did not have to assume anything about H in
order to have the symmetry, Ξ; it followed from our construction of H. This means
that this symmetry cannot really be broken. This particle-hole symmetry squares
to +1, namely Ξ2 = τxτx∗ = 1. If no further symmetries apply to H, it therefore
belongs to symmetry class D (see Table. 1.1).

It follows from Eq. (1.3) that for each eigenvector, φνi = (uνi , v
ν
i )T, of H with

energy εν , there is an eigenvector with energy −εν , given by

(Ξφν)i = τx
(
uνi
vνi

)∗
. (1.4)

The eigenvectors of H are related to the elementary excitations of H through

Γ†ν =
∑
i

(c†i , ci)

(
uνi
vνi

)
, (1.5)

as one can check that [H,Γν ] = ενΓν . Notice that the hermitian conjugate of Γν is
obtained by replacing φνi = (uνi , v

ν
i )T with its particle-hole partner,

Γν =
∑
i

(c†i , ci)τ
x

(
uνi
vνi

)∗
. (1.6)

This signifies that Γν describes an excitation with energy −εn. This relation can
generally be written as

Γ†ε = Γ−ε. (1.7)

1.3 Search for Majorana Bound States

In 1937 Ettore Majorana hypothesised a fermionic particle whose its own antipar-
ticle [9], later to be known as a Majorana fermion. The best candidate among
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elementary particles to be a Majorana fermion is the neutrino. Experiments are
underway to examine this possibility, by seeking to observe a neutrino-less double
β decay [10]. Such a process is only possible if the neutrino is its own antiparticle,
namely if creating a neutrino is equivalent to annihilating one, γ = γ†.

In condensed matter physics, the notion of elementary particles is replaced by
that of elementary excitations of a system. One can therefore ask whether there
can be a system which hosts a fermionic excitation obeying γ = γ†. From Eq. (1.7)
we immediately conclude that such an excitation carries zero energy, ε = 0. This is
a manifestation of the fact that creating such a particle is equivalent to destroying
it. More generally, this means that it cannot carry any kind of quantum number
including energy, charge, spin, etc. Such an excitation is refereed to as a Majorana
zero mode.

The fact that such an excitation has zero energy has important consequence
relating to its robustness. Imagine a system with a single isolated excitation γ at
zero energy, separated by an energy gap. Let us add a local perturbation to the
system and ask whether it is possible that the energy of γ will change from 0 to δε.
To comply with PH symmetry, the system must have another excitation with energy
−δε. However, since by our assumption we started with only a single zero-energy
excitation, we conclude this is not possible; an isolated zero-energy excitation is
protected from acquiring a finite energy.

The next obvious question is: where to look for such excitations? First, we note
that if a bulk energy gap exists, such an excitation can only reside near a defect
or at the boundary of a 1d system∗. We therefore refer to such an excitation as a
Majorana bound state (MBS). Since we are looking for a fermionic excitation which
is described by a hermitian operator, γ = γ†, an immediate candidate would be
γ = uc+ u∗c†, with c being a normal fermionic operator, and u a complex number.
This reminds us of the quasiparticle excitations in a BCS superconductor. In a
conventional s-wave superconductor, the pairing is between electrons of opposite
spin, giving rise to excitations of the form uc↑ + v∗c†↓, which are not hermitian for
any value of u and v. In a spinless superconductor, on the other hand, excitations
would generally be of the form uc+ v∗c†, which is hermitian if v = u∗. To conclude,
one should look for MBSs at the boundary of a 1d spinless superconductor.

∗Subgap excitations can also reside on the boundary of a 2d or 3d system, however, they would
generally form a band and not a single excitation separated from the rest by an energy gap.
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1.4 The Spinless p-wave Superconductor

Following Kitaev [11], we consider a one dimensional superconductor made out of
spinless electrons. The mean-field Hamiltonian describing such a superconductor is
given by∗

HK =

∫
dxΨ†(x)HK(x)Ψ(x) ; Ψ†(x) = [ψ†(x), ψ(x)]

HK(x) =
[
−∂2

x/2m− µ(x)
]
τ z − i∆′∂xτ y,

(1.8)

where ψ†(x) creates a spinless electron at position x. Notice that under x → −x,
the pairing potential acquires a minus sign, namely it has a p-wave symmetry. This
property is unavoidable, due to the spinless nature of the electrons in Eq. (1.8). In
this respect, the name spinless p-wave superconductor is redundant.

We wish to show that this system hosts a MBS at each of its two ends. First,
however, let us obtain the bulk spectrum by considering the system with periodic
boundary conditions. By going to Fourier space one obtains

εk =
√

(k2/2m− µ)2 + (∆′k)2. (1.9)

where k is the momentum, and where we have taken µ(x) to be uniform. Note
that the system remains gapped except for µ = 0, at which point the gap closes at
k = 0. Since the existence of a MBS is protected by a gap, it suffices to examine a
certain limit of the parameters. One can then vary the parameters away from this
limit, without affecting the presence or absence of the MBS, as long as the bulk gap
remains open. The phase corresponding to µ < 0 is obviously trivial, namely does
not host MBSs. To see this note we can adiabatically deform the Hamiltonian into
that of the vacuum, ∆′ → 0, µ→ −∞, without closing the gap.

To examine the µ > 0 phase, let us create an interface between it and the trivial
phase, µ < 0, by letting µ(x) change its sign at x = 0, going from a constant negative
value at x → −∞, to a constant positive value at x → ∞ (see Fig. 1.1). For µ(x)
being small enough we can linearize the spectrum near k = 0, which results in the
BdG Hamiltonian

HK(x) = −µ(x)τ z − i∆′∂xτ y. (1.10)

We are looking for a zero-energy solution,HKφ0(x) = 0, with φ0(x) a two-component
spinor in particle-hole space. This is solved by

φ0(x) = exp

[
− 1

∆′

∫ x

0

µ(x′)dx′τx
]
· φ0(0). (1.11)

∗In Ref. [11] Kitaev actually considered a lattice version of the model, however, the conclusions
remain essentially the same.
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Figure 1.1: A domain wall between the trivial phase and the topological phase of a
spinless p-wave superconductor. In blue, the chemical potential, µ(x), in arbitrary
units as a function of position, x. The system is in the trivial phase for µ < 0, and
in the topological phase for µ > 0. A zero-energy Majorana bound state (MBS)
is localized at the domain wall (x = 0). In red, the wave function of the MBS in
arbitrary units [see also Eq. (1.12)].

To determined φ(0) we notice that the integral in the exponent in Eq. (1.11) is
positive and diverging for x → ±∞. This means that to obtain a non-diverging
result, φ0(0) must be proportional to the eigenvector of τx with eigenvalue +1 (we
assumed without loss of generality that ∆′ > 0), namely

φ0(x) =

(
1
1

)
C exp

[
− 1

∆′

∫ x

0

µ(x′)dx′
]
, (1.12)

with C being a normalization constant. Notice that as expected, φ0(x) is localized
near x = 0 (see Fig. 1.1), and that the operator creating the bound state,

γ =

∫
Ψ†(x) · φ0(x)dx, (1.13)

is hermitian.

Finally, we can relax the constraints which have led to the Hamiltonian of
Eq. (1.10). In particular, we are not limited to µ(x) being small. We can also
deform the Hamiltonian in the half space x < 0 to the vacuum, thereby obtaining
a system with open boundary conditions. Since the bulk gap did not close in the
process, the MBS remains bound to the interface.
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1.5 Proximity-Coupled Semiconductor Nanowires

Above we saw that a spinless superconductor can be in a topological superconduct-
ing phase, with MBSs. In practice, however, electrons have spin, and so it is not
immediately obvious that Kitaev’s spinless superconductor can be realized in an ac-
tual system. Fortunately, it has been shown that electronic systems can effectively
behave as spinless superconductor (namely a topological superconductor), thanks
to a combination of Zeeman splitting, spin-orbit coupling, and proximity-induced
superconductivity [12–16]. We shall review briefly the proposal for realization of
topological superconductivity in semiconductor nanowires [15, 16].

Consider a 1d semiconductor nanowire having Rashba spin-orbit coupling (SOC),
coupled to a conventional superconductor, and in an external magnetic field. If the
magnetic field is applied in the direction of the wire (the x direction) and the surface
of the superconductor is parallel to the (xy) plane, then the Hamiltonian for the
system is given by

Hnw =

∫
dxΨ†(x)Hnw(x)Ψ(x) ; Ψ†(x) = [ψ†↑(x), ψ†↓(x), ψ↓(x),−ψ↑(x)]

Hnw(x) =

(
−∂2

x

2m∗
− µ

)
τ z + iλR∂xτ

zσy − EZσ
x + ∆τx,

(1.14)

where {σα}α=x,y,z and {τα}α=x,y,z are sets of Pauli matrices operating on the spin
and particle-hole degrees of freedom, respectively. Here, m∗ is the effective electron
mass, λR is the Rashba SOC constant, EZ is the Zeeman coupling due to the applied
magnetic field, and ∆ind is the induced pairing potential as a result of the supercon-
ducting proximity effect. Notice we have chosen here a basis for the BdG Hamilto-
nian which is different than one in Eq. (1.2). Here, Ψ†(x) is defined such that the
holes are acted on with a time-reversal operation∗, [ψ↑(x), ψ↓(x)]→ [ψ↓(x),−ψ↑(x)].
In this basis particle-hole symmetry is represented by Ξ = τ yσyK.

To see how this model can emulate the Kitaev spinless superconductor of Eq. (1.8),
let us consider gradually the ingredients in Eq. (1.14), namely Zeeman splitting,
SOC, and superconductivity. In the absence of these, the spectrum of the wire is
given by a spin-degenerate parabolic dispersion [see Fig. 1.2(a)]. Upon applying
magnetic field, the two spin bands are split due to the Zeeman coupling as shown
in Fig. 1.2(b). If the chemical potential lies in the range −EZ < µ < EZ, than
the Fermi level is no longer spin degenerate. Close to the Fermi level, the electrons
thus behave effectively spinless. The problem, however, is that using proximity to
a conventional s-wave superconductor, one cannot induce pairing between electrons

∗This basis has the advantage that SU(2) spin rotations are represented by exp [iθσ/2], just
like in the non BdG case.
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(a) (b) (c)

Figure 1.2: Spectrum of the Hamiltonian in Eq. (1.14) before the consideration
of induced superconductivity. (a) In the absence of magnetic field, EZ = 0, and
of spin-orbit coupling, λR = 0, the spectrum is doubly degenerate due to spin-
rotation symmetry. (b) Applying a magnetic field, EZ 6= 0, causes the spectrum
to split into two opposite-spin bands due to Zeeman coupling. (c) Upon consid-
ering spin-orbit coupling, λR 6= 0, the states on the Fermi level in a given band
acquire an anti-aligned spin component. This then enables pairing of electrons in
a single nondegenerate band by induced superconductivity from a conventional s-
wave superconductor. Namely, near the Fermi level the system behaves as a spinless
superconductor which was shown to be topological (see Sec. 1.4).

of the same spin. This is where the SOC comes into play. Upon considering the
effect of SOC, the spins of the electrons at the two Fermi points are no longer per-
fectly aligned, but rather have a component which is anti-aligned in the y direction
[see Fig. 1.2(c)]. Finally, considering induced superconductivity, ∆ind pairs electrons
within a single band. If ∆ind is small compared with the splitting between the bands,
we can project out the upper band and remain with a single nondegenerate band,
realizing an effective spinless superconductor. When the system has open boundary
conditions, two MBSs therefore appear; one at each end of the system.

We can now go beyond the limit of small ∆ind. As long as the bulk gap does
not closes the system is in the topological phase with MBSs. We can obtain the
bulk energy spectrum of the system by Fourier transforming Hnw(x) and squaring
it twice,

ε2
k =E2

Z + ∆2
ind + (k2/2m∗ − µ)2 + (λRk)2

± 2
√
E2

Z∆2
ind + [E2

Z + (λRk)2](k2/2m∗ − µ)2.
(1.15)

Assuming ∆ind, λR 6= 0, the gap remains open except for E2
Z = ∆2

ind + µ2, at which
point the gap closes at momentum k = 0. One therefore concludes [15, 16] that the
system is topological for E2

Z > ∆2
ind + µ2, and trivial for E2

Z < ∆2
ind + µ2.
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Figure 1.3: Andreev reflection of an electron into a hole at the interface between a
normal-metal lead and a superconductor. When the superconductor is a topological
superconductor, electrons (or holes) at the Fermi level experience perfect Andreev
reflection.

1.6 Majorana-Induced Perfect Andreev Reflection

The presence of a MBS at the end of a superconductor has important consequences
when probing the system using transport measurements. Consider attaching a
normal-metal lead to a topological superconductor. Electrons approaching the in-
terface from the lead can experience an Andreev reflection [17]; a process in which
an electron is reflected as a hole, as depicted in Fig. 1.3. We shall now demonstrate
that if the superconductor is a topological superconductor, then electrons at the
Fermi level are Andreev reflected with unit probability [18–21], regardless of details
such as quality of the interface or presence of a barrier.

The reflection matrix, rNS(ε), relates the incoming and outgoing modes in the
lead with energy ε relative to the Fermi level,[

φe
out(ε)
φh

out(ε)

]
= rNS(ε)

[
φe

in(ε)
φh

in(ε)

]
; rNS(ε) =

[
ree(ε) reh(ε)
rhe(ε) rhh(ε)

]
. (1.16)

At energies inside the superconducting gap there is no transmission into the super-
conductor, only reflection. Conservation of quasiparticles current then dictates that
the reflection matrix unitary, r†NS(ε)rNS(ε) = 1. Let us now see how particle-hole
symmetry is manifested in the reflection matrix. For each solution with energy ε,
there is a solution with energy −ε, related by particle-hole symmetry, namely

τx
[
φe

out(ε)
φh

out(ε)

]∗
= rNS(−ε)τx

[
φe

in(ε)
φh

in(ε)

]∗
. (1.17)

Operating on both sides with τxK and comparing with Eq. (1.16) results in the

τxr∗NS(−ε)τx = rNS(ε). (1.18)

At zero energy, Eq. (1.18) dictates that ree(0) = rhh∗(0); rhe(0) = reh∗(0). In
the spinless case that we consider here, rNS(0) is a 2 × 2 matrix. The unitarity of
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rNS(0) then reduces to |ree(0)|2 + |rhe(0)|2 = 1, ree(0)rhe(0) = 0. The matrix rNS(0)
is therefore restricted to have one of two forms:

rNS(0) =

[
eiα 0
0 e−iα

]
or rNS(0) =

[
0 eiβ

e−iβ 0

]
, (1.19)

namely, either perfect normal reflection or perfect Andreev reflection. These two
options correspond to two topologically-distinct cases∗. Indeed, one cannot go
smoothly between these matrices without closing the bulk gap of the supercon-
ductor†.

As in Sec. 1.4, this means that it suffices to calculate rNS(0) at a certain limit.
Focusing again on the spinless superconductor, Eq. (1.8), we consider the limit
µ � ∆′2/m, corresponding to the Fermi level being far from the bottom of the
band. Furthermore, let us consider the clean limit of a smooth interface between
the lead and the superconductor. Since normal reflection involves having a large
momentum transfer kF → −kF, while Andreev reflection has a zero momentum
transfer, it is clear that in this limit there is only Andreev reflection. This in itself
is not special; this happens also in a conventional (spinful) superconductor. What
special is the fact that we can now add a barrier, or vary µ, ∆′, and m (without
closing the gap), and the perfect Andreev reflection would survive. In the trivial
phase (µ < 0), on the other hand, electrons and holes experience perfect normal
reflection. To see this, we start from the limit, ∆′ = 0, where it is clear that only
normal reflection is possible. We can now turn on ∆′, however, as long a the gap is
open the perfect normal reflection survives due to the constraint of Eq. (1.19).

The perfect Andreev reflection in the topological phase has a signature in the
differential conductance at zero bias voltage. At zero temperature, the latter is
related to the reflection matrix through [23, 24]

G(V ) =
e2

h

[
1− |ree(eV )|2 + |rhe(eV )|2

]
=

2e2

h
|rhe(eV )|2, (1.20)

where in the last step we have used the unitarity of rNS. The differential conductance
G(V ) is therefore expected to have a peak at zero bias voltage, quantized to 2e2/h.
Note, however, that at finite temperatures G(0) gets contribution also from electrons
at nonzero energies (namely above or below the Fermi level), and therefore the
perfect quantization is lost. Recently, the zero-bias conductance peak has been

∗This topological distinction between two forms of the reflection matrix can be generalized to
the case of a multi-channel wire [22].
†When the gap of the superconductor closes, transmission trough the superconductor is possible,

in which case the reflection matrix is no longer unitary, allowing for a smooth deformation between
the two matrices in Eq. (1.19).
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observed in proximity-coupled semiconductor wires [25–29], in agreement with the
prediction that this system supports a topologically superconducting phase.
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Chapter 2

Time-Reversal Invariant
Topological Superconductivity

2.1 Introduction

Topological phases in condensed matter are generally characterized by having unique
surface properties which are dictated by the topological properties of the bulk. The
first and most famous example is the quantum Hall effect (QHE) [1–3], in which
gapless chiral edge modes, protected only by topology, reside on the edges of a
two-dimensional system and give rise to a quantized Hall conductivity.

Since then it has been realized that upon invoking symmetries, a rich variety of
topological phases can emerge [6, 7, 30]. These phases also contain gapless surface
states which are related to the topological nature of the bulk, however, they are only
protected in the presence of some imposed symmetries, and could otherwise become
gapped. Here, the paradigmatic example is the topological insulator (TI) [5, 31, 32]
which in two dimensions can be thought of as two copies of the QHE, related by
time-reversal. The edge of the system now host gapless helical modes which are
protected by the presence of time-reversal symmetry (TRS).

The various topological phases are classified according to the possible symmetries
present in a given system [6, 7]. These are TRS, particle-hole symmetry (PHS)
and chiral symmetry [33]. Of particular interest is the so-called class-D topological
superconductor (TSC) [22, 34] which is protected solely by PHS. This symmetry is
special since it exists in all superconducting systems, and in fact cannot truly be
broken. This makes its edge states, the Majorana modes, extremely robust. In that
sense, the TSC can be viewed as the superconducting analog of the QHE.

One is then prompted to ask: what is the superconducting analog of the topolog-
ical insulator? This would be the time-reversal invariant topological superconductor
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(TRITOPS) which belongs to class DIII [35, 36]. In one or two dimensions, it can
be described as two copies of a class D TSC, related by time-reversal transforma-
tion. Each edge (or end) of this phase hosts a Kramers’ pair of time-reversal related
Majorana modes, analogous to the pair of helical edge modes of the two-dimensional
(2d) TI. Unlike single Majorana zero modes, Majorana Kramers’ pairs do not have
a well defined braiding statistics [37, 38]; however, they have non-trivial spin struc-
ture [39, 40].

Experimentally realizing the TRITOPS phase is a major outstanding challenge in
the study of topological phases in condensed matter. To this date, however, attempts
have been focused on realizing the class D TSC. An important breakthrough in this
context was the understanding that one can realize class D TSC using a combination
of spin-orbit coupling and proximity to an s-wave superconductor, in a system of
noninteracting electrons [12–16, 41]. This prediction lead to a series of experiments
showing evidence consistent with the presence of Majorana bound states [25–29, 42–
44].

The goal of the study presented in this chapter is to construct experimentally-
realizable models for a time-reversal invariant topological superconductor in class
DIII in one dimension. We begin in Sec. 2.2 by showing [45] that unlike in class D,
the topological phase of class DIII cannot be realized using proximity of an s-wave
superconductor to a system of noninteracting electrons. Namely electron-electron
interaction are essential for realizing the TRITOPS phase. In Sec. 2.3 we consider a
minimal low-energy model for a proximity-coupled system in the presence of repul-
sive interactions. We show how short-ranged repulsive interactions can drive this
model into its topologically non-trivial phase [46] by effectively suppressing singlet
pairing, while strengthening triplet pairing. In Sec. 2.4 we suggest two microscopic
models and show they are described at low energies by the minimal model. These
are (i) a narrow 2d TI partially covered by an s-wave SC [see Fig. 2.6(a)], and (ii) a
quasi 1d semiconductor nanowire proximitized by an s-wave SC [see Fig. 2.7(a)]. Fi-
nally, in Sec. 2.5 we numerically simulate the proximitized nanowire system [47]. By
employing numerical Hartree-Fock calculations as well as a Density Matrix Renor-
malization (DMRG) analysis, we show that in a certain parameters range the system
indeed enters the TRITOPS phase.

2.2 Necessity of Interactions

In this section we prove that, unlike in class D, the topological phase of class DIII
cannot be realized using proximity of a conventional s-wave superconductor to a sys-
tem of noninteracting electrons. This suggests that to realize the TRITOPS phase
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(a) (b)

Figure 2.1: The considered physical setups. (a) A quasi one-dimensional system
(referred to as wire) in proximity to a conventional s-wave superconductor. As long
as there are no interactions between the electrons in the wire, the system will never
be in the topological phase of class DIII. (b) This statement can be extended to the
case of a quasi two-dimensional system.

one should consider interactions between the electrons [46–52], or use proximity to
unconventional superconductors [53–55]. One can also use two s-wave superconduc-
tors with a phase difference between them which is tuned to π [39, 56, 57]. In 2d
and 3d, intrinsic TRITOPS have been proposed [58–62]∗, which do not involve the
proximity effect†.

We start by writing the model, consisting of both the parent superconductor and
the system as depicted in Fig. 2.1(a). We integrate out the superconductor’s degrees
of freedom and obtain the Green’s function of the system alone. Next we construct
the Z2 topological invariant for a general class-DIII system in 1d, and show that this
invariant always takes its trivial value. We then extend this result to the case of a
2d proximitized system [see Fig. 2.1(b)]. Finally, we generalize the proof to include
also non translationally-invariant systems.

2.2.1 The model

We consider a quasi–1d system (hereafter referred to as a “wire”) of noninteracting
electrons, coupled to a bulk superconductor (SC). The Hamiltonian describing the

∗Similarly to intrinsic TRITOPS, the He-3 B phase is an example of a time-reversal invariant
topological superfluid [63].
†In 1d proximity coupling is necessary in order to have a gapped spectrum. Gapless TSC in 1d

have also been suggested [40].
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combined system reads

H = Hw +Hsc +Hc,

Hw =
∑
k

ψ†kh
w
k ψk,

Hsc =
∑
k

[
η†kh

sc
k ηk +

1

2
(η†k∆kη

†T
−k + h.c.)

]
,

Hc =
∑
k

(η†ktkψk + h.c.),

(2.1)

where k is the momentum along the wire’s axis. Hw and Hsc are the Hamiltonians
describing the wire and the SC, respectively, and Hc describes the coupling between
them. For every k, ψ†k and η†k are row vectors of fermionic creation operators of
states in the wire and the superconductor, respectively. These states include all de-
grees of freedom within a unit cell including spin, transverse modes, sublattice sites,
atomic orbitals etc. Correspondingly, hw

k , hsc
k , ∆k, and tk are matrices operating on

these internal degrees of freedom. In writing Eq. (2.1) we have assumed that the
interactions in the SC are adequately described within mean-field theory through
the pairing potential matrix, ∆k

∗. Due to fermionic statistics one can, without loss
of generality, take the pairing matrix to obey ∆T

−k = −∆k, where the superscript
stands for the transpose of a matrix. In Eq. (2.1), we have assumed that the system
is translationally invariant; however, below we argue that our conclusions hold even
in non-translationally invariant systems, e.g., in the presence of disorder.

Here, we consider systems which belong to symmetry class DIII. The Hamiltonian
H has TRS that squares to −1. The application of such a time-reversal operation
most generally reads

TψkT−1 = Twψ−k ; TηkT−1 = Tscη−k ; TiT−1 = −i, (2.2)

where Tw and Tsc are unitary matrices operating in the spaces of states in the wire
and the superconductor, respectively, and which furthermore obey Tw(sc)T ∗w(sc) = −1.
The last property is what distinguishes systems in class DIII from systems in class
BDI [64, 65] in which TRS squares to 1. Enforcing TRS on the system, THT−1 = H,
amounts to the following conditions

T †whw∗
−kTw = hw

k ; T †schsc∗
−kTsc = hsc

k ; T †sct∗−kTw = tk ; T †sc∆∗−kT ∗sc = ∆k. (2.3)

∗The reverse proximity effect in the SC may reduce ∆k near the interface with the wire, com-
pared to the bulk value. This effect should be small when the density of states in the SC (within
a coherence length away from the interface) is large compared to the density of states in the wire,
or alternatively, when the coupling to the wire is weak.
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The last equality, together with the property ∆T
−k = −∆k, guarantee that ∆kTsc is

a Hermitian matrix.
In this work, we focus on the case where the pairing potential of the parent su-

perconductor satisfies that ∆kTsc is a positive semi-definite (PSD) matrix∗. Namely
〈u|∆kTsc|u〉 ≥ 0 for all vectors |u〉, and all momenta k. In particular, this includes
for example the case of a conventional s-wave superconductor, in which the order
parameter has a uniform phase on all the bands (and no interband pairing). Note
also that this condition excludes both the case considered in Ref. [54], where the
superconductor has an s± order parameter with a relative π phase between different
bands, and the case of Refs. [39, 56], where there are two superconducting leads that
form a π junction.

The simplest example of a time reversal invariant superconductor with a positive
semi-definite ∆kTsc is a single band s-wave superconductor, whose pairing potential
is

(∆k)kT,s;k
′
T,s
′ = ∆0iσ

y
ss′δkT,−k

′
T
, (2.4)

where {σα}α=x,y,z is the set of pauli matrices operating in spin space, kT labels the
transverse momenta of states in the superconductor, and ∆0 is a number which we
can choose to be real and positive. The time-reversal matrix is given in this example
by (Tsc)kT,s;k

′
T,s
′ = −iσyss′δkT,−k

′
T
, which indeed results in ∆kTsc = ∆0 being a PSD

matrix. In what follows we will not limit ourselves to the example of Eq. (2.4), but
rather consider the most general matrix ∆k for which ∆kTsc is PSD. Our results
thus apply to a wide class of parent superconductors, for instance a multiple band
superconductor with spin-orbit coupling.

Below we prove that as long as ∆kTsc is PSD, the wire is in the topologically-
trivial phase. We do this in two steps. First, we show that upon integrating out the
SC, the anomalous part of the zero-frequency self energy is also PSD. Second, we
show that, as a result, the Z2 topological invariant always assumes its trivial value.

2.2.2 Integrating out the superconductor

We wish to obtain the Green’s function describing the wire, where the supercon-
ducting proximity effect is expressed by an anomalous self-energy term. We start
by writing the Hamiltonian in a BdG form

H =
1

2

∑
k

Ψ†k

(
Hw
k V †k
Vk Hsc

k

)
Ψk, (2.5)

∗More generally, ∆kTsc can be a PSD matrix times some complex number that does not depend
on k. The phase of this complex number can always be absorbed in the definition of Tsc, rendering
∆kTsc PSD.
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using the Nambu spinor Ψ†k = (ψ†k, ψ
T
−kTw, η

†
k, η

T
−kTsc), where

Hw
k = τ z ⊗ hw

k , (2.6a)

Hsc
k = τ z ⊗ hsc

k + τx ⊗∆kTsc, , (2.6b)

Vk = τ z ⊗ tk, (2.6c)

and where {τα}α=x,y,z are Pauli matrices in particle-hole space. In writing Eqs. (2.5,
2.6), we have used the relations given in Eq. (2.3). The Green’s function of the wire,
Gw
k (ω), is obtained by integrating out the SC,

Gw
k (ω) = [iω −Hw

k − Σk(ω)]−1, (2.7a)

Σk(ω) = V †k g
sc
k (ω)Vk, (2.7b)

gsc
k (ω) = (iω −Hsc

k )−1, (2.7c)

where Σk(ω) is the self energy, and gsc
k (ω) is the Green’s function of the parent SC

in the absence of coupling to the wire.

Using Eqs. (2.6b) and (2.7c), one can check that gsc
k (0) is Hermitian and obeys

τ ygsc
k (0)τ y = −gsc

k (0). It therefore has the following structure:

gsc
k (0) = τ z ⊗ gN

k + τx ⊗ gA
k , (2.8)

where gN
k and gA

k are Hermitian matrices. This also means that the zero-frequency
self energy has the same structure, Σk(0) = τ z⊗ΣN

k +τx⊗ΣA
k , with ΣN

k = t†kg
N
k tk and

ΣA
k = −t†kgA

k tk being the normal and anomalous parts, respectively. Upon rotating
gsc
k (0) in Eq. (2.7c) by the unitary transformation exp(iπτx/4), and using Eqs. (2.6b)

and (2.8), it follows that

(∆kTsc − ihsc
k )(gA

k + igN
k ) = −1. (2.9)

One then arrives at

〈u|ΣA
k |u〉 = −〈u|t†kg

A
k tk|u〉 = −Re〈u|t†k(g

A
k − igN

k )tk|u〉
= Re〈u|t†k(g

A
k − igN

k )(∆kTsc − ihsc
k )(gA

k + igN
k )tk|u〉

= Re〈v|∆kTsc − ihsc
k |v〉 = 〈v|∆kTsc|v〉 ≥ 0,

(2.10)

where |u〉 is an arbitrary vector, |v〉 ≡ (gA
k + igN

k )tk|u〉, and we have used the fact
that gN

k , gA
k , and hsc

k are Hermitian. Namely, we have proved that ΣA
k is PSD.
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2.2.3 The topological invariant

We now construct the Z2 topological invariant for a general gapped quasi 1d system
in class DIII∗. We then apply it to the system under consideration and show that,
due to the positivity of ΣA

k , the invariant always assumes its trivial value. We define
the effective Hamiltonian of the wire system using its Green’s function, Heff

k =
−[Gw

k (0)]−1. By setting ω = 0 in Eq. (2.7a) one obtains

Heff
k = τ z ⊗ (hw

k + ΣN
k ) + τx ⊗ ΣA

k , (2.11)

where we have used the structure of Σk(0) as given below Eq. (2.8). This Hamilto-
nian obeys a time-reversal symmetry, T †wHeff∗

−k Tw = Heff
k , as well as a chiral symmetry,

τ yHeff
k τ

y = −Heff
k , and is therefore in class DIII.

Written in the basis which diagonalizes the chiral symmetry, the Hamiltonian
takes the form

ei
π
4
τxHeff

k e
−iπ

4
τx =

(
0 Qk

Q†k 0

)
. (2.12)

We use the singular value decomposition to write Qk = U †kDkVk, where Uk, Vk are
unitary matrices and Dk is a square diagonal matrix with non-negative elements on
its diagonal. By squaring Heff

k it becomes apparent that the elements of Dk are the
positive eigenvalues of Heff

k . Since Heff
k is gapped, there are no zero elements on the

diagonal of Dk, and it is thus positive definite.
We can adiabatically deform Dk to the identity matrix without closing the gap,

and therefore without changing the topological invariant. This in turn deforms the
Hamiltonian, Heff

k → H̃eff
k , such that H̃eff

k has two flat bands at energies ±1 (in
the appropriate units), but the same eigenstates as Heff

k (and therefore the same
symmetries). H̃eff

k is given by Eq. (2.12) with Qk replaced by Q̃k = U †kVk, which is

now a unitary matrix. The TRS of H̃eff
k implies that T †wQ̃∗−kTw = Q̃†k. Together with

the unitarity of Q̃k this dictates that for every eigenstate

Q̃k|αn,k〉 = eiθn,k |αn,k〉, (2.13)

there is another eigenstate of Q̃k, T †w |αn,−k〉∗ with an eigenvalue exp(iθn,−k). Thus,
at the time-reversal invariant momenta, k = 0, π, the eigenvalues of Q̃k come in
Kramers’ degenerate pairs.

Considering the spectrum of Q̃k as a function of k ∈ [−π, π], it follows that
the number of pairs of degenerate states at a given value θ cannot change by an

∗Alternative approaches for obtaining the class-DIII topological invariant in 1d can be found in
Refs. [36, 48, 66–68].
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(a) (b)

Figure 2.2: Examples of spectra of the unitary matrix Q̃k [see Eq. (2.12) and below],
corresponding to (a) a topologically trivial case, and (b) a topologically nontrivial
case. The eigenvalues of Q̃k are phases given by {exp(iθn,k)}n. Due to time-reversal
symmetry the eigenvalues come in pairs, θn,k and θn,−k, corresponding to the blue
and red lines, respectively. The parity of the winding number of the blue (or red)
line gives the class-DIII topological invariant in 1d. For a noninteracting system in
proximity to an s-wave superconductor, the winding number of any angle θn,k will
always be zero [see Eq. (2.15) and below], rendering such a system topologically
trivial.

odd number during an adiabatic change which leaves the gap of Heff
k open. The

parity of the number of degenerate pairs is therefore a topological invariant. Al-
ternatively stated, upon dividing the eigenvalues of Q̃k to two groups {exp(iθI

n,k)}n
and {exp(iθII

n,k)}n, related by time reversal, θII
n,k = θI

n,−k, the topological invariant is
given by

ν1d = (−1)W ; W =
∑
n

1

2π

∫ k=π

k=−π
dθI

n,k, (2.14)

namely, the parity of the sum of windings of {θI
n,k}n. Figure 2.2 presents examples

of trivial and topological spectra of Q̃k.
Eq. (2.14) is correct for any quasi 1d system in class DIII. Let us now concentrate

on the system at hand, namely one which is given by Eq. (2.1), with ∆kTsc being
PSD. Inserting Eq. (2.11) in Eq. (2.12), one arrives at Qk = ΣA

k − i(hw
k + ΣN

k ).
From the positivity of ΣA

k , derived in Eq. (2.10), and the fact that hw
k and ΣN

k are
Hermitian, it follows that

0 ≤〈αn,k|ΣA
k |αn,k〉 = Re〈αn,k|Qk|αn,k〉 = Re〈αn,k|U †kDkVk|αn,k〉

=Re〈αn,k|Q̃kV
†
kDkVk|αn,k〉 = 2 cos θn,k · 〈Vkαn,k|Dk|Vkαn,k〉,

(2.15)

and since Dk is positive definite, we conclude that cos θn,k ≥ 0 for all n and k.
Namely none of the phases θn,k can have a non-zero winding number as k changes
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from −π to π, which in particular means that the topological invariant, Eq. (2.14),
is always trivial, ν1d = 1.

2.2.4 Two dimensions

We wish to generalize our result to the case of a 2d system in proximity to a bulk
superconductor, as depicted in Fig. 2.1(b). The combined system is described by
the Hamiltonian of Eq. (2.1), with k → k = (kx, ky). All the above results, ex-
cluding Eq. (2.14), are still valid in the 2d case under this substitution. The Z2

two-dimensional topological invariant can be obtained from the 1d invariant by∗

ν2d = ν1d[Heff
kx=0,ky ] · ν1d[Heff

kx=π,ky ]. (2.16)

Before proving Eq. (2.16), let us first draw from it our main conclusion. The Hamil-
tonians Heff

kx=0,ky
and Heff

kx=π,ky
both belong to class DIII in 1d, and are of the form

of Eq. (2.11) with a PSD anomalous part. Consequently, as we proved above, both
Heff
kx=0,ky

and Heff
kx=π,ky

are topologically trivial. From Eq. (2.16) it then follows that

the 2d Hamiltonian Heff
kx,ky

is trivial as well†.

We now argue that the two-dimensional topological invariant in class DIII is
given by Eq. (2.16). This is most readily seen by considering a semi-infinite system
with periodic boundary conditions in the x direction, and an edge along the line
y = 0. The non-trivial phase is characterized by having an odd number of helical
edge modes. At the edge of such system, at every energy inside the bulk gap,
there must be an odd number of Kramers’ pairs of edge states, similarly to the
case of the two-dimensional topological insulator [5, 69]. Let us focus on E = 0
(which is in the middle of the gap, due to particle-hole symmetry). At kx = 0, the
number of Kramers’ pairs is equal to the Z2 invariant of the corresponding DIII
one-dimensional Hamiltonian Heff

kx=0,ky
. The same is true at the other time reversal

invariant momentum, kx = π. Due to time reversal and chiral symmetries, the
number of zero energy Kramers’ pairs at momenta away from kx = 0, π must be
even. Therefore, the parity of the total number of Kramers’ pairs at E = 0 is equal
to ν1d[Heff

kx=0,ky
] · ν1d[Heff

kx=π,ky
], which is the right hand side of Eq. (2.16).

∗Note that most generally kx and ky should be considered as coordinates along the reciprocal
primitive vectors, G1,2, in units of |G1,2|/2π, respectively.
†We note that since both Heff

kx=0,ky
and Heff

kx=π,ky
(and similarly Heff

kx,ky=0 and Heff
kx,ky=π) are

trivial, the weak topological indices are trivial as well.
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2.2.5 Extension to non-translationally invariant systems

So far, we assumed that the system is translationally invariant along the direction
of the wire in the 1d case, or in the plane of the system in the 2d case [Figs. 2.1(a)
and 2.1(b), respectively]. However, our results holds even without translational
symmetry, e.g., in the presence of disorder.

To see this, consider a disordered system in either 1d or 2d, coupled to a super-
conductor. Imagine a disorder realization which is periodic in space, with a period
that is much larger than any microscopic length scale (in particular, the induced
superconducting coherence length). By the arguments presented in the preceding
sections, the resulting translationally invariant system is topologically trivial. Hence,
at its boundary there are no topologically non-trivial edge states. Since the size of
the unit cell is much larger than the coherence length, the periodicity of the system
cannot matter for the existence or the lack of edge states. Therefore, a single unit
cell corresponds to a finite disordered system, which (as its size tends to infinity) is
in the topologically trivial phase, as well.

2.3 Low-Energy Theory

Above we have shown that the TRITOPS phase cannot arise in a noninteracting
system coupled to a conventional superconductor. We are therefore prompted to
investigate the effect of electron-electron interactions in the proximitized system. In
this section we consider a general “minimal” model (see Fig. 2.3) which can arise
as a low-energy theory of various spin-orbit coupled 1d systems in proximity to an
s-wave SC. The model has four Fermi points with two right moving modes and two
left-moving modes. Due to spin-orbit coupling, proximity-induced superconductivity
results in both a singlet and a triplet pairing potential, ∆s and ∆t, respectively. As
we now show, short-range repulsive interactions suppress ∆s with compare to ∆t,
thereby driving the system into the topological phase. We map the phase diagram
of this minimal model using both a mean-field approximation and an analytically
controlled renormalization group (RG) analysis.

While we consider clean systems in this work, we expect our results to hold also
for systems with weak disorder. Namely, we expect the topological phase to survive
as long as the mean free time associated with disorder is large compared to the
inverse energy gap, similar to the case of the class D topological SC [70, 71].

Our minimal model is described in the absence of interactions by the following
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Hamiltonian

H = H0 +H∆,

H0 = −i
∫

dx
{
v+

[
R†↑(x)∂xR↑(x)− L†↓(x)∂xL↓(x)

]
+v−

[
R†↓(x)∂xR↓(x)− L†↑(x)∂xL↑(x)

]}
,

H∆ =

∫
dx
[
∆+R

†
↑(x)L†↓(x) + ∆−L

†
↑(x)R†↓(x) + h.c.

]
,

(2.17)

where Rs (Ls) is an annihilation operator of a right (left) moving fermionic mode
of spin s. Here, ∆+ and ∆− are two induced pairing potentials. ∆+ describes
pairing between the modes of positive helicity, R↑ and L↓, while ∆− describes pairing
between the modes of negative helicity, L↑ and R↓

∗. Similarly, v± are the velocities
of the modes with positive and negative helicity, respectively. The dispersion of H0

is shown in Fig. 2.3.
The time-reversal operation is defined by†

TRs(x)T−1 = iσyss′Ls′(x) ; TLs(x)T−1 = iσyss′Rs′(x) ; TiT−1 = −i, (2.18)

where {σi}i=x,y,z is the set of Pauli matrices operating in spin space. Requiring that
H obeys time-reversal symmetry, THT−1 = H, imposes the constraints that both
∆+ and ∆− are real. In the absence of inversion symmetry, the Fermi momenta
k+

F and k−F generally differ from one another (see Fig. 2.3). In this case, H is the
most general low-energy quadratic Hamiltonian which describes a single-channel 1d
system with TRS‡.

The time-reversal operation in Eq. (2.18) squares to −1, placing this system in
class DIII of the Altland-Zirnbauer classification [33], with a Z2 topological invari-
ant [6, 7]. By applying the result of Sec. 2.2.3 to the model of Eq. (2.17), it can be
shown that the topological invariant is determined by the product of the signs of
the pairing potentials at the Fermi points§,

ν = sgn(∆+) · sgn(∆−), (2.19)

∗It should be noted that the identification of the index s = ↑, ↓ as the spin is not crucial. One
can instead consider any two modes R1(x), R2(x) and their time-reversal partners L2(x), L1(x),
respectively.
†Notice Eq. (2.18) is a special case of Eq. (2.2).
‡If k+

F = k−F one can have, for example, a term (∆′R↑L↑ + ∆′∗L↓R↓ + h.c.). For k+
F 6= k−F ,

however, this term would be suppressed at low energies due to momentum mismatch.
§This topological invariant was originally derived by Qi et al. [36] in the weak-pairing limit.

However, for the linearized low-energy model of Eq. (2.17) it is exact.
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Figure 2.3: Dispersion of the low-energy Hamiltonian H0, having two right-moving
modes and two left-moving modes [see Eq. (2.17)]. The Hamiltonian H∆ describes
induced superconductivity. The pairing potential ∆+ couples the modes of positive
helicity, while ∆− couples the modes of negative helicity. The system is in its
topologically nontrivial phase when sgn(∆+)sgn(∆−) = −1 [see Eq. (2.19)].

where ν = −1 corresponds to the topologically non-trivial phase, having a Kramers’
pair of Majorana bound states at each end of the system. In Appendix 2.A we derive
this results directly using a scattering-matrix approach.

It is instructive to write the superconducting part of the Hamiltonian in the
following form

H∆ =

∫
dx
{

∆s

[
R†↑(x)L†↓(x)−R†↓(x)L†↑(x)

]
+∆t

[
R†↑(x)L†↓(x) +R†↓(x)L†↑(x)

]
+ h.c.

}
,

(2.20)

where ∆s,t = (∆+±∆−)/2 are the singlet and triplet pairing potentials respectively.
Inserting this in Eq. (2.19) results in

ν = sgn(∆2
s −∆2

t ). (2.21)

Namely, the topological phase (ν = −1) is obtained when the triplet pairing term
exceeds in magnitude the singlet pairing term.

For a noninteracting system in proximity to a conventional s-wave SC we have
seen that the system will always be in the topologically trivial phase [45, 48, 54],
namely |∆s| ≥ |∆t|. We now show that repulsive short-range interactions effectively
suppress the singlet pairing term ∆s in comparison with the triplet term ∆t. De-
pending on the bare ratio |∆t|/|∆s|, strong enough interactions can therefore drive
the system to the topological phase. A system in which initially |∆t| is of the order
of (but less than) |∆s|, is therefore more susceptible to become topological by the
presence of repulsive interactions.
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The full Hamiltonian is given by H0 + H∆ + Hint, with H0 and H∆ given in
Eq. (2.17), and with

Hint =

∫
dx
{
g⊥1

[
R†↑(x)L†↓(x)R↓(x)L↑(x) + h.c.

]
+ g+

2 ρR↑(x)ρL↓(x) + g−2 ρR↓(x)ρL↑(x)

+ g
‖
2 [ρR↑(x)ρL↑(x) + ρL↓(x)ρR↓(x)]

}
,

(2.22)

where ρRs(x) = R†s(x)Rs(x) and ρLs(x) = L†s(x)Ls(x). Here, g⊥1 is a backscattering

interaction term, while g+
2 , g−2 , and g

‖
2 are forward scattering interaction terms.

In the absence of symmetry under inversion (x → −x), the Fermi momenta are
generally different, k+

F 6= k−F (see Fig. 2.3). In this case Hint is the most general low-
energy time-reversal symmetric Hamiltonian describing interaction between modes
of opposite chirality. Interaction terms between modes of the same chirality can
exist, however, they would not affect the RG flow (see Appendix 2.C), nor would
they contribute to our mean-field solution, and therefore we do not include them
here.

2.3.1 Mean-field theory

Before analyzing the effect of interactions using the renormalization group, it is
instructive to study the mean-field solution. In this analysis we replace the low-
energy interacting Hamiltonian by a quadratic Hamiltonian of the form of Eq. (2.17)
with effective pairing potentials ∆̄+ and ∆̄−. Upon determining ∆̄± by solving self-
consistent equations [see Eq. (2.26)], one can easily extract the topological invariant
from this mean-field Hamiltonian.

The g
‖
2 term in Eq. (2.22) involves interaction between electrons of the same spin

species. It will therefore not affect the pairing potentials ∆±, and its sole effect
would be to change the effective chemical potential. Hence, we shall ignore it in the
present mean-field treatment.

We begin by writing

L↓(x)R↑(x) ≡ 〈L↓(x)R↑(x)〉+ δ+(x),

R↓(x)L↑(x) ≡ 〈R↓(x)L↑(x)〉+ δ−(x).
(2.23)

In the mean-field approximation we assume that the system has a superconduct-
ing order, and accordingly the averages of the pairing terms, 〈L↓(x)R↑(x)〉 and
〈R↓(x)L↑(x)〉, are large compared to their respective fluctuations, δ+ and δ−. We
therefore substitute Eq. (2.23) into Eq. (2.22) and retain terms only to first order in

27



δ±. This results (up to a constant) in a mean-field Hamiltonian HMF = H0 +HMF
∆ ,

with H0 given in Eq. (2.17), and with

HMF
∆ =

∫
dx
[
∆̄+R

†
↑(x)L†↓(x) + ∆̄−L

†
↑(x)R†↓(x) + h.c.

]
, (2.24)

where

∆̄+ = ∆+ + g⊥1 〈R↓(x)L↑(x)〉+ g+
2 〈L↓(x)R↑(x)〉

∆̄− = ∆− + g⊥1 〈L↓(x)R↑(x)〉+ g−2 〈R↓(x)L↑(x)〉.
(2.25)

Since HMF is a quadratic Hamiltonian, one can easily calculate the above pair
correlation functions and arrive at self-consistent equations for ∆̄+ and ∆̄−. One
then obtains (see Appendix 2.B)

∆̄+ = ∆+−
g⊥1

2πv−
∆̄− sinh−1

(
v−Λ/|∆̄−|

)
− g+

2

2πv+

∆̄+ sinh−1
(
v+Λ/|∆̄+|

)
,

(2.26a)

∆̄− = ∆−−
g⊥1

2πv+

∆̄+ sinh−1
(
v+Λ/|∆̄+|

)
− g−2

2πv−
∆̄− sinh−1

(
v−Λ/|∆̄−|

)
.

(2.26b)

These coupled equations can be solved numerically for ∆̄±, after which the topolog-
ical invariant of HMF is obtained by ν = sgn(∆̄+)sgn(∆̄−). One can, however, make
further analytical progress by searching for the phase boundary between ν = 1 and
ν = −1. This occurs when either ∆̄− = 0, or ∆̄+ = 0. By Plugging ∆̄± = 0 in
Eq. (2.26), one obtains the conditions on the parameters of the original Hamiltonian,
Eqs. (2.17) and (2.22), to be on the phase boundary. If the phase boundary occurs
at ∆̄+ = 0, then it is described by

v−Λg⊥1
|g⊥1 ∆− − g−2 ∆+|

= sinh

(
2πv−∆+

g⊥1 ∆− − g−2 ∆+

)
, (2.27)

while if it occurs at ∆̄− = 0,

v+Λg⊥1
|g⊥1 ∆+ − g+

2 ∆−|
= sinh

(
2πv+∆−

g⊥1 ∆+ − g+
2 ∆−

)
. (2.28)

As a relevant example we can consider a Hubbard-type interaction, g1 = g+
2 =

g−2 = U , and furthermore v+ = v− = v̄. Let us assume without loss of generality
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that |∆+| > |∆−|. This means that the phase boundary will occur when ∆̄− = 0,
namely when

U

πv̄
=

∆s/∆t − 1

sinh−1 (v̄Λ/2|∆t|)
. (2.29)

Figure 2.4 presents the topological phase diagram, obtained using Eq. (2.29) (see
dashed line), as a function of U and the ratio ∆t/∆s, for different values of ∆s.
As expected, for ∆t/∆s → 0 no finite amount of interactions can bring the system
to the topological phase. In contrast, when ∆t = ∆s, the system is already at a
phase transition, and any nonzero U suffices to drive the system to the topological
phase. In the intermediate regime, the system will become topological for some
finite interaction strength which increases with ∆s.

2.3.2 Renormalization group analysis

In this section we study the full interacting Hamiltonian H0 + H∆ + Hint, given in
Eqs. (2.17) and (2.22), using the renormalization group (RG). We are interested in
the RG flow close to the noninteracting fixed point of free electrons, described by H0.
Both the singlet and triplet induced pairing potentials are relevant perturbations to
H0, namely this is an unstable fixed point. Below we show that the introduction
of Hint causes the instability to be more towards triplet pairing with compare to
singlet pairing.

To derive the flow equations of the various terms in H∆ and Hint we use per-
turbative momentum shell Wilsonian RG for Fermions [72]. This procedure, whose
details are given in Appendix 2.C, results in

ẏ⊥1 = −y2y
⊥
1 , (2.30a)

ẏ2 = −1

2

(
v̄2

v+v−
+ 1

)
y⊥1

2
, (2.30b)

ẏ+
2 = −1

2

v̄2

v+v−
y⊥1

2
, (2.30c)

ẏ−2 = −1

2

v̄2

v+v−
y⊥1

2
, (2.30d)

∆̇+ =

(
1− 1

2
y+

2

)
∆+ −

1

2

v̄

v−
y⊥1 ∆−, (2.30e)

∆̇− =

(
1− 1

2
y−2

)
∆− −

1

2

v̄

v+

y⊥1 ∆+, (2.30f)
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Figure 2.4: Phase diagram of the interacting model described in Eqs. (2.17)
and (2.22). The phase diagram is analyzed as a function of the interaction strength
U = g1 = g+

2 = g−2 , and the ratio ∆t/∆s, for different fixed values of ∆s. ∆s and ∆t

are the singlet and triplet induced pairing potentials, respectively (referred to ∆0
s,t in

Sec. 2.3.2), and are related to the pairing potentials ∆± through ∆s,t = (∆+±∆−)/2.
The solid lines are the phase boundaries calculated using weak-coupling RG, while
the dashed lines are those calculated from Eq. (2.29), obtained from a mean-field
treatment. Notice that for ∆t = 0 the system cannot be driven into the topological
phase for any interaction strength, i.e., some initial triplet pairing term is required.
For a nonzero ∆t, the system goes through a topological phase transition at a fi-
nite value of U which increases with ∆s. For ∆t = ∆s the system is on the verge
of becoming topological, and any finite interaction will drive it to the topological
phase.
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where we have defined v̄ = (v++v−)/2, and the dimensionless couplings y⊥1 = g⊥1 /πv̄,

y+
2 = g+

2 /πv+, y−2 = g−2 /πv−, and y2 = g+
2 /2πv+ + g−2 /2πv− − g

‖
2/πv̄. The above

equations have been derived using a perturbative treatment and they are valid when
y1, y

‖
2, y±2 and ∆±/v±Λ are all smaller than 1.

Equations (2.30a,2.30b) give rise to a Kosterlitz-Thouless (KT) type of flow
for y⊥1 and y2. It is described by the constant of motion A2 = y2

2 − y2
1, where

y1 ≡ y⊥1
√

(v̄2/v+v− + 1)/2. Of greatest interest for us is the region y2 > y1 ≥ 0, this
corresponds to an interaction which is repulsive on all length scales. In this case,
the flow of y1 and y2 is given by

y1(`) = A csch

[
A`+ arcoth

y2(0)

A

]
, (2.31a)

y2(`) = A coth

[
A`+ arcoth

y2(0)

A

]
. (2.31b)

Both y1 and y2 flow down, saturating after an RG time `sat ∼ A−1, at 0 and A,
respectively. One can insert these solutions into Eqs. (2.30c) and (2.30d), and in-
tegrate to obtain y+

2 and y−2 , respectively. The interaction couplings y⊥1 , y+
2 , and

y−2 can then be inserted into Eqs. (2.30f,2.30e) which generally require a numerical
solution for ∆±.

We wish to determine the topological phase diagram of the system as a function of
its initial couplings. We solve the above flow equations up to an RG time `∗, at which
one of the pairing potential flows to strong coupling, namely |∆±(`∗)|/v±Λ = 1. Be-
yond this point the perturbative RG treatment is not valid anymore. Let us assume,
without loss of generality, that ∆+ flows to strong coupling first. This in particular
means that the interaction couplings (which have flown down) are small in com-

parison to it, namely y⊥1 , y
‖
2, y
±
2 � |∆+(`∗)|/v+Λ = 1. If at this point ∆−(`∗)/v−Λ

happens also to be large in comparison to y⊥1 , y
‖
2, y
±
2 , then we can neglect the in-

teraction couplings. One can then use the topological invariant of a noninteracting
system [see Eq. (2.19)], ν = sgn[∆+(`∗)]sgn[∆−(`∗)]. Generally, however, ∆−(`∗) can
be small, and one has to modify the expression for ν to account for the non-negligible
interaction terms.

To this end we note that since ∆+(`∗) is large, the positive-helicity degrees of
freedom [R↑(x) and L↓(x)] are gapped, and we can safely integrate them out. Upon
doing that, one is left with an action containing only the negative-helicity fields
[R↓(x) and L↑(x)], with a pairing potential ∆′− = ∆−(`∗) + δ∆−. To leading order
in the interaction couplings, the correction is given by (see Appendix 2.C)

δ∆− = − v̄

2v+

y⊥1 (`∗)∆+(`∗) sinh−1

[
v+Λ

|∆+(`∗)|

]
= −1

2
y⊥1 (`∗)sgn[∆+(`∗)] sinh−1(1)v̄Λ.
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(2.32)

At this point we can continue the RG procedure, applied only to the negative-helicity
degrees of freedom,

ẏ−2 = 0, (2.33a)

∆̇′− =

(
1− 1

2
y−2

)
∆′−, (2.33b)

namely ∆′− flows to strong coupling (without changing sign), while y−2 remains per-
turbative. We can therefore use the topological invariant of noninteracting systems,
only with ∆−(`∗) substituted by ∆′−, ν = sgn[∆+(`∗)]sgn[∆′−]. Finally, accounting
also for the possibility that ∆− flows to strong coupling before ∆+, we can write

ν =sgn

{
∆+(`∗)

v̄Λ
− sinh−1(1)

2
y⊥1 (`∗)sgn[∆−(`∗)]

}
×

sgn

{
∆−(`∗)

v̄Λ
− sinh−1(1)

2
y⊥1 (`∗)sgn[∆+(`∗)]

}
,

(2.34)

where `∗ is the RG time when the first of ∆+ and ∆− reaches strong coupling.
To understand how repulsive interactions drive the system into the TRITOPS

phase, let us concentrate on the special case, v+ = v−, y−2 = y+
2 , for which Eqs. (2.30f,

2.30e) reduce to

∆̇s =

(
1− 1

2
y+

2 −
1

2
y1

)
∆s, (2.35a)

∆̇t =

(
1− 1

2
y+

2 +
1

2
y1

)
∆t. (2.35b)

The effect of forward scattering and of backscattering on the pairing potentials is
now apparent. The forward scattering term y+

2 equally suppresses the singlet and
triplet pairing terms. The backscattering term y1, on the other hand, suppresses ∆s,
while strengthening ∆t, causing the latter to flow faster to strong coupling. From
Eq. (2.35) one can extract the ratio between the triplet and singlet pairing terms as
a function of RG time,

∆t(`)

∆s(`)
=

∆0
t

∆0
s

exp

[∫ `

0

d`′y1(`′)

]
. (2.36)

If the time it takes y1 to flow to zero, `sat, is much shorter than `∗, we can
approximate the ratio ∆t(`

∗)/∆s(`
∗) by taking the upper limit of the above integral
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to infinity. Using Eq. (2.31a), one obtains in this case

∆t(`
∗)

∆s(`∗)
' ∆0

t

∆0
s

√
y0

2 + y0
1

y0
2 − y0

1

. (2.37)

Furthermore, since by our assumption y1(`∗) ' 0 (follows from `sat � `∗), Eq. (2.34)
tells us that the condition for the system to be topological is simply |∆t(`

∗)| >
|∆s(`

∗)|. We wish to understand when this approximation is valid. To this end,
we can estimate the time it would take for one of the pairing potentials to reach
strong coupling, `∗ ∼ ln(v±Λ/∆0

±)∗. Namely, the above long RG-time approximation
will be valid if the initial pairing potentials are small enough such that ∆0

± �
v±Λ exp(−1/A). Note that the above approximation will necessarily be violated
close to the separatrix of the KT flow, since there A→ 0.

We can now use the result, Eq. (2.37) to construct the phase diagram of the
system as a function of the initial values of y2 and y1, given fixed initial conditions
for ∆s and ∆t. Assuming that we can take the long RG-time limit, we can find an
equation for the phase boundary in the y2y1−plane, by setting equation (2.37) to 1
and solving for y1. One then immediately finds that the phase boundary obeys the
equation

y0
1 =

1− (∆0
t/∆

0
s )2

1 + (∆0
t/∆

0
s )2
· y0

2, (2.38)

namely, the system is in the topological phase above this line in the y1y2−plane.
The topological region becomes bigger as the ratio ∆0

t/∆
0
s increases. In Fig. 2.5 we

present the topological phase diagram in the y2y1-plane for fixed initial values ∆s and
∆t. The phase boundary is obtained by numerically solving Eq. (2.30) up to a time
`∗, and then invoking Eq. (2.34), with `∗ being the RG time when the first coupling
becomes 1. The dashed red line shows the long-RG time approximation of the phase
boundary, Eq. (2.38). As anticipated, it becomes more accurate as A increases. We
note that above the separatrix of the KT flow, y1 and y2 flow to strong coupling
and the system is driven into an intrinsically topological phase [40, 73], irrespective
of the initial induced potentials ∆±. Some nonvanishing induced pairing is however
necessary to keep the system fully gapped.

Let us now reconsider the case of a Hubbard-type interaction, g⊥1 = g+
2 = g−2 = U ,

and g
‖
2 = 0. Note that for v+ = v− this mean y2 = y1, while for v+ 6= v−, this means

y2 ≥ y1 [see the definitions below Eq. (2.30)]. Importantly, in both cases the KT

∗This estimation is obtained upon neglecting the second order terms in Eqs. (2.30e,2.30f) and
integrating them up to ∆±(`∗) = v±Λ.
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Figure 2.5: Phase diagram of the interacting model described in Eqs. (2.17)
and (2.22), as a function of forward (y2) and backward (y1) scattering interaction
terms. The solid red line shows the phase boundary, calculated using the RG flow
equations, Eq. (2.30), and the topological invariant, Eq. (2.34). The dashed red line
indicates the long RG-time approximation for the phase boundary, Eq. (2.38). It
agrees with the numerical result when ∆0

± � v±Λ exp(−1/A), where A2 = y2
2 − y2

1.
The white solid line corresponds to the separatrix of the Kosterlitz- Thouless flow,
above which y1 and y2 flow to strong coupling. In obtaining this phase diagram, we
have used v− = v+ = v̄, y+

2 = y−2 = y2, and the initial singlet and triplet pairing
potentials were taken to be ∆0

t = 0.01v̄Λ and ∆0
s = 0.02v̄Λ, respectively.

flow equations dictates that the interaction couplings flow down. Figure 2.4 shows
the phase diagram for this Hubbard-type interaction, for v+ = v−. The critical
interaction strength U which defines the phase boundary is numerically calculated
as a function of the initial ratio ∆0

t/∆
0
s , for different fixed values of ∆0

s . We note
that this phase boundary (solid lines) agrees well with that obtained from the mean
field analysis (dashed lines), given in Eq. (2.29).

The results presented in Figs. 2.4 and 2.5 are both for the case of g+
2 = g−2 ,

v+ = v−. Under these conditions, if the initial triplet term is zero, it will remain
zero for all RG times, as can be seen from Eq. (2.35b). This is no longer the case
upon relaxing one of these conditions, since the flow equations generally couple
∆t to ∆s [see Eq. (2.30)]. Consequently, a phase transition into the topological
phase can occur at a finite interaction strength, even for vanishingly small initial

34



∆0
t . Nevertheless, systems in which the initial triplet term can be of the order of

the singlet term, such as those presented in Sec. 2.4, are more susceptible to being
driven into the topological phase by the effect of repulsive interactions.

2.4 Microscopic Models

In the previous section we have studied a general low-energy Hamiltonian, and
showed that it is driven into the TRITOPS phase due to repulsive interactions. In
this section we wish to explore specific microscopic models of systems which can
be realized in currently-available experimental setups. These are (i) a narrow 2d
quantum spin Hall insulator (QSHI) partially covered by an s-wave SC, and (ii) a
quasi 1d semiconductor nanowire proximitized by an s-wave SC. We show that these
systems are described at low energies by the minimal model studied above with a
nonvanishing induced triplet pairing. Later, in Sec. 2.5 we shall perform numer-
ical mean-field calculations and Density Matrix Renormalization Group (DMRG)
calculations on system (ii) to verify that it indeed enters the topological phase.

2.4.1 Narrow quantum spin Hall insulator

We consider a narrow two-dimensional quantum spin Hall Insulator (QSHI) in prox-
imity to an s-wave SC [74]. A QSHI [5, 31, 32] is a phase characterized by a pair
of counter-propagating helical modes on each edge of the system as depicted in
Fig. 2.6(a). We define the correlation length ξQSHI as the characteristic length with
which the helical edge modes decay into the bulk. If the width of the bar d is of
the order of ξQSHI or less, then gapless modes of opposite edges are coupled and an
energy gap is opened [cf. Fig. 2.6(b) and Fig. 2.6(c)]. When the chemical potential
lies above or below the gap, the low-energy sector of the system is described by a
one-dimensional model having four Fermi points, similar to the Hamiltonian H0 of
Eq. (2.17). We now show that coupling one of the edges to a conventional s-wave
SC results in a nonvanishing triplet pairing component.

In the absence of interactions, the two coupled edges are described by the fol-
lowing Hamiltonian

HQSHI =
∑
k

Ψ†kH(k)Ψk ; Ψ†k = (a†k↑, b
†
k↑, a−k↓, b−k↓)

H(k) = [−µ+ (δµ+ vk)λz + tλx]τ z +
∆ind

2
(1 + λz)τx,

(2.39)

where a†ks (b†ks) creates an electron with momentum k and spin s =↑, ↓ on the lower
(upper) edge of the sample. {τ i}i=x,y,z and {λi}i=x,y,z are sets of Pauli matrices in
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(a) (b) (c)

Figure 2.6: (a) A narrow two dimensional quantum spin Hall insulator in proximity
to a conventional s-wave superconductor. (b) In the absence of induced supercon-
ductivity and tunneling between opposite edges, the low-energy electronic spectrum
is described by two pairs of helical edge states, the helicity being opposite for the
two edges. (c) If the width of the sample d is of the order of the characteristic cor-
relation length ξQSHI or less, then the opposite edges are coupled (with a coupling
constant t), and an energy gap is opened. Such a coupling between the edge modes
is necessary in order to have nonzero backscattering interaction, which is crucial for
realizing the topological phase (see Sec. 2.3.1 and Sec. 2.3.2).

the particle-hole space and the lower edge-upper edge space, respectively. Here, v
is the propagation velocity of the edge modes, t is the coupling constant between
the lower and upper edge modes (which results from the finite width of the sample),
µ ± δµ are the chemical potentials at the upper and lower edge, respectively, and
∆ind is the pairing potential induced by the SC on the lower edge of the sample [cf.
Fig. 2.6(a)].

We consider the case where, in the absence of proximity, the chemical potential
lies inside the upper band [see Fig. 2.6(c)]∗, and where the induced pairing, ∆ind, is
small in comparison with the distance to the lower band, µ + |t|. We can therefore
project out the lower band, arriving at the following effective Hamiltonian for the
upper band

Heff =
∑
k

{∑
s=↑,↓

(√
t2 + (δµ+ svk)2 − µ

)
c†kscks + ∆(k)

(
c†k↑c

†
−k↓ + h.c.

)}
,

(2.40)

with the effective pairing potential

∆(k) =
∆ind

2

[
1 + (δµ+ vk)/

√
t2 + (δµ+ vk)2

]
. (2.41)

∗Similar results are obtained if one consider the case where the chemical potential lies inside
the lower band.

36



Here, c†ks describes electronic modes in the upper band with momentum k and spin
s. It is related to the left and right edge modes through

c†ks = cos(φks)a
†
ks + sin(φks)b

†
ks,

cos(2φks) = (δµ+ vks)/
√
t2 + (δµ+ vks)2,

sin(2φks) = t/
√
t2 + (δµ+ vks)2,

(2.42)

where we have used a convention in which s = 1 corresponds to spin ↑, and s = −1
corresponds to spin ↓.

Assuming weak pairing∗, we can linearize the spectrum near the Fermi energy
and impose a momentum cutoff Λ, resulting in the following Hamiltonian

H lin =
∑
|k|<Λ

{
v̄k
∑
s=↑,↓

(R†ksRks − L
†
ksLks) + (∆+R

†
k↑L

†
−k↓ + ∆−L

†
k↑R

†
−k↓ + h.c.)

}
(2.43)

where

Rk↑ = ck+
F +k,↑ ; Lk↓ = c−k+

F +k,↓ ; Rk↓ = ck−F +k,↓ ; Lk↑ = c−k−F +k,↑, (2.44)

and

∆+ = ∆(k+
F ) ; ∆− = ∆(−k−F ). (2.45)

The velocity of the modes at the Fermi points is given by

v̄ = v
√

1− (t/µ)2, (2.46)

and the Fermi momenta are given by k±F = (µv̄/v ∓ δµ)/v (Notice that since the
chemical potential is assumed to lie inside the upper band one has µ > |t|). The
Hamiltonian of Eq. (2.43) is exactly the minimal model Hamiltonian of Eq. (2.17),
written in momentum space, with v+ = v− = v̄.

As discussed above, the system is in its topological phase when sgn(∆+)sgn(∆−) =
−1. Alternatively stated, this occurs when |∆t| > |∆s| [see Eq. (2.20)]. For the
model at hand one has

∆s = ∆ind/2 ; ∆t =
v̄

v
∆ind/2. (2.47)

∗Weak pairing here means that the pairing potential is small with compare to the distance from
the Fermi energy to the bottom of the band, namely µ− |t| � |∆(k)|.
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As expected, in the absence of interactions |∆t| ≤ |∆s|. Importantly, however, ∆t

is nonzero, and can generally be of similar magnitude to ∆s, making the system
susceptible to being driven into the TRITOPS phase by short-range repulsive inter-
actions.

The existence of a nonvanishing triplet pairing term can also be understood from
a simple qualitative argument. The lower and upper edges of the QSHI host modes
of positive and negative helicity, respectively. Since the SC is coupled to the lower
edge, the pairing of the positive-helicity modes, ∆+, is larger in magnitude than
that of the negative-helicity modes, ∆−, and consequently ∆t 6= 0. This agrees
with Eqs. (2.46) and (2.47) which suggest that |∆t| is maximal when the edges are
maximally separated (namely when t = 0). We note, however, that some overlap
between the edge modes is necessary in order to eventually achieve the TRITOPS
phase. This is because in the absence of such overlap, the backscattering interaction
vanishes. As was shown in Sec. 2.3.1 and Sec. 2.3.2, this interaction terms is crucial
for the system to be driven into the topological phase.

2.4.2 Proximity-coupled semiconductor wire

Next we concentrate on another system which can be driven into the TRITOPS
phase by repulsive interactions, a spin-orbit coupled semiconductor nanowire. We
now show that this system is described at low-energies by the Hamiltonian of
Eq. (2.17) with a nonvanishing triplet pairing term.

Consider a semiconductor spin-orbit coupled nanowire in proximity to a bulk
three-dimensional s-wave SC as depicted in Fig. 2.7(a). The wire is infinite in
the x direction, while its lateral dimensions are wy × wz. We wish to write the
Hamiltonian for the lowest transverse mode of the wire. If the width of the wire
is small compared to the spin-orbit coupling length, then the z component of the
electron’s spin is approximately conserved∗. Under this assumption, and in the
absence of electron-electron interactions, the effective Hamiltonian for the lowest
band is given by

Heff =
∑
k

{∑
ss′

[(
k2

2m∗
− µ

)
δss′ + αkσzss′

]
c†kscks′ + ∆(k)(c†k↑c

†
−k↓ + h.c.)

}
, (2.48)

where c†ks creates an electron in the lowest transverse mode of the wire with spin s
and momentum k along the x direction. Here m∗ is the effective mass of electrons
in the wire, µ is the chemical potential, and α is the spin-orbit coupling strength.

∗See Appendix 2.D for a detailed derivation.

38



(a) (b) (c)

Figure 2.7: (a) A semiconductor quasi one-dimensional nanowire on top of a bulk
s-wave superconductor. (b) As a result of spin-orbit coupling, the spatial profile
of the electronic wave functions depends on the factor ks, with s = 1 for spin ↑,
and s = −1 for spin ↓, and with k being the momentum in the x direction. Wave
functions with positive helicity (ks > 0) are pushed towards the superconductor,
while wave functions with negative helicity (ks < 0) are pushed away from it. (c)
Dispersion of the lowest transverse mode of the semiconductor nanowire. The modes
near ±k+

F have a positive helicity and therefore experience a pairing potential ∆+

which is larger than the pairing ∆− of modes at ±k−F which have negative helicity.
This results in a nonvanishing triplet pairing term ∆t = (∆+ −∆−)/2.

The induced pairing potential in the lowest transverse band is approximately given
by

∆(k) = ∆ind(1 + βk), (2.49)

where β is a constant which arises due to spin-orbit interaction. Equation (2.49) is
derived in Appendix 2.D by perturbatively considering a general spin-orbit coupling
term in the wire, and integrating out the superconductor’s degrees of freedom [see
Eq. (2.97)]. Physically, Eq. (2.49) implies that modes with different helicity have
a different induced pairing potential [see Fig. 2.7(b-c)]; we will elaborate on the
mechanism behind this effect below.

If the chemical potential lies inside the band, then there are two pairs of Fermi
points ±k+

F and ±k−F as depicted in Fig. 2.7(c). Assuming that the induced pairing
potential is much smaller than distance to the bottom of the band, we linearize the
spectrum near the Fermi points as in Sec 2.4.1. This results in exactly the same
Hamiltonian of Eq. (2.43) and Eq. (2.17), where as before we define Rk↑,↓ = ck±F +k,↑,↓,

Lk↑,↓ = c−k∓F +k,↑,↓, and ∆± = ∆(±k±F ). The velocities of the modes at the Fermi

points are given by v+ = v− =
√

2µ/m∗ + α2 ≡ v̄, and the Fermi momenta are given
by k±F = m∗(v̄ ∓ α). The momentum dependence of ∆(k) results in the following
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singlet and triplet pairing terms

∆+ = ∆ind(1 + βk+
F ) ; ∆− = ∆ind(1− βk−F ), (2.50)

which translate into

∆s = (1− βαm∗)∆ind ; ∆t = βm∗v̄∆ind. (2.51)

Equation (2.49) was derived in a perturbative treatment, and therefore it is valid
only for sufficiently small β, for which ∆s exceeds ∆t. This holds more generally, as
the bare induced triplet pairing potential has to be smaller than the singlet term in
the absence of interactions [45, 48].

The form of ∆(k) is derived in Appendix 2.D in detail, however the essence of
that derivation can be captured in the following simplified model. Let us consider
the electrons in the wire to be confined in the y direction by a harmonic potential
Vc(y) = m∗ω2

cy
2/2, where y = 0 is at the center of the wire. The spin-orbit coupling

in the wire contributes a term of the form Hso = u∂yVc(y)p̂xσ
z. Ignoring the z

direction for the moment (justified when wz � wy), the electrons in the wire are
governed by the first-quantized Hamiltonian

Hwire =
p̂2
x + p̂2

y

2m∗
+

1

2
m∗ω2

c (y + up̂xσ
z)2. (2.52)

The eigenfunctions of Hwire are exp(ikx)ηn(y + uks), where s is the spin, and ηn(y)
are the eigenfunctions of an harmonic oscillator of mass m∗ and frequency ωc. It
is now apparent that states with ks > 0 are shifted towards the SC (y < 0), while
states with negative ks < 0 are shifted away from the SC (y > 0) [75]. This is
illustrated in Fig. 2.7(b) Upon coupling the SC to the wire, modes with ks > 0 will
therefore experience an induced pairing potential which is bigger that that of modes
with ks < 0, in accordance with Eq. (2.50).

2.5 Numerical Analysis

In this section we concentrate on the semiconductor nanowire realization of the
TRITOPS phase (see Sec. 2.4.2), and numerically study its phase diagram. First, we
construct a tight-binding model which captures the correct symmetry of the SOC in
the wire. We then study its phase diagram using both a Hartree-Fock approximation
and a DMRG analysis. We verify that for sufficiently strong repulsive interactions
the model indeed gives rise to a TRITOPS phase. Finally, we study the behavior
of the system under breaking of TRS, and demonstrate that the dependence of the
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Figure 2.8: The proposed system consists of a single quasi-1D wire (modelled by two
chains) with SOC, coupled to a conventional s-wave superconductor. Integrating out
the degrees of freedom of the superconductor generates a pairing potential ∆ind on
the chain adjacent to the superconductor. Repulsive interactions in the wire which
resist local pairing of electrons, induce a pairing potential ∆̃b on the ‘b’ chain with
an opposite sign to ∆ind.

splitting of the zero-bias conductance peak on the direction of the Zeeman field can
be used as a distinct experimental signature of the TRITOPS phase.

To model the proximity-coupled interacting semiconductor nanowire we consider
the following two-chain tight-binding Hamiltonian (see Fig. 2.8):

H =
1

2

∑
k

Ψ†kH0,kΨk +
∑
i,ν

Uνn̂iν↑n̂iν↓

H0,k =
[
ξ̄k + δξkλ

z − (ᾱ + δαλz) sin k σz + tabλ
x
]
τ z + ∆ind/2 · (1 + λz) τx,

(2.53)

where Ψ†k = (ψ†k, −iσyψ−k). The two spatially distinct chains are labeled, a and

b, such that ψ†k = (c†a,k↑ c†b,k↑ c†a,k↓ c†b,k↓). {τj}j=x,y,z, {λj}j=x,y,z, and {σj}j=x,y,z
are sets of Pauli matrices operating on particle-hole (PH), chain and spin degrees of
freedom, respectively. Here, ξ̄k, δξk, ᾱ and δα are defined as (ξk,a±ξk,b)/2 and αa±αb,
respectively, and ξk,ν = 2tν (1− cos k)− µν , ν = a, b. The parameters tν , αν , µν and
Uν represent the hopping, SOC, chemical potential and on-site repulsion on each of
the chains, ν = a, b, while tab is the hopping between the chains. The operator n̂i,ν,s
represents the number of particles with spin s on site i of chain ν.

The need for (at least) two chains in the model comes from the need to simulate
the dependence of the SOC in the y direction. As explained in Sec. 2.4.2 and in
Appendix 2.D, the finite induced triplet pairing has its origin in the SOC term which
stems from the asymmetric part of the electric field. In a lattice model this can be
most-simply captured by assuming two parallel chains, with two different strength
of SOC, αa and αb.
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2.5.1 Hartree-Fock

We are interested in the topological phase diagram of the Hamiltonian in Eq. (2.53).
In the Hartree-Fock analysis we consider a set of trial wave-functions which are
ground states of the following quadratic Hamiltonian:

HHF =
1

2

∑
k

Ψ†kH
HF

k Ψk, ; HHF

k = H̃0,k + ∆̃b/2 · (1− λz) τx, (2.54)

where H̃0,k has the same form as H0,k, with effective parameters µ̃a, µ̃b and ∆̃ind,
and where ∆̃b is an effective pairing potential on chain ‘b’. Upon determining the
four effective parameter parameters, the value of the topological invariant can be
obtained by applying the results of Sec. (2.2.3) to Eq. (2.54). We determine the
effective parameters by numerically minimizing the expectation value of the full
Hamiltonian,

〈H〉
HF

= E0 +
1

L

∑
ν

Uν
(
Nν,↑Nν,↓ + |Pν |2

)
,

Nν,s =
∑

k〈c
†
ν,k,scν,k,s〉HF

, Pν =
∑

k〈c
†
ν,k,↑c

†
ν,−k↓〉HF

,

E0 =
1

2

∑
k,m,n

H0,k,mn〈Ψ†k,mΨk,n〉HF
,

(2.55)

where L is the number of sites in each chain, and we have used Wick’s theorem,
noting the exchange term vanishes due to the σz conservation of HHF

k .
We are interested in the conditions under which HHF

k is in the topological phase.
We note this Hamiltonian possesses both TRS Θ = iσyK and PH symmetry Ξ =
τ yσyK, expressed by ΘHHF

k Θ−1 = HHF
−k and ΞHHF

k Ξ−1 = −HHF
−k, confirming it is

in symmetry class DIII [33]. Following Sec. 2.2.3, we obtain an expression for the
Z2−invariant by using the chiral symmetry {HHF, τ y} = 0, to divide HHF into two
off-diagonal blocks

ei
π
4
τxHHF(k)e−i

π
4
τx =

(
0 Bk
B†k 0

)
. (2.56)

In this model we have an additional σz symmetry, allowing Bk to be further separated
into two diagonal blocks, B↑k and B↓k = B↑−k. The Z2 invariant is then given by the

parity of the winding number of θk, defined by exp (iθk) = detB↑k/| detB↑k|. For the
model at hand one has

detB↑k = t2ab + ∆̃ind∆̃b − ε̃a,kε̃b,k − i(∆̃indε̃b,k + ∆̃bε̃a,k), (2.57)
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Figure 2.9: Hartree-Fock phase diagram as a function of chemical potential µa =
µb = µ, and interaction strength U , for ta = tb = 1, tab = 0.4, αa = 0, αb = 0.6, and
∆ind = 1. The diagram includes a time-reversal invariant topological superconduc-
tor phase (TRITOPS), a trivial superconductor phase, and a region in which the
Hartree-Fock solution is locally unstable to the formation of spin-density waves (see
the footnote ∗).

where ε̃ν,k = 2tν(1− cos k)− 2αν sin k− µ̃ν . It can be shown from Eq. (2.57) that in
order to have a non-trivial winding number (i.e. odd), one must have different SOC
on the two chains, αa/ta 6= αb/tb. We note, however, that this requirement can be
relaxed by adding a SOC term associated with hopping between the chains. We can
now solve the Hartree-Fock problem for the effective parameters, and then calculate
the Z2 invariant using Eq. (2.57) to obtain the phase-diagram of the system.

In addition to the trivial and the topological superconducting phases other com-
peting phases may appear, which are not accounted for in our trial wave-functions.
In particular, absent from Eq. (2.54) are terms which break the lattice translational
invariance and drive the system to a spin-density wave (SDW) state∗. To examine
this possibility, after obtaining the effective parameters in Eq. (2.54), we add to HHF

the term −
∑

ν,q,s φν−qsρ̂σqs, where ρ̂νqs is the Fourier transform of n̂i,νs. We then

use linear response to calculate the Hessian matrix ∂2〈H〉
HF
/∂φν′,q,s′∂φν,−q,s. For

the Hartree-Fock solution to be locally stable to formation of SDW we demand the
Hessian to be positive definite (see Appendix 2.E for details). In Fig. 2.9 we present
the Hartree-Fock phase diagram as a function of chemical potential and interaction

∗This ordered phase is not permissible in the continuum limit in 1D, as it requires the breaking of
a continuous symmetry. We therefore expect that long-range fluctuations (which are not accounted
for in the Hartree-Fock treatment) would result in a Luttinger liquid phase.
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strength for a specific set of wire parameters.

2.5.2 Density matrix renormalization group

We next verify the appearance of the topological phase using DMRG. As was al-
ready mentioned, the TRITOPS hosts two Majorana modes, related by time-reversal
operation, at each end of the wire. We denote by γL(R) one Majorana operator lo-
calized on the left (right) end of the wire, and by γ̃L(R) its time-reversed partner.
These four Majorana operators give rise to two zero-energy fermionic operators
fL,R = γL,R + iγ̃L,R. Denote by |Ψ〉 the many body ground state of the system
in which both of these fermionic states are unoccupied nfR = nfL = 0, where

nfR(L)
= 〈Ψ| f †R(L)fR(L) |Ψ〉. It is clear then that the four states |Ψ〉, f †L,R |Ψ〉 and

f †Lf
†
R |Ψ〉 are all degenerate in the thermodynamic limit. The four-fold degeneracy

of the ground state is a distinct signature of the TRITOPS phase easily accessible
using DMRG. Moreover, considering even and odd fermion parity sectors separately,
we expect a double degeneracy in each. In a finite system, a non-vanishing overlap
between the Majorana modes living on opposite ends of the wire will give rise to
an energy splitting exponentially decreasing with the system size. However, the two
odd fermion parity states will remain exactly degenerate for any system size due to
Kramers’ theorem.

A phase diagram obtained using DMRG is shown in Fig. 2.10(a). Keeping the
chemical potential µ constant we vary the on-site repulsive interaction strength U .
At U = 0 the system is in a trivial superconducting phase with a finite gap for single
particle excitations. At a critical interaction strength, Uc, a phase transition occurs
and the gap closes. For U > Uc the gap re-opens with the system now being in the
TRITOPS phase.

To obtain the phase diagram we calculate the lowest energy states and analyze
the scaling of the gaps in the system as we increase its size. We take advantage of
fermion parity conservation and calculate the energies in the even and odd fermion
parity sectors separately. In Figs. 2.10(b-d) we present the scaling of the low-lying
energy spectrum with the length of the wire at three different points in the phase
diagram: one in the trivial superconducting phase, one in the TRITOPS phase and
one at the critical point where the gap closes. In the trivial superconducting phase
[Fig. 2.10(b)], we observe a unique ground state as expected. The gap to the first
excited state extrapolates to a finite value in the limit of an infinite system. Note
that this state is doubly degenerate due to Kramers’ theorem, as it is in the odd
fermion parity sector. The gap to the first excited state in the even fermion parity
sector is nearly twice as large, as expected. At the phase transition, the gap closes.
For a finite 1D system this means that the gaps should be inversely proportional to
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Figure 2.10: (a) Phase diagram obtained using DMRG. The system is in the trivial
superconducting phase for U < Uc, and in the time-reversal-invariant topological
superconductor (TRITOPS) phase for U > Uc. The system’s parameters are ta =
tb = 1, tab = 0.4, αa = 0, αb = 0.6, ∆ind = 1, µ = 0.8. The low-lying energy
spectrum of the system vs. 1/L, where L is the length of the wire, for the three
marked points is plotted in (b-d). Energies plotted in blue (green) correspond to
energy states in the even (odd) fermion parity sectors. All energies are plotted with
respect to the energy of the ground state, which is in all cases the lowest energy
state in the even fermion parity sector, ∆En = En − Eeven

0 . (b) U = 0.5 < Uc. The
system is in the trivial superconducting phase. The first two states in the even and
odd fermion parity sectors are shown. The ground state is unique and the gap tends
to a constant as L → ∞, with a quadratic correction in 1/L as expected (the red
lines are quadratic fits). The first excited state which lies in the odd parity sector
is doubly degenerate as expected from Kramers’ theorem. (c) U = Uc = 2.4. Phase
transition point. Once again, the first two states in each fermion parity sector are
shown. All gaps scale linearly with 1/L in agreement with the system being gapless
in the infinite size limit (the red lines are linear fits). (d) U = 5.5 > Uc. The system
is in the TRITOPS phase. Here, three lowest states in each fermion parity sector
are shown. The result is consistent with a four-fold degenerate ground state in the
thermodynamic limit, separated by a finite gap from the rest of the spectrum. The
inset shows the energy difference ∆E between the lowest states in the even and odd
fermion parity sectors on a semi-log scale as a function of L. The result is consistent
with an exponential dependence of ∆E on the system size.
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the size of the system, as can be clearly seen in Fig. 2.10(c). In the TRITOPS phase
[Fig. 2.10(d)] the ground state is four-fold degenerate up to finite size splitting. The
exponential dependence of the energy splitting on the length of the wire can be
clearly seen from the inset. The two lowest energy states in the odd fermion parity
sector indeed remain degenerate for any system size. Excited levels are separated
from the ground state manifold by a finite gap.

We thus conclude that the DMRG study supports the Hartree-Fock analysis
of the system confirming the appearance of the TRITOPS phase due to repulsive
interactions.

2.5.3 Signature and breaking of time-reversal symmetry

In the TRITOPS phase the wire supports two MBS at each end. Measurement
of differential conductance, through a lead coupled to the end of the wire, should
therefore reveal those states via a peak at zero bias. At T → 0 the height of
the peak should be quantized to 4e2/h, as opposed to the TRS-broken topological
superconductors in which the peak is generally quantized to 2e2/h [18, 19, 76].

To explore this difference we can study the behavior of the system under the
breaking of TRS, by introducing a uniform magnetic field via the Zeeman term
HB = − ~B · ~σ. When the magnetic field is applied parallel to the direction of the
SOC (z in our setup), the zero-bias conductance peak (ZBCP) splits linearly with
the magnetic field, as the MBS are no longer protected by TRS. In contrast, we can
apply the field perpendicular to the SOC, e.g. along x. Even though TRS is now
broken, the Hamiltonian still has an antiunitary symmetry Λ = σxK, expressed by
ΛHkΛ

−1 = H−k, which protects the MBS from splitting [77]. More specifically, due
to this symmetry (together with PH symmetry) the Hamiltonian is in the BDI sym-
metry class [33] with a Z−invariant, whose value determines the number of MBS at
each end [6, 7]. In Fig. 2.5.3, we plot the number of MBS as a function of chemical
potential and Zeeman field as inferred from the BDI Z−invariant, calculated accord-
ing to Ref. [77]. One should note that in reality this symmetry is fragile, as it can be
broken for instance by introducing a term αabλ

yσxτ z, which describes Rashba-type
SOC associated with motion transverse to the wire. In such a case, however, we still
expect the splitting at small magnetic fields to be of the form [39] ~B · n̂ + O(B3),
for a certain unit vector n̂, which depends on details of the SOC. This means that
as long as ~B is applied perpendicular to n̂, the Zeeman splitting of the ZBCP scales
as B3 rather then linearly. This can serve as a distinct signature of the TRITOPS
phase.

We next use the scattering matrix formalism to calculate the differential con-
ductance through a single lead coupled to the system [23, 24], described by the
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Figure 2.11: (a) Phase diagram of the Hartree-Fock Hamiltonian of Eq. (2.54) as
function of chemical potential µ̃a = µ̃b = µ, and Zeeman field along x (perpendicular
to the SOC), for ta = tb = 1, tab = 0.4, αa = 0, αb = 0.6, ∆̃ind = 0.3 and ∆̃b = −0.15.
The system is in symmetry class BDI, and is characterized by a Z invariant, Q. Q
equals the number of MBS at each end of the wire. The TRITOPS phase is marked
by a red line. (b) Differential conductance through a single lead connected to the
wire as a function of bias voltage and Zeeman field for µ = 0.15. A wire of L = 100
sites was used in the calculation.

Hamiltonian of Eq. (2.54) with an additional Zeeman field along x. As is evident in
Fig. 2.5.3, there indeed exists a ZBCP quantized to 4e2/h which does not split at
low magnetic fields. As the field is further increased, a topological phase transition
occurs to a phase with a single MBS at each end, at which point the ZBCP peak
splits to three peaks. One of them stays at zeros-bias and is quantized to 2e2/h,
while the other two become part of the bulk spectrum.

2.6 Discussion

In this chapter we have explored the possibility of realizing time-reversal invariant
topological superconductivity (TRITOPS) in one dimension. It was concluded that,
unlike the time-reversal symmetry broken topological superconductors, which can
be realized in a noninteracting system coupled to a conventional SC [12–16, 41],
here repulsive electron-electron interaction is a crucial ingredient. This was shown
by studying the most general system of noninteracting electrons in proximity to
a bulk conventional superconductor. Irrespective of any details of the electronic
structure of the system and the form of its coupling to the superconductor, the
system is always in a topologically trivial phase. These results have implications
on the search for realizations of time-reversal invariant topological superconductors
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in class DIII. In order to avoid the trivial fate of the system, one has to either
invoke electron-electron interactions [46–52], or use a parent SC for which ∆kTsc is
not positive semi-definite. This can either be an unconventional SC [53–55], or a
combination of two SCs in a π junction∗ [39, 56, 57].

Following the above conclusions, we have studied the effect of electron-electron
interactions in systems which are proximity-coupled to a conventional SC. We have
constructed and studied a general low-energy model for a one-dimensional system,
and showed that the interplay between externally-induced superconductivity and
repulsive Coulomb interactions stabilizes a time-reversal invariant topological su-
perconducting phase. This phase is characterized by a Kramers’ pair of zero-energy
Majorana bound state at each end of the system. This occurs since short-ranged re-
pulsive interactions suppress the singlet component of the induced pairing potential,
while strengthening the triplet component.

We have suggested two experimentally-accessible setups of proximity-coupled
systems which realize this low-energy model, and which can therefore serve as a
platforms for realizing time-reversal invariant topological superconductivity. These
are (i) a narrow strip of a 2d topological insulator, partially covered by an s-wave
superconductor, and (ii) a quasi 1d semiconductor nanowire in proximity to an s-
wave superconductor. Our conclusions were corroborated in numerical simulation
of a microscopic model for system (ii). Superconducting proximity effect has been
established recently in both semiconducting nanowires and in topological insulators,
which makes us hopeful that TRITOPS phase could be realized in these kind of
system in the not too far future.

The models we have studied for realizing TRITOPS were of clean systems. We
expect the excitation gap of the system to protect the topological phase against
a moderate amount of disorder, namely disorder with associated mean free time
which is large in comparison with the inverse energy gap. This is the case for the
class-D TSC [70, 71], which can be thought of as “half” of a class-DIII TSC (namely
TRITOPS).

When attempting to realize TRITOPS it is important to have a clear experi-
mental signature of this phase. This can be accomplished by probing the Kramers’
pair of Majorana bound states which reside at each end of the system. By coupling
the end of the system to a normal-metal lead, the differential conductance can be
measured. At zero temperature this should yield a zero-bias peak which is quan-
tized to 4e2/h [47, 53, 78]. The behavior of this conductance peak upon breaking
time-reversal symmetry by a Zeeman field has features which are distinctive of a
Majorana Kramers’ pair [39, 47, 78]. Alternatively, current correlations in a two-

∗Notice, however, that creating such a π junction requires in itself interactions or fine tuning of
superconducting phases
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lead setup can be used to detect signatures which are unique to Majorana bound
states [79–81] (see also chapter 3). Coulomb-blockade spectroscopy, recently applied
to TSC with broken TRS, can be used to probe also the TRITOPS phase, where
the topological transition is expected to be manifested in the disappearance of the
even-odd effect. Experimental signatures have also been suggested to exist in the
anomalous behavior of Josephson junctions involving TRITOPS [82–84].

It is interesting to examine the strength of electron-electron interactions in the
suggested experimental setups of Sec. 2.4. Given an estimate for the induced pairing
potentials, ∆s and ∆t, one can then try and place a given system on the phase
diagram of Fig. 2.4 to predict whether it is in the topological or trivial phase. First
we note that the Coulomb interaction between the electrons is screened by the
presence of the SC. This sets a finite range for the interaction, given roughly by
the lateral distance between the SC and the electrons in the system. This can be
estimated as the width d of the QSHI strip (or of the wire in the case of the setup in
Sec. 2.4.2). At short electron-electron distances (|x− x′| � d) the divergence of the
Coulomb interaction is regularized by the finite width of the system, V (x − x′) ∼
e2/4πεd, where ε is the permittivity. If the Fermi wavelength is sufficiently larger
than the interaction range d, then the forward and backward scattering interactions
are of the same order,

g⊥1 , g
+
2 , g

−
2 ∼ d · e2

4πεd
=

e2

4πε
, (2.58)

and accordingly the dimensionless interaction strength is U/π~v̄ ∼ e2/4π2~v̄ε. The
velocity v̄ depends on details such as the chemical potential. However, a reasonable
estimate is v̄ ∼ 105m/s. Takeing ε ∼ 10ε0 results in U/π~v̄ ∼ 0.7. Based on
recent experiments [25, 27] one can estimate for the induced pairing potential, ∆s ∼
0.1meV. The energy cutoff for the low-energy theory should be roughly given by
the distance to the bottom of the band [see Figs. 2.6(c) and 2.7(c)] which again
depends on the chemical potential. Looking at the phase diagram of Fig. 2.4, and
assuming ∆s/~v̄Λ ∼ 0.1, we see that the system is expected to be in the topological
phase for initial ratios |∆t|/|∆s| greater than about 0.3.
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Appendices for Chapter 2

2.A Topological Criterion

Formulas for the topological invariant of 1d Hamiltonians in class DIII were derived
in several previous studies [36, 45, 47, 48, 66–68]. We shall focus here on the low-
energy model described by the Hamiltonian of Eq. (2.17). Namely, we are interested
in the condition on the parameters of Eq. (2.17) for which the system is in the
TRITOPS phase with a Kramers pair of Majorana bound states at each end of the
system. We shall use a scattering-matrix formalism to obtain a condition for the
existence of a zero energy bound state [66, 85].

Let our system, which is described by H = H0 + H∆, extend from x = 0 to
x → ∞. We attach on the left a normal-metal stub, extending from x = −dN to
x = 0, and described by H0. This is depicted in Fig. 2.12. In the absence of a barrier
at x = 0, a spin-↑ (↓) electron incident from the left at subgap energies is Andreev
reflected as a hole with spin ↓ (↑), with an amplitude a+ (a−), where [17, 86]

a±(ε) =
ε− i

√
∆2
± − ε2

±∆±
, (2.59)

for ε ≤ ∆±, as can be checked by matching the wave functions at x = 0. The
reflection matrix at the x = 0 interface is then given by

rNS =

(
0 A∗(−ε)

A(ε) 0

)
; A =

(
0 a−(ε)

a+(ε) 0

)
. (2.60)

At the end of the stub, x = −dN , electrons and holes experience total normal
reflection. The reflection matrix can therefore be written most generally as

rN =

(
R(ε) 0

0 R∗(−ε)

)
; R =

(
eiα(ε) 0

0 eiα(ε)

)
, (2.61)

where α(ε) is a phase which includes also the phase acquired during the propagation
in the metallic region. The form of rN is dictated by particle-hole symmetry, while
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Figure 2.12: Theoretical construction for obtaining the criterion for the low-energy
Hamiltonian H = H0+H∆ to be in the topologically nontrivial phase [cf. Eq. (2.17)].
The semi-infinite region x > 0 is described by the Hamiltonian H = H0 +H∆, while
the region −dN < x ≤ 0 is described by H0. Using the scattering matrices at x = 0
and at x = −dN we obtain the condition for the existence of a zero-energy bound
state (In fact two bound states due to Kramers’ theorem), signifying that the system
is in the topological phase.

the form of R(ε) is dictated by time-reversal symmetry, R(ε) = σyRT(ε)σy, and by
its unitarity.

Upon being reflected, once at x = 0 and once at x = −dN, the wave function
must comeback to itself. This implies a condition for the existence of a bound state

det(1− rNrNS) = 0. (2.62)

At zero energy this reduces to

|1− a∗+a−|2 = 0, (2.63)

and finally, since at zero energy a±(0) = −isgn(∆±), the condition for having a
zero-energy bound state is

sgn(∆+)sgn(∆−) = −1. (2.64)

Notice that the power of 2 in Eq. (2.63) signifies that there are indeed two zero-
energy solutions, these are the Kramers’ pair of Majorana bound states.

2.B Self-Consistent Equations

We derive here the self-consistent mean-field equations (2.26a) and (2.26b), appear-
ing in Sec. 2.3.1, by calculating the correlation functions in Eq. (2.25). To this end
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we write the mean-field Hamiltonian, defined above Eq. (2.24), in momentum space

HMF =
∑
|k|<Λ

{
(R†k↑, L−k↓)

(
v+k ∆̄+

∆̄+ −v+k

)(
Rk↑

L†−k↓

)

+(L†−k↑, Rk↓)

(
v−k ∆̄−
∆̄− −v−k

)(
L−k↑
R†k↓

)}
,

(2.65)

whereRs(x) = (1/
√
l)
∑
|k|<ΛRks exp(−ikx) and Ls(x) = (1/

√
l)
∑
|k|<Λ Lks exp(−ikx),

l being the length of the system, and Λ being the high momentum cutoff of the the-
ory. HMF can be readily diagonalized, yielding

HMF = EG +
∑
|k|<Λ

∑
τ=±

Ekτ (α
†
kταkτ + β†kτβkτ ), (2.66)

with Ek± =
√

∆̄2
± + (v±k)2, and with αk± and βk± given by(

αk+

β†k+

)
=

(
cos θk+ sin θk+

sin θk+ − cos θk+

)(
Rk↑

L†−k↓

)
, (2.67a)(

αk−
β†k−

)
=

(
cos θk− sin θk−
sin θk− − cos θk−

)(
L−k↑
R†k↓

)
, (2.67b)

where cos(2θk±) = v±k/
√

∆̄2
± + (v±k)2 and sin(2θk±) = ∆̄±/

√
∆̄2
± + (v±k)2.

By inverting Eq. (2.67), and using the fact that αk± and βk± annihilate the
ground state of HMF, one obtains (at zero temperature)

〈L↓(x)R↑(x)〉 =
1

l

∑
|k|<Λ

〈L−k↓Rk↑〉 = − 1

2l

∑
|k|<Λ

sin(2θk+) =

= −∆̄+

4π

∫ Λ

−Λ

dk√
∆̄2

+ + (v+k)2
= − ∆̄+

2πv+

sinh−1
(
v+Λ/|∆̄+|

)
,

(2.68)

and similarly

〈R↓(x)L↑(x)〉 = − ∆̄−
2πv−

sinh−1
(
v−Λ/|∆̄−|

)
. (2.69)

Inserting Eqs. (2.68) and (2.69) in Eq. (2.25) results in the self-consistent equations
for ∆̄±, Eqs. (2.26a) and (2.26b).
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2.C Derivation of Flow Equations

In this appendix we derive the flow equations, Eq. (2.30) in Sec. 2.3.2, by using
a perturbative RG procedure. The action corresponding to the full Hamiltonian
H0 +H∆ +Hint, specified in Eqs. (2.17) and (2.22), is given by S = S0 + S∆ + Sint,
with

S0 = −
∑
s

∫
k,ω

[
(GR

kωs)
−1R̄kωsRkωs + (GL

kωs)
−1L̄kωsLkωs

]
,

S∆ =
∑
s1s2

∆s1s2

∫
k,ω

(
R̄kωs1L̄−k−ωs2 + L−k−ωs2Rkωs1

)
,

Sint =

∫
1234

us1s2s3s4
R̄k1ω1s1L̄k2ω2s2Lk3ω3s3Rk4ω4s4 ,

(2.70)

where Rkωs, R̄kωs, Lkωs, and L̄kωs are Grassman fields, and where we have used the
abbreviations∫

k,ω

≡
∫ ∞
−∞

dω

2π

∫ Λ

−Λ

dk

2π
, (2.71)

and∫
1234

≡ (2π)2

4∏
i=1

(∑
si

∫ Λ

−Λ

dki
2π

∫ ∞
−∞

dωi
2π

)
δ(k1 +k2−k3−k4)δ(ω1 +ω2−ω3−ω4).

(2.72)

Above we have used a compact notation for the action S, by using the Green func-
tions GR,L

kωs and the couplings ∆s1s2 and us1s2s3s4
, which are defined by

Gη
kωs = (iω − η · vη·sk)−1 , (2.73a)

∆s1s2 =∆siσ
y
s1s2

+ ∆tσ
x
s1s2

, (2.73b)

us1s2s3s4
=− g⊥1 σxs1s2σ

x
s2s3

σxs3s4 + g
‖
2δs1s2δs2s3δs3s4

+ (g+
2 δs1↑ + g−2 δs1↓)σ

x
s1s2

δs2s3σ
x
s3s4

.
(2.73c)

On the right-hand side of Eq. (2.73a) we have used a convention where η = R(L)
corresponds to η = 1(−1), and s = ↑(↓) corresponds to s = 1(−1).

To study the low-energy physics of the system, we iteratively integrate out the
high-momentum modes within a small momentum shell, thereby obtaining an ac-
tion with an effectively-decreasing cutoff, Λ exp(−`), where ` is the so-called RG
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(a) (b) (c)

Figure 2.13: Diagrammatic representation of the second-order corrections to the
S0, appearing in Eq. (2.75). In (a) and (b) are diagrams which renormalize the
interaction couplings, while in (c) is the diagram which renormalizes the induced
pairing potentials. The corrections due to these diagrams are denoted by δuZS and
δuBCS, and δ∆, respectively.

time [72]. We are interested in the flow of the couplings ∆+, ∆+, g⊥1 , g
‖
2, g+

2 , and
g−2 as a function of `.

At tree level, all the interaction couplings g⊥1 , g
‖
2, g+

2 , and g−2 are marginal with
respect to the fixed point action S0. The induced pairing potentials ∆s,t (or equiv-
alently ∆±) are relevant, on the other hand, with a scaling dimension of 1. Impor-
tantly, the one-loop corrections will cause a difference in the flow of ∆s and ∆t.

To obtain the one-loop corrections to the flow, we treat S ′ = S∆ + Sint as a
perturbation to S0 and apply the cumulant expansion. Integrating over the fast
modes, one has

δS =
1

2

(
〈S ′〉20,> − 〈S ′2〉0,>

)
, (2.74)

where 〈 〉0,> stands for averaging over the fast modes with respect to the unperturbed
action S0. This results in the following corrections

(δuBSC)s1s2s3s4
= −

∑
s5s6

us1s2s6s5
us5s6s3s4

∫
k>,ω

GR
k,ω,s5

GL
−k,−ω,s6 , (2.75a)

(δuZS)s1s2s3s4
= −

∑
s5s6

us1s6s3s5
us5s2s6s4

∫
k>,ω

GR
k,ω,s5

GL
k,ω,s6

, (2.75b)

δ∆s1s2 = −
∑
s3s4

us1s2s4s3
∆s3s4

∫
k>,ω

GR
k,ω,s3

GL
−k,−ω,s4 , (2.75c)

which are described diagrammatically in Fig. 2.13. In obtaining Eqs. (2.75a,2.75b)
we have set the momenta and frequencies of the outer (slow) legs [see Fig. 2.13(a,b)]
to zero [72].

Finally, one can perform the frequency and momentum integration in Eq. (2.75)
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and arrive at

ġ⊥1 =
1

π

(
2

v+ + v−
g
‖
2 −

1

2v+

g+
2 −

1

2v−
g−2

)
g⊥1 , (2.76a)

ġ
‖
2 =

1

π(v+ + v−)
g⊥1

2
, (2.76b)

ġ+
2 = − 1

2πv−
g⊥1

2
, (2.76c)

ġ−2 = − 1

2πv+

g⊥1
2
, (2.76d)

∆̇+ = ∆+ −
1

2πv+

g+
2 ∆+ −

1

2πv−
g⊥1 ∆−, (2.76e)

∆̇− = ∆− −
1

2πv−
g−2 ∆− −

1

2πv+

g⊥1 ∆+. (2.76f)

Defining the average velocity, v̄ = (v+ + v−)/2, and the dimensionless couplings,

y⊥1 = g⊥1 /πv̄, y+
2 = g+

2 /πv+, y−2 = g−2 /πv−, and y2 = g+
2 /2πv+ + g−2 /2πv− − g

‖
2/πv̄,

one immediately arrives at Eq. (2.30).
As noted in the Sec. 2.3.2, we solve the flow equations up to an RG time `∗,

defined as the time at which one of the pairing potentials flows to strong coupling
(meaning it becomes of the order of the energy cutoff). Let us assume, for example,
that ∆+ flows to strong coupling first, namely that |∆+(`∗)| = v+Λ. The positive-
helicity degrees of freedom, Rkω↑ and Lkω↓ are therefore gapped and we can integrate
them out. We are then left with an action containing only the negative-helicity fields
Rkω↓ and Lkω↑,

S− =

∫
k,ω

{
−
[
(GR

kω↓)
−1R̄kω↓Rkω↓ + (GL

kω↑)
−1L̄kω↑Lkω↑

]
+∆′−(`∗)

(
L̄kω↑R̄−k−ω↓ +R−k−ω↓Lkω↑

)}
+ g−2 (`∗)

∫
1234

R̄k1ω1↓L̄k2ω2↑L̄k3ω3↑Rk4ω4↓,

(2.77)

where to leading order in the interaction couplings

∆′−(`∗) = ∆−(`∗) + g⊥1 (`∗)

∫
kω

∫
k′,ω′
〈Lkω↓Rk′ω′↑〉+ =

= ∆−(`∗)− g⊥1 (`∗)

2πv+

∆+(`∗) sinh

[
v+Λ

|∆+(`∗)|

]
,

(2.78)

and where 〈 〉+ stands for averaging with respect to the action containing only the
positive-helicity fields. We can now continue with the RG procedure, applied to S−,
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which results in the following flow equations

ġ−2 = 0, (2.79a)

∆̇′− =

(
1− g−2

2πv−

)
∆′−. (2.79b)

The flow is again stopped when ∆′− reaches strong coupling. Importantly, the sign
of the gap is determined by the sign of ∆′−(`∗). The topological invariant is then
given by ν = sgn[∆+(`∗)]sgn[∆′−(`∗)].

Finally, let us consider the possible interaction terms which were not included
in Eq. (2.22). To this end, we first turn back attention to Eq. (2.75). We note that
since the frequency integrals of Eq. (2.75) contain one right-moving green-function
and one left-moving Green function, there exists poles in both the lower and upper
halves of the complex frequency plane. Had the two Green functions been of the
same chirality, the two poles would have been in the same half plane, resulting in a
vanishing integral. We can now easily consider additional interaction terms which
are also allowed by time-reversal symmetry,

H ′int =

∫
dx
{
g⊥4 [ρR↑(x)ρR↓(x) + ρL↓(x)ρL↑(x)] + g+

4 [ρR↑(x)ρR↑(x) + ρL↓(x)ρL↓(x)]

+ g−4 [ρR↓(x)ρR↓(x) + ρL↑(x)ρL↑(x)]
}
.

(2.80)

The couplings g⊥4 , g+
4 , and g−4 are marginal at tree level. Considering the above

argument, any one-loop correction involving these couplings will necessarily contain
a loop with two Green functions of the same chirality, and would therefore vanish.
As a result, these couplings do not affect the flow of ∆±, g⊥1 , g±2 , and g

‖
2, nor do

they flow by themselves. This is the reason for not considering H ′int to begin with.

2.D Nanowire Effective Hamiltonian

In this appendix we derive the low-energy Hamiltonian for a Rashba spin-orbit cou-
pled wire in proximity to a three-dimensional s-wave SC as considered in Sec. 2.4.2.
We show that it has the form of Eq. (2.48) with a momentum-dependent pairing po-
tential ∆(k). This results in a nonvanishing triplet pairing term which, as explained
in Sec. 2.3, makes the system susceptible to being driven into a topological phase in
the presence of strong enough repulsive interactions.

We consider an infinite quasi one-dimensional wire with lateral dimensions wy �
wz. As depicted in Fig. 2.7(a), the wire is placed on the surface of a conventional
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s-wave SC along the x axis in the plane defined by y = −wy/2. The Hamiltonian
for the wire in first quantization is given by

Hsm = − ∇̂
2

2msm

− iλ(y, z) · (σ ×∇) + Vc(y, z) (2.81)

where msm is the effective mass of electrons in the semiconductor wire, Vc(y, z) is the
confining potential to be described below, and λ(y, z) is a spin-orbit coupling field
which stems from the internal effective electric field felt by the conduction electrons
in the wire. Here, σ is a vector of Pauli matrices in spin space. The SC is described
by the Hamiltonian

Hsc = HN +H∆,

HN =
∑
s=↑,↓

∫
d3r ψ†s(r)

[
−∇2

2msc

− µsc

]
ψs(r),

H∆ =

∫
d3r∆scψ

†
↑(r)ψ†↓(r) + h.c.,

(2.82)

where µsc is the chemical potential, msc is the effective mass of electrons in the normal
state of the SC, ∆sc is the superconducting gap, and ψ†s is a creation operator of
electrons with spin s =↑, ↓ in the SC.

Our goal is to derive an effective low-energy Hamiltonian for the semiconduc-
tor nanowire. To this end we first construct a tunneling Hamiltonian by following
Bardeen’s transfer Hamiltonian approach [87], and then integrate out the supercon-
ductor’s degrees of freedom. As we show below, the spin-orbit coupling term in
Eq. (2.81) modifies the form of the induced pair potential in the wire. Specifically,
it is responsible for the emergence of a triplet pairing term in addition to the usual
induced singlet pairing term. As explained in Sec. 2.3, the system is therefore more
susceptible to being driven into the TRITOPS phase by repulsive interactions.

In principle, to quantitatively account for the effect of the spin-orbit coupling
term, one needs to have knowledge of the functional form of λ(y, z). Deriving
λ(y, z) from a microscopic theory, however, is a formidable task which we do not
attempt here. Instead we shall rely on symmetry considerations, while treating
λ(y, z) perturbatively, in order to infer its main effect on the low-energy theory.

To construct a tunneling Hamiltonian we introduce an insulating layer between
the SC and the nanowire. The width of the layer is wb and the hight of the potential
barrier is Vb. The nanowire occupies the space defined by y ∈ [−wy/2, wy/2], z ∈
[−wz/2, wz/2], and is infinite along the x direction. The SC occupies the half space
defined by y < −(wb + wy/2) as depicted in Fig. 2.14.
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Figure 2.14: The profile of the electronic confining potential (red line) projected
along the y direction for the system depicted in Fig. 2.7(a). In order to construct
a tunneling Hamiltonian we consider a thin insulating layer between the nanowire
and the superconductor. This is described by a potential barrier of height Vb and
width wb.

Following Bardeen [87], we solve for the eigenfunctions in the nanowire φkx(r)
of the Hamiltonian Hsm but with the potential barrier extended to y → −∞, and
for the eigenfunctions in the normal state of the SC χk(r) with the potential barrier
extended to y →∞. The tunneling matrix elements are then given by

Tk,k′x =

∫
d3r χ∗k

[
H− Ek′x

]
φk′x , (2.83)

where Ek′x is the corresponding eigenenergy of φk′x , and H is the Hamiltonian with
the true confining potential as depicted in Fig. 2.14.

We solve Hsm in the limit of a high barrier, ηb ≡ 1/
√

2msmVbwy � 1, and we
concentrate on energies much smaller than Vb. To first order in ηb, and to zeroth
order in λ(y, z) one has

φ
(0)
m,n,kx

(r) =

√
2

πwywz
eikxx sin[

πm

wz
(z +

wz
2

)]×

×

{
sin[π(1−ηb)n

wy
(y + wy

2
)], −wy

2
< y ≤ wy

2

(−1)nπnηbe
γb(y+wy/2), y ≤ −wy

2

,

(2.84)

with γb ≡
√

2msmVb, and where m,n ∈ N. The eigenenergies are

E
(0)
m,n,kx

=
k2
x

2msm

+
(πm)2

2msmw2
z

+
(πn)2

2msmw2
y

(1− ηb). (2.85)
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The eigenfunctions of the SC in the normal state are

χk =
1√
2π3

ei(kxx+kzz)×

{
eiky(y+

wy
2

+wb) + iky+γb

iky−γb
e−iky(y+

wy
2

+wb), y < −wy
2

2iky
iky−γb

e−γb(y+
wy
2

+wb), y ≥ −wy
2

. (2.86)

We now turn to the first-order corrections of both the energies and the wave
functions in the nanowire due to spin-orbit coupling. From symmetry considerations
we can infer that λx = 0. To see this we first note that the vector field λ stems
from the electric field in the wire. Since the system is translationally invariant and
symmetric under mirror reflection x → −x, the field component λx must be zero.
Moreover, since the system is symmetric under z → −z, we must have λz(y,−z) =

−λz(y, z). Taking into account the fact that the wave functions φ
(0)
m,n,kx

have a
definite parity under z → −z, the first-order correction to the energies is given by

E
(1)
m,n,kx,s

= 〈φ(0)
m,n,kx

|−iλ·(σss×∇)|φ(0)
m,n,kx

〉 = 〈φ(0)
m,n,kx

|λy|φ(0)
m,n,kx

〉kxs ≡ αkxs. (2.87)

where s = 1 for spin ↑, and s = −1 for spin ↓. We note that this term vanishes for
a system with a symmetry y → −y. It is the breaking of this symmetry by the SC
which allows for a nonzero α. This is the usual term considered in one-dimensional
Rashba systems [15, 16].

We now wish to obtain a correction to the wave functions. We concentrate on
the lowest transverse band, namely m,n = 1, which is justified for a thin wire. We
make use of the limit wz � wy, and accordingly consider only the correction due to
the second lowest transverse band |φ1,2,kx〉,

|φ(1)
1,1,kx
〉 =
〈φ(0)

1,2,kx
| − iλ · (σ ×∇)|φ(0)

1,1,kx
〉

E
(0)
1,1,kx

− E(0)
1,2,kx

|φ(0)
1,2,kx
〉. (2.88)

Invoking once more the symmetry λz(y,−z) = −λz(y, z), one obtains to first order

|φ1,1,kx〉 = |φ(0)
1,1,kx
〉+

1

2
βkxσ

z|φ(0)
1,2,kx
〉, (2.89)

where for the sake of brevity we have defined

β =
8msmw

2
y〈φ

(0)
1,1,kx
|λy|φ(0)

1,2,kx
〉

3π2
. (2.90)

This term survives even if the system is symmetric under y → −y, i.e. its existence
does not rely on a substrate which breaks inversion symmetry. Its main effect is to
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push the wave functions either towards or away from the SC, depending on the sign
of kxσ

z [75].
We now plug Eq. (2.89) and Eq. (2.87) into Eq. (2.83) to obtain the matrix

elements between modes in the SC and modes in the nanowire. We invoke the limit
of a high barrier in which the energies of all the modes are smaller than Vb, and
further assume kzwz � 1. This yields

Tk,k′x = tkδ(kx − k′x) ; tk = t0 cos Θk(1 +
1

2
βk′xσ

z), (2.91)

with

t0 =
4i|k|

m2
smwyVb

√
wz
wy
e−γbwb , (2.92)

and with cos Θk ≡ ky/|k|. Apparently the effect of the inversion-symmetric part of
λy (which is the source of β) is to introduce a term kxσ

z in the coupling between
the wire and the SC. The presence of the factor cos Θk stems simply from the fact
that modes which approach the surface of the SC at small angles have a higher
probability to tunnel into the wire.

We can now write the full tunneling Hamiltonian of the system as

H = Hsm +Hsc +HT,

Hsm =
1

2

∫
dkxΦ

†
kx
HBdG

sm (kx)Φkx
,

Hsc =
1

2

∫
d3kΨ†kH

BdG

sc (k)Ψk,

HT =
1

2

∫
d3k tkΨ†k,sΦkx

,

HBdG

sm (kx) = (εkx − µsm + αkxσ
z)τ z,

HBdG

sc (k) = ξkτ
z + ∆scτ

x,

(2.93)

where ξk = k2/2msc−µsc, εkx = k2
x/2msm−µsm, and with Φk′x = (c†kx↑, c

†
kx↓, c−kx↓,−c−kx↑),

Ψk = (f †k↑, f
†
k↓, f−k↓,−f−k↑). Here, c†kxs create a spin-s electron in the state φ1,1,kx

of the wire, and f †ks creates a spin-s electron in the state χk of the SC. {τ i}i=x,y,z is
a set of Pauli matrices in particle-hole space.

To obtain an effective Hamiltonian for the wire we integrate out the supercon-
ductor’s degrees of freedom. [34, 51, 88, 89]. The self-energy term which adds to
HBdG

sm (kx) is given by

Σ(ω, kx) =

∫
dkydkz tkGsc(ω,k)t∗k, (2.94)

61



where Gsc(ω,k) is the Green function of the bare SC, given by

Gsc(ω,k) =
ω + ξkτ

z −∆scτ
x

ω2 − ξ2
k −∆2

sc

. (2.95)

To perform the integral in (2.94) we use the fact that µsc is typically much bigger
than the relevant energy scale in the semiconductor wire, so we can neglect k2

x/2msc

with compare to µsc. For the same reason we also have µsc � ω which means that the
main contribution to the integral comes from momenta satisfying (k2

y + k2
z)/2msc '

µsc. With the help of these simplifications one obtains to first order in β

Σ(ω, kx) =
ν2d|t0|2(−ω + ∆scτ

x)√
∆2

sc − ω2
(1 + βkxσ

z), (2.96)

where ν2d is the density of states of a two-dimensional system with an effective mass
msc at a chemical potential µsc.

Finally, in case one concentrates on energies much smaller than the bare super-
conducting gap (namely ω � ∆sc), the self-energy becomes independent of ω and
the effective low-energy Hamiltonian is given by

Heff
sm = (εkx + αkxσ

z)τ z + ∆ind(1 + βkxσ
z)τx, (2.97)

with ∆ind = ν2d|t0|2.

2.E Local Stability to Spin-Density Waves

As mentioned in Sec. 2.5.1, one wishes to examine the stability of the topological
phase to other competing phases, which were not accounted for in the Hartree-Fock
treatment. Specifically, until now we did not allow for the possibility that the system
spontaneously breaks the lattice translational symmetry, and develops spin-density
waves. To examine this possibility, one should consider the following more general
Hartree-Fock Hamiltonian:

HHF(φ) = HHF(0)−
∑
ν,q,s

φν−qsρ̂νqs, (2.98)

where ρ̂νqs is the Fourier transform of n̂νis = c†νiscνis, given by ρ̂νqs = 1√
L

∑
k c
†
νk+qscνks,

φνqs are fields which in general should be determined by the Hartree-Fock procedure,
and HHF(0) is the same as the Hamiltonian of Eq. (2.54). We now ask whether hav-
ing nonvanishing fields, φνqs, can cause the expectation value of the full Hamiltonian
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〈H〉HF,φ ≡ 〈ΨHF(φ) |H|ΨHF(φ)〉 to decrease, assuming that these fields are small. If
this is the case then our previous Hartree-Fock solution is locally unstable to the
formation of spin-density waves. In other words, for the solution to be locally stable,
〈H〉HF,φ must have a minimum at φν,q,s = 0. This is the case if the Hessian matrix
∂2〈H〉

HF,φ/∂φν′,q,s′∂φν,−q,s|φ=0 is positive definite.
We start by rewriting the expression for 〈H〉HF,φ,

〈H〉HF,φ = 〈H0〉HF,φ +
1

L

∑
ν

Uν
(
Nν,↑Nν,↓ + |Pν |2

)
+
∑
ν

Uν
∑
q 6=0

ρν,q↑ρν,−q↓, (2.99)

where ρν,qs ≡ 〈ρ̂ν,qs〉HF,φ. We now write H0 as

H0 = HHF(φ)+
∑
ν

δµν
∑
k,s

c†ν,k,scν,k,s−
∑
ν

δ∆ν

∑
k

(
c†ν,k↑c

†
ν,−k↓ + h.c.

)
+
∑
ν,q 6=0,s

φν−qsρ̂νqs,

(2.100)

where we have defined δµν ≡ µ̃ν − µν , δ∆a ≡ ∆̃ind − ∆ind, and δ∆b ≡ ∆̃b − ∆b.
Inserting this into Eq. (2.99), one has

〈H〉HF,φ = 〈HHF(φ)〉HF,φ +
∑
ν

Nν

(
Uν
L
Nν + 2δµν

)
+
∑
ν

Pν

(
Uν
L
Pν − 2δ∆ν

)
+

+
∑
ν,q 6=0

(
Uνρν,−q↓ρν,q↑ +

∑
s

φν−qsρνqs

)
.

(2.101)

In the last step we have used the fact that due to TRS, Nν,↑ = Nν,↓ ≡ Nν and
P ∗ν = Pν . To perform the derivative of the first term, we exploit the Hellmann-
Feynman theorem

∂〈HHF(φ)〉HF,φ

∂φν,q,s
=

〈
∂HHF(φ)

∂φν,q,s

〉
HF,φ

= −ρν,−q,s (2.102)

We now invoke linear response theory:

ρν,q,s =
∑
ν′

χν
′

q,ν,sφq,ν′,s. (2.103)

Note that due to sz conservation, there is no response of ρν,q,↑ to φq,ν′,↓ and vice
versa. We next perform the second derivative of 〈H〉HF,φ, and we note that the
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second and third terms in Eq. (2.101) then vanish as a result of the self-consistent
equations for δµν and δ∆ν . One then obtains 〈H〉HF,φ to second order in φ

〈H〉HF,φ = 1
2

∑
q 6=0

~φT−qhq
~φq , ~φTq =

(
φqa↑ φqb↑ φqa↓ φqb↓

)
, (2.104)

where hq is Hessian matrix, given by

hq =

(
Aq Bq

Bq Aq

)
; Aq =

(
χaa,q χ∗ab,q

χab,q χbb,q

)
Bq =

(
Uaχ

2
aa,q + Ub|χab,q|2 χ∗ab,q (Uaχaa,q + Ubχbb,q)

χab,q (Uaχaa,q + Ubχbb,q) Ua|χab,q|2 + Ubχ
2
bb,q

)
.

(2.105)

In writing Eq. (2.104) and Eq. (2.105), we made use of the fact that due to TRS
χν
′

ν,q,↑ = χνν′,−q,↓ ≡ χν,ν′,q, as well as of χ∗ν,ν′,−q = χν,ν′,q.
We calculate the susceptibilities using the Kubo Formula:

χν
′

ν,q,s = −i
∫ ∞
−∞

θ(t) 〈[ρ̂−q,ν,s(0), ρ̂q,ν′,s(t)]〉
HF
dt, (2.106)

and obtain

χaa,q =
1

L

∑
k

2∑
i,j=1

|u1i(k)|2|v1j(k + q)|2 + |u1j(k + q)|2|v1i(k)|2

εk,i + εk+q,j

,

χbb,q =
1

L

∑
k

2∑
i,j=1

|u2i(k)|2|v2j(k + q)|2 + |u2j(k + q)|2|v2i(k)|2

εk,i + εk+q,j

,

χab,q =
1

L

∑
k

2∑
i,j=1

u1i(k)u∗2i(k)v∗1j(k + q)v2j(k + q) + u∗1j(k + q)u2j(k + q)v1i(k)v∗2i(k)

εk,i + εk+q,j

.

(2.107)

Finally, we use Eqs. (2.107) to numerically check that hq in Eq. (2.105) is positive
definite (i.e. that all its eignevalues-values are positive) for all q’s as a condition for
local stability. The unstable region can be seen in the phase diagram, Fig. 2.9
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Chapter 3

Signatures of Majorana Zero
Modes

3.1 Introduction

The interest in phases which host zero-energy Majorana bound states (MBSs) stems
largely from their topological nature; such a state stores information nonlocally.
Stated otherwise, one cannot make a local measurement which would reveal whether
the MBS is occupied or empty. A consequence of this property is that such systems
are insensitive to local perturbations [11]. As a result, if we treat the filled and
empty states as a quantum bit (Qbit), then this Qbit is immune to decoherence by
the environment, as the latter interacts locally with the system†. Realizing MBSs in
topological superconductor is therefore appealing, not only from a theoretical point
of view, but also from the point of view of applications to quantum information
processing.

Experimentally realizing MBSs would of course be meaningless in the absence of
a physical signature that could reveal their presence. In particular, it is important
to be able to discern between MBSs and other low-energy resonances which can
give rise to similar phenomenology. From a more fundamental point of view, an
important measure of our understanding of a physical system is our ability to make
predictions of its behavior under controlled conditions. In the context of MBSs, it
is especially interesting to be able to probe and witness its nonlocal nature in order
to better understand this exotic feature.

Much emphasis has been put on signatures of MBSs in transport studies, involv-
ing a normal lead coupled to an MBS. It is predicted that the differential conduc-

†So-called classical errors, in which the occupation flips from 0 to 1 are protected by conservation
of fermion-number parity.

65



tance will exhibit a zero-bias conductance peak (ZBCP) which, at zero temperature,
is quantized to 2e2/h [18–21]. Recently, several experimental studies have reported
the observation of such a ZBCP, in both semiconductor nanowires [25–29] and in
Ferromagnetic atomic chains [42–44]∗. While these experiments are promising, it
has been suggested that the ZBCP can also appear in the absence of a MBS as
a result of other mechanisms [91–96]. Moreover, the quantization of the ZBCP to
2e2/h has proved difficult to observe, as it requires the temperature to be much
lower than the width of the peak. It is therefore crucial to have a physical signature
beyond the ZBCP, in particular one which would survive at finite temperatures.

In this chapter we investigate signatures of MBSs which are related to their
nonlocal nature. This has the advantage of both being unique to MBSs, as well
as probing one of their fundamental properties. In Secs. 3.2 and 3.3 we examine
a setup which we term Majorana beam splitter. In this setup a single MBS is
coupled to multiple normal leads which are biased at a voltage V with respect to
the topological superconductor hosting the MBS. We study the cross correlations of
the currents in the leads, showing that it has universal features which stems from the
Majorana nonlocality and it self-hermitian nature. The cross correlation is negative
and decays as −1/V at high voltages. This effect survives, to a large extent, at finite
temperatures. We begin in Sec. 3.2 by concentrating on the special case of spin-
resolved current, where the physical idea is most intuitive and where the distinction
between MBSs and low-energy Andreev bound states (ABSs) is most pronounced.
We then generalize in Sec. 3.3 to the case of a general Majorana beam splitter in
which the current does not have to be resolved into its spin components. Finally,
in Sec. 3.4 we examine the case of a finite-size topological superconductor. As the
two MBSs at each end become (weakly) coupled, local observable, such as charge
and spin density, can distinguish between the two states of the Majorana Qbit. We
show that the behavior of the charge density as a function of magnetic field or gate
potential can serve as a signature of the two weakly-coupled MBSs.

3.2 Spin-Resolved Current Cross Correlations

In this section, we discuss the signatures of MBSs in spin-resolved current correla-
tions. Consider a normal metallic lead coupled to a topological superconductor with
a MBS at its end. A bias voltage is applied between the lead and the superconduc-
tor, driving a current from the lead. We are interested in the spin-resolved current

∗Very recently signatures of topological superconductivity have been observed in Coulomb-
blockade oscillations experiments on semiconductor nanowires [90].
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correlations in the lead, defined as

Pss′ =

∫ ∞
−∞

dt〈δÎs(0)δÎs′(t)〉, δÎs = Îs − 〈Îs〉, (3.1)

where Îs is the spin-s current operator (s =↑, ↓), and the angle brackets stand for
thermal quantum averaging∗. We concentrate on the cross correlation term P↑↓
and compare between two cases: with a MBS present, and with an “accidental”
low-energy Andreev bound state (ABS) but without a MBS. Both cases lead to a
similar ZBCP.

As we will show, in the presence of a MBS, the cross term P↑↓ carries unique
signatures, that are strikingly different from the case of an ABS: In the MBS case, P↑↓
is negative in sign, and approaches zero as P↑↓ ∝ −1/V with increasing bias voltage
V . In contrast, an ABS generically gives rise to a positive P↑↓, that approaches
a nonzero constant at high voltages. These distinctive features survive, to a large
extent, at finite temperatures. As long as the temperature T is smaller than eV ,
P↑↓ is only weakly temperature dependent, even if T > Γ, Γ being the width of the
low-energy resonance (either an ABS or a MBS). This is in contrast to the zero-
bias peak in the differential conductance spectrum which is only quantized to 2e2/h
for T � Γ. Notice that a low-energy ABS can be viewed as a pair of overlapping
MBSs. Crucially, however, unlike the case of two spatially separated MBSs, in
this case both MBSs are coupled to the lead with comparable strengths. This is
essentially the source of the difference in the phenomenology of the two cases.

As a prototypical setup for measuring this effect, we consider a long semiconduc-
tor nanowire proximity coupled to a conventional bulk s-wave superconductor (see
Fig. 3.1). Under the right conditions, a MBS is formed at the end of the wire [15, 16].
The wire is tunnel coupled to a normal lead forming a T junction; a bias voltage
is applied between the lead and the superconductor. To allow for the measurement
of spin-resolved currents, at each arm of the T junction there is a “spin filter” that
transmit only electrons of a certain spin polarization. There are several physical
ways in which one can think of implementing such spin filters. By locating gates
underneath each of the two normal legs of the junction two quantum dots can be
defined. By varying the gate potential under the dot, one can tune a level of a
certain spin to be at resonance, thereby filtering the spin-resolved current through
that leg†. If the two dots are tuned to opposite spin resonances, P↑↓ can be obtained

∗We note that the zero-frequency correlation matrix is symmetric, namely P↑↓ = P↓↑. A proof
can be found in Appendix B of Anantram et al. [97].
†The width of the resonance has to be comparable with the voltage range of interest. Since B

is commonly larger than the excitation gap, this can be achieved without allowing transmission of
opposite spins.
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Figure 3.1: A semiconductor nanowire proximity coupled to an s-wave supercon-
ductor. Under certain conditions the system hosts Majorana bound states at its
ends. The system is tunnel coupled on the left to a normal lead which is biased
at a voltage V . The correlations between the spin-resolved currents (I↑ and I↓) in
the normal lead have features which are unique to the Majorana bound state. The
correlation is negative and approaches zero as −1/V for eV larger than the Majo-
rana resonance width (but still smaller then the superconducting gap). To measure
these correlations we suggest implementing the system in a T -shaped junction and
placing a “spin filter” at each of the arms of the T . This may be done by defining
quantum dots using gate voltages. In the presence of a magnetic field the resonance
level of each dot can be tuned by back gates to have opposite spins. In sec. 3.3 we
generalize our result to the case of a general beam splitter where the spin filter are
absent.

by measuring correlations between the currents through the two normal legs. Alter-
natively, spin filters can be constructed by coupling the normal legs to oppositely
polarized ferromagnets [21] or to a quantum spin Hall insulator [5, 31, 32, 98].

3.2.1 Intuitive analysis

The behavior of P↑↓ can be understood from qualitative considerations. We assume
that the bias voltage is smaller than the gap of the superconductor, such that only
Andreev reflection [17] in the lead contributes to the conductance. Consider first
the case eV � Γ. In this limit one can discuss sequential single-particle tunneling
events. As Cooper pairs are transported from the superconductor to the lead, they
split such that one electron goes to the lead while the other electron changes the

68



occupation of the low-energy resonance∗.
A change in the occupation number of an ordinary ABS is generically accom-

panied by a change in local physical observables near the edge, e.g., the local spin
and charge densities. As a result, the spin density near the edge changes each time
an electron is transmitted and the spin of the transmitted electron tends to be an-
tialigned with the spin of the preceding transmitted electron. (If the z component
of the spin is conserved, this correlation is perfect.) Such a correlation corresponds
to P↑↓ > 0.

On the other hand, a change in the occupation number of a MBS cannot be
detected in any local observable near a single edge. In particular, the local spin
densities of the two degenerate ground states (associated with the occupation num-
ber of the fermion formed by the MBSs at the two ends) are identical†. It follows
that the spins of consecutive electrons are uncorrelated; hence P↑↓ → 0.

The low-voltage behavior of the result in Eq. (3.24) can also be understood from
simple considerations based on the properties of MBSs. For eV � Γ and at zero
temperature the conductance through the MBS is quantized to 2e2/h, resulting in
an overall noiseless current‡. Upon splitting the current into the two parts I↑ and
I↓, the total noise P is related to the cross correlation via P = P↑+P↓+2P↑↓, where
P↑ and P↓ are the current noises of electrons with spin-↑ and spin-↓, respectively.
Since P → 0 at low voltage, while P↑ and P↓ are non-negative by definition, one
must have P↑↓ ≤ 0. More specifically, at zero voltage the total noise obeys [99]
dP/dV |V=0 = 0. In addition, since (for zero temperature) P↑(0) = P↓(0) = 0, one
has dP↑/dV |V=0, dP↓/dV |V=0 ≥ 0. It therefore follows that dP↑↓/dV |V=0 ≤ 0. The
cross correlation P↑↓ is thus negative at low voltage.

3.2.2 Low-energy models

With this qualitative picture in mind, we calculate P↑↓ for a general low-energy
model H = HL +HT of a normal lead coupled to a MBS, where§

HL =
∑
k,s

εkψ
†
ksψks ; HT = iγ ·

∑
k,s

(tsψks + h.c.). (3.2)

∗Note that this process can happen more than once since charge is not conserved in the super-
conductor.
†Formally this reads 〈0|s(x)|0〉 = 〈1|s(x)|1〉, where s(x) is the spin density and |0〉, |1〉 are the

two degenerate ground states.
‡More specifically, the reflection matrix contains one channel which perfectly Andreev reflects,

while the rest of the channels have perfect normal reflection in the weak coupling limit, Γ � ∆,
where ∆ is the energy gap to the next excitation.
§Although we consider here a single-channel lead, our conclusions extend to a multichannel lead

(see Sec. 3.3).
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Here ψks describes the lead modes with spin s, εk are the energy levels in the lead,
and ts is the coupling constant of these modes to the Majorana state described by
γ. The form of H is quite general and stems solely from the Hermitian nature of γ.

At energies below the superconducting gap only reflection processes are possible,
and the reflection matrix is given by [100, 101]

rtot =

(
ree reh

rhe rhh

)
= 1− 2πiW † (ε+ iπWW †)−1

W, (3.3)

with W =
√
ν0(t↑, t↓, t

∗
↑, t
∗
↓), and where ν0 is the density of states in the lead. This

yields

ree
ss′ = δss′ +

2πν0t
∗
sts′

iε− Γ
, rhe

ss′ =
2πν0tsts′

iε− Γ
(3.4)

where rhh(ε) = [ree(−ε)]∗, reh(ε) = [rhe(−ε)]∗ as dictated by particle-hole symmetry,
and Γ = 2πν0(|t↑|2 + |t↓|2).

The spin-resolved currents and their correlation functions are given by [97]

〈Îs〉 =
e

h

∑
s′∈↑,↓
α,β∈e,h

sgn(α)

∫ ∞
0

dEAββs′s′(s, α; ε)fβ(ε),

Pss′ =
e2

h

∑
σ,σ′∈↑,↓

α,β,γ,δ∈e,h

sgn(α)sgn(β)

∫ ∞
0

dEAγδσσ′(s, α; ε)Aδγσ′σ(s′, β; ε)fγ(ε)[1− fδ(ε)],

Aγδσσ′(s, α; ε) = δsσδsσ′δαγδαδ − [rαγsσ ]∗rαδsσ′ ,

(3.5)

with fe(ε) = 1 − fh(−ε) = 1/{1 + exp[(ε − eV )/kBT ]} being the distribution of
incoming electrons in the lead. Here sgn(α) = +1 for α = e and sgn(α) = −1 for
α = h. Inserting the reflection matrices of Eq. (3.4), one obtains at zero temperature

P↑↓ = −2e2

h
Γ↑Γ↓

eV

(eV )2 + Γ2
, (3.6)

where Γs = 2πν0|ts|2. As anticipated, P↑↓ is negative and goes to zero at high
voltages as −1/V (assuming eV remains smaller than the superconducting gap).

The result of Eq. (3.6) does not depend on details such as the particular system
hosting the MBS, the nature of the coupling to the lead, or the particular spin po-
larization axis. One can change the spin axis by transforming the coupling constants
according to(

t′↑, t′↓
)

=
(
t↑, t↓

)
· exp(−iθn̂ · σ/2), (3.7)
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where σ is a vector of Pauli matrices, n̂ is a unit vector and θ is a rotation angle.
We note in passing that by varying both n̂ and θ one can always find a spin axis
such that t′↓ = 0 [102], resulting in a spin-polarized current [21].

Next, we consider an accidental low-energy ABS. For simplicity we shall tem-
porarily assume that spin in the z direction is conserved∗. Under these assumptions
the most general tunneling Hamiltonian is given by†

H̃T = a†
∑
k

(
t̃↑ψk↑ + t̃↓ψ

†
k↓

)
+ h.c., (3.8)

where a is the annihilation operator for the ABS. (Notice that if one writes a in
terms of two Majorana operators, then both of them are coupled to the lead with
equal strength.) One can now use Eq. (3.3) with

W =
√
ν0

(
t̃↑ 0 0 t̃∗↓
0 t̃↓ t̃∗↑ 0

)
, (3.9)

to obtain the reflection matrices

ree =
iE

iE − Γ̃/2
+

(Γ̃↑ − Γ̃↓)/2

iE − Γ̃/2
σz ; rhe =

2πν0t̃↑t̃↓

iE − Γ̃/2
σx (3.10)

These reflection matrices are written in the basis of the spin in the z direction.
To obtain them for a general spin direction, we perform a transformation on ree, rhe

which rotates the spin axis by an angle θ away from the z axis. Upon doing so, and
then using Eq. (3.5) one has

P↑↓ =
2e2

h

Γ̃↑Γ̃↓

Γ̃

{[
(Γ̃↑ − Γ̃↓)

2

Γ̃2
+ cos2 θ

]
· arctan

2eV

Γ̃

+

[
(Γ̃↑ − Γ̃↓)

2

Γ̃2
− cos2 θ

]
· 2eV/Γ̃

1 + (2eV/Γ̃)2

}
.

(3.11)

This should be compared to Eq. (3.6). Unlike the MBS scenario, P↑↓ is now positive
for all V and monotonically approaches a finite value at eV � Γ̃.

∗We shall demonstrate below, using numerical simulations of a system with spin-orbit coupling,
that our conclusions apply also for an ABS with a non-well-defined spin.
†An example of a model for an ABS which yields Eq. (3.8) is presented in Appendix 3.B.
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3.2.3 Microscopic model

Next we verify our conclusions using a numerical simulation of an experimentally
realizable microscopic model [25–28]. We consider a nanowire having Rashba spin-
orbit coupling, proximity coupled to an s-wave superconductor, with an applied Zee-
man field. The wire is tunnel coupled to a normal lead from the left, as depicted in
Fig. 3.1. The BdG Hamiltonian describing the proximitized nanowire (not including
the lead and the spin filters) is given, in the basis Ψ(x) = [ψ†↑(x), ψ†↓(x), ψ↓(x),−ψ↑(x)],
by

Hnw =

[
−∇2

2me

+ V (x, y)

]
τ z + iλR(σy∂x−σx∂y)τ z−

µBg

2
B ·σ+∆ind(x)τx, (3.12)

where me is the effective mass of the electron, V (x, y) includes both the chemical
potential and a disordered potential, λR is the Rashba spin-orbit coupling strength,
B is the magnetic field, µB is the Bohr magneton, g is the Landé g-factor, ∆ind(x) =
∆0θ(Ls/2− |x|) is the proximity-induced pair potential, and σ and τ are vectors of
Pauli matrices in spin and particle-hole space, respectively∗.

We approximate the continuum model of Eq. (3.12) by a tight-binding Hamilto-
nian

H =
∑
r

∑
s,s′

{[
Vrδss′ −

µBg

2
B · σss′

]
c†r,scr,s′

−
∑
d=x̂,ŷ

[
(ttbδss′ + iu(σss′ × d) · ẑ)c†r,scr+a0d,s′

+ h.c.
]}

+
∑

|r·x̂|<Ls/2

[
∆0c

†
r,↑c
†
r,↓ + h.c.

]
,

(3.13)

where r runs over the sites of an Nx by Ny square lattice with spacing a0. Here
ttb = 1/2mea

2
0, u = λR/2a0, Vr = −µ+ 4ttb + V dis

r , µ is the chemical potential, and
V dis
r is a Gaussian-distributed disorder potential with zero average and correlations

V dis
r V dis

r′ = v2
disδrr′

†. As we now show, this system can exhibit either a zero-energy
ABS or a zero-energy MBS at the end of the wire, depending on the value of B.
The differential conductance spectra in the two cases are similar. The spin-resolved
current correlations, however, are qualitatively different.

∗We assume the transverse dimensions of the wire are small enough, such that we can ignore
the orbital effect of the magnetic field.
†In this section we concentrate on the strictly one-dimensional case, and on zero disorder. The

effects of multiple transverse channels and of having nonzero disorder potential will be examined
below, in Sec. 3.3.2.
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We express H in a first quantized form as a 4NxNy × 4NxNy matrix HTB, from
which one extracts the retarded Green function

GR(ε) =
(
ε−HTB + iπWTBW

†
TB

)−1

, (3.14)

and subsequently the reflection matrix [100, 101]

rtot(ε) = 1− 2πiW †
TBG

R(ε)WTB. (3.15)

Here, WTB is a matrix describing the coupling of the eigenmodes in the leads to the
end of the nanowire, and it contains the information regarding the spin filtering.
The construction of WTB and HTB, along with further details of the tight-binding
simulation are presented in Appendix 3.A. The metallic leads are described in the
wide band limit by an energy independent WTB. With the help of Eqs. (3.15)
and (3.5) we then obtain the currents through the leads and their cross correlation.

In Fig. 3.2(a) the differential conductance d〈Î〉/dV is presented as a function of
bias voltage V and Zeeman energy EZ = µBg|B|/2, for a value of µ = 125µeV and
at a temperature of T = 30mK. The magnetic field B is applied at an angle of 60◦

from the y axis in the xy plane. The dashed white line signifies the critical Zeeman
energy Ec

Z =
√
µ2 + ∆2

0 above which the system is in the topological phase in the
thermodynamic limit [15, 16]. Beyond this a zero-energy MBS appears, and one
observes a ZBCP. At even higher magnetic fields the conductance begins to oscillate
due to the overlap between the MBSs at the two ends of the wire [27, 103–105].

Importantly, a ZBCP is also present at a magnetic field which is below the critical
line, at about EZ ∼ 0.1meV , even though the system is in the topologically trivial
phase. This ZBCP is due to a trivial ABS which is localized at the left end of
the wire∗. In Fig. 3.2(b) the local density of states (LDOS) at zero energy N (x, 0)
is presented for two different Zeeman energies EZ = 350µeV and EZ = 90µeV ,
corresponding to the MBS and ABS, respectively. We note that in both cases the
LDOS is peaked at the two ends of the wire, making it difficult to distinguish between
the ABS and the MBS via a scanning tunneling microscopy measurement.

The spin-resolved current correlation P↑↓, on the other hand, is qualitatively
different for the two cases. Figure 3.2(c) and Fig. 3.2(d) show P↑↓ as a function of
bias for the MBS (EZ = 350µeV ) and for the ABS (EZ = 90µeV ), respectively. As
anticipated, in the case of a MBS the correlations are negative and approach zero at
high voltages. In the case of an ABS, the correlations are positive and approach a
finite value at large V . This is in agreement with the analytical low-energy treatment
which resulted in Eq. (3.6) and Eq. (3.11).

∗An additional ABS is formed at the right end the wire in the normal region (see Fig. 3.1).
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Figure 3.2: Numerical simulation of the system depicted in Fig. 3.1. The parameters
of the system are taken to be in accordance with a recent experiment [25], namely
Eso = meλ

2
R/2 = 50µeV , ∆0 = 250µeV , and lso = 1/(meλR) = 200nm. We take the

length of the wire to be L = 2.5µm with LS = 1.4µm. Similar results are obtained
for parameters taken from a different experiment [27] (see also Appendix 3.C). The
magnetic field B is applied at an angle of 60◦ from the y axis in the xy plane. (a)
Differential conductance as a function of bias V and Zeeman energy EZ = µBg|B|/2
for µ = 125µeV and at T = 30mK, in units of G0 = e2/h. A zero-bias conductance
peak appears both as a result of a Majorana bound state (MBS) at B > Bc, and as
a result of a trivial Andreev bound state (ABS) at EZ < Ec

Z. (b) Local density of
state at zero energy for EZ = 350µeV and for EZ = 90µeV , where the system hosts
a localized MBS and an ABS, respectively. In both cases the density of states is
significant only near the ends of the wire. (c),(d) Spin-resolved currents correlation
P↑↓ vs V at different temperatures for (c) the MBS and (d) the ABS. For the
Majorana case, P↑↓ is negative and goes to zero at large V . This is in striking
contrast to the case of an ABS, where P↑↓ is positive and approaches a finite constant
value at large V . Here, the spin polarization axis is in the y direction (the direction
of spin-orbit coupling). The effect of choosing a different polarization axis is shown
in Fig. 3.3(a).
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Interestingly, the main features distinguishing a MBS from an ABS survive even
at finite temperatures, as apparent in Figs. 3.2(c,d). At a finite temperature, P↑↓ 6= 0
at zero voltage. P↑↓ recovers its low-T behavior at voltage eV & T . In partic-
ular, one can witness these distinctive features even for T > Γ. We note that
Figs. 3.2(c), 3.2(d) present results for voltages that are smaller than the excitation
gap in the system (roughly 50µeV ). At higher voltages the features of P↑↓ are no
longer universal as P↑↓ picks up contributions from higher-energy resonances.

The spin-resolved currents whose correlation is presented in Figs. 3.2(c,d) are all
defined with respect to the y spin axis (the direction of the spin-orbit coupling). In
Fig. 3.3(a) we present P↑↓ for spin-resolved currents defined with a spin axis rotated
by an angle θ from the y axis in the xy plane. The results for the MBS (solid lines)
and for the ABS (dashed lines) are obtained at zero temperature and for the same
parameters as those of Fig. 3.2(c) and Fig. 3.2(d), respectively. It is apparent that
the same distinctive features persist upon rotating the spin axis. We point out the
suppression of P↑↓ in the MBS case for θ = 60◦, which is the direction of B. This
is caused due to polarization of the Majorana wave function [106, 107] in the B
direction, giving rise to a nearly perfect polarization of the spin-resolved current
through the MBS.

It is interesting to examine the crossover between the MBS case and the ABS
case. This can be done by increasing EZ to the point where there is a large overlap
between the MBSs at the two ends of the wire. At this point, the two Majorana
states are equivalent to a single ordinary ABS. In particular, they are both coupled
to the lead with comparable strengths. In Fig. 3.3(b) we present P↑↓ vs V for various
Zeeman energies EZ, corresponding to two MBSs with increasing spatial overlap. As
the overlap increases, P↑↓ turns from being negative to being positive for all V . We
note that for all these values of EZ a ZBCP is present in the differential conductance
spectra [cf. Fig. 3.2(a)].

3.3 Cross Correlations in a General Majorana Beam

Splitter

In Sec. 3.2 we have examined the cross correlation between currents of opposite spin
emitted from an MBS, showing that it is negative in sign and approaches zero at
high bias voltage. In the present section we show that this result holds much more
generally: The cross correlation of any two channels in the beam splitter has the
same universal characteristics, i.e., it is negative and approaches zero at voltages
larger than the width of the Majorana resonance, independently of whether the
different channels are spin resolved or not. An immediate experimental consequence
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Figure 3.3: Spin-resolved current correlations P↑↓ as a function of bias voltage V , at
T = 0. (a) The spin-resolved currents are defined with respect to an axis which is
rotated by an angle θ from the y axis in the xy plane. The direction of B remains
fixed at an angle of 60◦ from the y axis. The characteristic features seem to be
angle independent for both the Majorana bound state (MBS) EZ = 350µeV (solid
lines), and the trivial Andreev bound state (ABS), EZ = 90µeV (dashed lines). (b)
Crossover between a MBS and an ABS. As EZ is increased the spatial overlap of
the pair of Majorana end states increases until they are indistinguishable from an
ordinary ABS [cf. marked points in Fig. 3.2(a)].
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Figure 3.4: A schematic description of the experimental setup, a T -junction between
a topological superconductor (TSC) and two metallic leads. We model the TSC by
a spinless p-wave superconductor. It is coupled to the leads through a normal-
metal section N, whose length dN is taken to zero. Scattering at the NP interface
is described by the reflection matrix rNP [see Eq. (3.18)], while scattering at the
T -junction is described by the matrix SJ [see Eq. (3.19)].

is that this effect can be observed in a much less challenging setup, which does not
require spin filters to resolve the current into its spin components.

Let us consider again a T -junction between a topological superconductor (TSC)
and two normal-metal leads as depicted in Fig. 3.1, but this time without the spin
filters. We study the low-frequency cross correlation of the currents through the two
arms of the junction, namely

PRL =

∫ ∞
−∞

dt〈δÎR(0)δÎL(t)〉, (3.16)

where δÎη = Îη − 〈Îη〉, and Îη=R,L are the current operators in the right and left
arm of the junction respectively∗. As before, we apply a voltage V between the two
arms and the superconductor, and we denote by Γ and ∆ the width of the Majorana
resonance and the excitation gap†, respectively. Below we show that in the regime
eV . ∆, PRL has a simple, universal behavior, given by Eq. (3.24). In particular,
PRL is negative and approaches zero when eV � Γ, like in the spin-resolved case.
For eV & ∆ the behavior is nonuniversal.

∗As in the spin-resolved case, the zero-frequency correlation matrix is symmetric, namely PLR =
PRL. For a proof see Appendix B of Anantram et al. [97].
†The excitation gap ∆ is either the superconducting gap, or the energy gap to the next subgap

state (if such are present) above the Majorana zero-energy bound state.
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Unlike studies which have focused on the cross correlation between currents
through two MBSs at the two ends of a TSC [108–112], here the effect is due to a
single MBS. In Ref. [108–112] it was crucial that the MBSs at the two ends of the
TSC were coupled∗. Here, on the other hand, the effect is most pronounced when
the two MBSs are spatially separated such that only a single MBS is coupled to the
leads.

3.3.1 Scattering-matrix approach

To calculate analytically PRL we can use the low-energy Hamiltonian approach used
in Sec. 3.2.2 for the spin-resolved case. Instead, let us use a scattering matrix
approach; this allows one to include more easily direct scattering between the arms
of the T junction. In this approach, the system is described by a combination of two
scattering matrices, one for the T junction, and one for the interface between the
TSC and the normal metal region of the middle leg (see Fig. 3.4). We are interested
in bias voltages smaller than the gap of the TSC, ∆. An electron incident from one of
the normal leads is therefore necessarily reflected from the middle (superconducting)
leg. It can be reflected to the right or the left lead, either as an electron or as a
hole. Since there is no transmission into the superconductor, scattering is described
solely by a reflection matrix.

Each normal lead contains 2M transverse channels, including both spin species.
The overall reflection matrix which we wish to obtain reads

rtot =

(
ree reh

rhe rhh

)
, (3.17)

where each block is a 4M×4M matrix. The matrix element rαβij , where α, β = {e, h},
is the amplitude for a particle of type β coming from the channel j to be reflected
into the channel i as a particle of type α. Here, i = 1, . . . , 2M enumerates the
channels in the right lead while i = 2M + 1, . . . , 4M enumerates the channels in the
left lead.

We model the TSC as a spinless p-wave superconductor which is a valid de-
scription close to the Fermi energy [113, 114]. It is convenient to insert a (spinless)
normal-metal section between the TSC and the junction. In this way, we separate
the scattering in the T -junction itself from the scattering at the normal–p-wave in-
terface (cf. Fig. 3.4). The length of the normal-metal section dN is then taken to
zero.

∗The coupling between the Majorana bound states is established either through a tunneling
term, or through a nonlocal charging-energy term.
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Andreev reflection at the normal–p-wave superconductor interface is described
by

rNP(ε) =

(
0 −a(ε)
a(ε) 0

)
, (3.18)

where a(ε) = exp [−i arccos(ε/∆)] is the Andreev reflection amplitude for |ε| ≤
∆ [17, 86], with ε being the energy as measured from the Fermi level. The informa-
tion about the topological nature of the system is encoded in rNP(ε). The relative
minus sign between the off-diagonal elements of rNP(ε) signals that the pairing po-
tential of the superconductor has a p-wave symmetry. Moreover, the nontrivial
topological invariant [76, 115] ν = det[rNP(0)] = −1 dictates the existence of an
MBS at each end of the superconductor.

Scattering at the T -junction (which connects the added normal section to the
two leads) is described by

SJ =

(
Se 0
0 S∗e

)
; Se =

(
r t′

t r′

)
, (3.19)

where Se describes scattering of electrons and S∗e describes scattering of holes. Here,
r is a 4M × 4M matrix describing the reflection of electrons coming from the left
and right leads (each having 2M transverse channels), r′ is a reflection amplitude
for electrons coming from the middle leg (having a single channel), t is a 1 × 4M
transmission matrix of electrons from the right and left leads into the middle leg,
and t′ is a 4M×1 transmission matrix of electrons from the middle leg into the right
and left leads. The matrix Se is assumed to be energy-independent in the relevant
energy range, but is otherwise a completely general unitary matrix.

We can now concatenate SJ with rNP to obtain the overall reflection matrix rtot

of Eq. (3.17). The block ree is obtained by summing the contributions from all the
various trajectories in which an electron is reflected back as an electron, while the
block rhe is obtained by summing those trajectories in which an electron is reflected
as a hole. This yields

ree = r + t′(−a)r′∗at+ t′(−a)r′∗ar′(−a)r′∗at+ · · · = r − a(ε)2t′r′∗t

1 + |r′|2a(ε)2
,

(3.20a)

rhe = t′∗at+ t′∗ar′(−a)r′∗at+ · · · = a(ε)t′∗t

1 + |r′|2a(ε)2
, (3.20b)

The two other blocks are given by reh(ε) = [rhe(−ε)]∗ and rhh(ε) = [ree(−ε)]∗ in
compliance with particle-hole symmetry [116].
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Given the blocks of the reflection matrix, the sum of currents in the leads and
their cross correlation are obtained by [97]

I =
e

h

∑
k,l=1,...,4M
α,β∈{e,h}

sgn(α)

∫ ∞
0

dεAββkk (l, α; ε)fβ(ε),

PRL =
e2

h

∑
i∈R,j∈L

∑
k,l=1,...,4M
α,β,γ,δ∈{e,h}

sgn(α)sgn(β)

∫ ∞
0

dεAγδkl (i, α; ε)Aδγlk (j, β; ε)fγ(ε)[1− fδ(ε)],

Aγδkl (i, α; ε) = δikδilδαγδαδ − (rαγik )∗rαδil ,

(3.21)

where I = 〈ÎR〉+ 〈ÎL〉 is the total current in the leads. Equation (3.21) is similar to
Eq. 3.5, only now each arm includes a general number of channels, labeled by the
indices i, j, k, and l (which include also spin channels). The index i = 1, . . . , 2M
runs only over the channels of the right lead, while the index j = 2M + 1, . . . , 4M
runs only over those of the left lead. At zero temperature Eq. (3.21) reduces to [108]

I =
2e

h

∫ eV

0

dεTr(rherhe†),

PRL =
e2

h

∑
i∈R,j∈L

∫ eV

0

dεPij(ε) ,

Pij = |Rhe
ij |2 + |Reh

ij |2 − |Ree
ij |2 − |Rhh

ij |2 ,

(3.22)

where Rαβ = rαerβe†.
Let us introduce the parameter D =

∑4M
i=1 |ti|2 representing total normal trans-

mission from the two leads into the middle leg of the T -junction. Inserting Eq. (3.20)
into Eq. (3.22) and using the unitarity of Se, we first obtain the differential conduc-
tance

dI

dV
=

2e2

h

Γ2

(eV )2 + Γ2
, (3.23)

where Γ = ∆D/2
√

1−D. As expected dI/dV has a peak at V = 0 which is
quantized to 2e2/h. Similarly, we obtain for the cross correlation

PRL(V ) = −2e2

h
ΓRΓL

eV

(eV )2 + Γ2
, (3.24)
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where Γη = ∆
∑

i∈η |t′i|2/2
√

1−D (note that Γ = ΓR + ΓL). The cross correlation
PRL is negative for all V and approaches zero as −1/V for eV � Γ. This result is
valid for eV ≤ ∆. It is valid even in the presence of strong disorder in the junction
region, as we did not assume a particular form of Se. Moreover, it does not depend
on a specific realization of the TSC hosting the MBS.

The high-voltage limit of Eq. (3.24) can be derived in a semiclassical picture of
transport in a way which generalizes the intuitive analysis of Sec. 3.2.1. In particular,
it shows that the high-voltage behavior stems from the fact that no local probe can
determine the occupation of the MBS. This is explained in details in Sec. 3.3.3 below.
The-low voltage limit can be understood from the perfect transmission of the MBS
at zero energy, in exactly the same way as in the spin-resolved case. Namely, at zero
voltage the total current noise, P = PR +PL + 2PRL, goes to zero, where PR (PL) is
the noise in the right (left) lead. Since, by definition, PR, PL ≥ 0, this means that
PRL must be negative at low voltage.

3.3.2 Numerical analysis

We now turn to illustrate the above results using numerical simulations. As in
Sec. 3.3.2, we consider the system depicted in Fig. 3.1, a semiconductor nanowire
proximity coupled to a conventional s-wave superconductor and placed in a magnetic
field. We use the same model given in Eqs. (3.12) and (3.13). In the this section we
use parameters consistent with an InAs nanowire, namely Eso = meλ

2
R/2 = 75µeV,

lso = 1/(meλR) = 130nm, and g = 20 [27]. The induced pair potential is taken to
be ∆0 = 150µeV. The length of the wire is L = 2µm, with the section not covered
by the superconductor being x0 = 200nm in length (see inset in Fig. 3.5(a)], and
the width of the wire is taken to be Wy = 130nm∗.

In Fig. 3.5 we present the cross correlation PRL(V ) and the differential conduc-
tance dI/dV at various temperatures for µ = 0 and B = 520mT. For these values
of µ and B the system is in the topological phase [15, 16, 117]. PRL is negative
and approaches zero at high voltages, in agreement with the analytic expression of
Eq. (3.24). Interestingly, this behavior persists even at nonzero temperatures. The
main effect of temperature is to increase the voltage above which PRL starts ap-
proaching zero. Since the gap in the system is about 100µeV, the effect can be seen
even at the relatively high temperature of T = 100mK, a temperature for which the
zero-bias conductance peak is much lower than 2e2/h†.

∗One immaterial difference between the present simulation and the one of Sec. 3.2.3 is that
the SC-covered region extends all the way in the direction opposite to the junction, unlike in the
drawing of Fig. 3.1.
†Notice in Fig. 3.5(b) that at zero temperature and at zero bias voltage the differential con-
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Figure 3.5: (a) Zero-frequency cross correlations PRL [defined in Eq. (3.16)] of the
currents through the left and right leads as a function of bias voltage V at various
temperatures. PRL is negative for all V and approaches zero at voltages which are
larger than both the resonance width and the temperature. (b) Total differential
conductance, dI/dV , where I = IR+IL. At zero temperature dI/dV exhibits a zero-
bias conductance peak quantized to 2e2/h. A nonzero temperature widens the peak
and reduces its height to a nonuniversal value. The inset shows the zero-temperature
local density of states at zero energy in the wire in the absence of coupling to the
leads in arbitrary units. The section of the wire not covered by the superconductor
is x ∈ [0, x0].

82



0 5 10 15 20 25
−0.3

−0.2

−0.1

0

0.1

V [µV]

P
R
L
[µ
eV

×
e2
/h

]

MBS
vdis = 75µeV

(a)
0 5 10 15 20 25

−0.3

−0.2

−0.1

0

0.1

V [µV]

P
R
L
[µ
eV

×
e2
/h

]

ABS
vdis = 75µeV

(b)

Figure 3.6: Current cross correlation PRL vs. bias voltage V at µ = 0 and T = 0
for different realization of short-range Gaussian disorder. (a) B = 520mT > Bc, the
system is in the topological phase with a zero-energy Majorana bound state (MBS)
at each end of the wire. The universal behavior of PRL(V ), (being negative and
approaching zero at high voltage) is not affected by the presence of disorder. (b)
For each realization of disorder the magnetic field is tuned to have an Andreev bound
state (ABS) with zero energy at the end of the wire, while keeping the system in the
topologically trivial phase, B = 170− 200mT < Bc (see the text for more details).
The behavior of PRL(V ) varies significantly for different realizations of disorder. In
all cases PRL > 0 for large V in contrast to the topological case where it goes to
zero.

Next, we study the effect of disorder on PRL. Figure 3.6(a) presents PRL for
10 different realizations of random disorder with vdis = 75µeV. As expected, the
behavior of PRL does not change significantly. We can compare this to the case of
an ordinary Andreev state which is tuned to zero energy. The end of the wire which
is not covered by a superconductor (x < x0 in Fig. 3.4) hosts Andreev bound states
which are coupled to the leads. For each realization of disorder, we tune the magnetic
field to bring one of them to zero energy, and calculate PRL. In all the realizations,
the resulting tuned magnetic field was below the critical field Bc = 260mT , i.e.,
the system is in the trivial phase. As shown in Fig. 3.6(b), the behavior of PRL

is nonuniversal and varies significantly from one realization of disorder to another.
Importantly, in all cases PRL is positive at large V .

In our simulations we have chosen the length of the wire Lx = 2µm to be suf-

ductance drops to zero. This is due to a finite-size effect, coming from the exponentially small
energy splitting, EM , between the two Majorana end states. For weak overlap of the Majoranas,
the conductance approaches 2e2/h at a voltage EM/e.

83



ficiently bigger than the localization length of the Majorana wave function (which
here is about ξ ∼ 300nm), so that the leads are only coupled to a single MBS. If ξ
becomes of the order of Lx, say by increasing the magnetic field B, then the leads
become coupled also to the MBS at the other end of the wire. At this point it is
as if the leads are coupled to a single ABS. Increasing the magnetic field therefore
induces a crossover between the MBS case and the ABS case, in exactly the same
way which was in Fig. 3.3(b).

It is interesting to examine the case when more than a single transverse channel
is occupied in the wire. For weak pairing∗, the system is in the topological phase
whenever an odd number of channels is occupied. Figure 3.7 presents PRL and dI/dV
for various values of µ, each corresponding to a different odd number of occupied
channels between 1 and 7. When more than a single channel is occupied we can
have subgap Andreev bound states which coexist with the MBS. One such state can
be seen in Fig. 3.7(b) as a peak at V ' 80µeV. It is only below this voltage that the
behavior of PRL(V ) remains qualitatively the same as in the single channel case. In
this respect, the existence of subgap states reduces the effective energy gap below
which PRL(V ) exhibits its universal features. Another effect of introducing higher
transverse channels is the stronger coupling of the middle leg of the T -junction to
the two leads†.

3.3.3 Semiclassical picture

The behavior of the current cross-correlation, as given in Eq. (3.24), at high voltages
can be derived based on simple semiclassical considerations. We reconsider the setup
shown in Fig. 3.4, and examine the limit eV � Γ, where Γ is the width of the zero-
energy resonance (which can be either an MBS or an ABS).

In this limit, the transport of current from the superconductor to the leads can
be described in terms of a sequence of tunneling events. In each tunneling event,
a Cooper pair in the superconductor dissociates; one electron is emitted into the
right or left lead, and the other is absorbed into the zero mode localized at the
edge of the superconductor. In the presence of such a zero mode, the many–body
ground state of the superconductor is doubly degenerate. We denote the two ground
states by |0〉 and |1〉, corresponding to an even and odd number of electrons in the
superconducting wire, respectively. Each time an electron is emitted into the leads,
the superconductor flips its state from |0〉 to |1〉 or vice versa.

∗Weak pairing here means that the pairing potential ∆0 is smaller than the Zeeman splitting
and the energy spacing between transverse channels.
†This can be seen from the fact that the width of the zero-bias resonance in Fig. 3.7(b) becomes

larger for higher numbers of transverse channels.
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Figure 3.7: (a) Cross correlation and (b) differential conductance at various chem-
ical potentials µ, corresponding to a different odd number of occupied transverse
channels. The calculations are performed at T = 0, vdis = 0, and B = 520mT. The
addition of occupied channels introduces extra subgap states which coexist with
the Majorana bound state. These appears as peaks in the differential conductance
spectra at finite V [see (b) at V ' 80µeV]. Above this voltage the behavior of PRL

is no longer universal.

Let us denote by Γ0
R/h and Γ0

L/h the probability per unit time to emit an electron
into the right or left lead, respectively, given that the superconductor is in state |0〉.
Similarly, Γ1

R,L/h are the corresponding rates when the system is in the |1〉 state.
After a time τ , there are NR and NL electrons emitted to the right and left leads

respectively. The average currents in the leads are given by

〈IR〉 =
e〈NR〉
τ

; 〈IL〉 =
e〈NL〉
τ

, (3.25)

and the current cross correlation is given by

PRL = lim
τ→∞

1

τ

∫ τ

0

dt1

∫ τ

0

dt2〈δIR(t1)δIL(t2)〉 =
e2

τ
(〈NRNL〉 − 〈NR〉〈NL〉). (3.26)

In the case of a Majorana zero mode, all the local properties of the states |0〉
and |1〉 are identical. This is usually stated as the fact that one cannot make a
local measurement which would reveal in which of the two ground states the system
is in. In particular, this implies that Γ0

R = Γ1
R ≡ Γ̃R and Γ0

L = Γ1
L ≡ Γ̃L. Let us

divide the time τ into short time intervals ∆t ∼ h
eV

; ∆t is the minimal time between
consecutive emission events (set by the minimal temporal width of an electron wave
packet whose energy spread is ∼ eV ). At each time step ∆t, either an electron is

85



emitted to the right lead, an electron is emitted to the left lead, or no electron is
emitted at all. The transport process is thus described by a trinomial distribution.
The probabilities of being emitted to the right and left lead are pR = Γ̃R∆t/h and
pL = Γ̃L∆t/h, respectively, and there are overall N = τ/∆t time steps. One thus
obtains [118]

〈NR〉 = NpR = Γ̃Rτ/h,

〈NL〉 = NpL = Γ̃Lτ/h,

〈NRNL〉 − 〈NR〉〈NL〉 = −NpRpL = − Γ̃RΓ̃Lτ∆t

h2
.

(3.27)

Finally, inserting Eq. (3.27) into Eqs. (3.25) and (3.26) one has

〈IR〉 =
e

h
Γ̃R ; 〈IL〉 =

e

h
Γ̃L, (3.28)

and

PRL ∼ −
e

h

Γ̃RΓ̃L

V
. (3.29)

PRL is negative and approaches zero as −1/V . We have therefore reproduced the
high-voltage limit of Eq. (3.24).

Unlike the case of an MBS, for an ABS the probabilities to emit an electron
to the right or the left lead can depend on the state of the system, |0〉 or |1〉. To
illustrate the effect this dependence has on the cross correlations, we consider the
case

Γ0
L = 0 ; Γ1

R = 0 (3.30)

where the electron can only go right if the system is in |0〉, and it can only go left if
the system is in |1〉∗. Because each time an electron is transmitted the state of the
system changes (either from |0〉 to |1〉 or vice versa), it is clear that NR = NL = N/2.
For simplicity we assume Γ0

R = Γ1
L ≡ Γ̃. In this case, the distribution for the total

number of emitted electrons is binomial; in each time step we only ask whether an
electron has been emitted to one of the leads or not. The probability for an electron
to be emitted is p = Γ̃∆t/h. Remembering that half of the times the electron is
emitted to the right and half of the times to the left, one obtains

〈NRNL〉 − 〈NR〉〈NL〉 =
1

4
Np(1− p) =

τ Γ̃

4h

(
1− Γ̃∆t

h

)
. (3.31)

∗This resembles the case studied in 3.2 of spin-resolved transport through an ABS in a system
which conserves the z-component of the spin. There, the emitted electron can only have spin up
(down) if the superconductor is in the state |0〉 (|1〉), respectively.
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Inserting this into Eq. (3.26) one has

PRL =
1

4

e2

h
Γ̃

(
1− C Γ̃

eV

)
, (3.32)

where C is a constant of order unity. PRL is monotonically increasing, asymptotically
approaching a positive constat. This is in agreement with Fig. 3.6(b) and with
Fig. 3.2(d).

3.4 Detecting Coupled Majoranas by Charge Sens-

ing

It Secs. 3.2 and 3.3 we witnessed the consequences of an isolated MBS being nonlocal
in nature. The meaning of this nonlocality is that the two degenerate many-body
states defined by the Majorana, | 0 〉 and | 1 〉 , do not differ in any local observable∗.
This in particular means that the average charge density is the same in both states,
namely 〈0|ρ̂(x)|0〉 = 〈1|ρ̂(x)|1〉, where ρ̂(x) is the charge density operator. This
situation changes when two MBSs have a spatial overlap, as is the case in a long
but finite topological superconducting wire. In this case, the two states | 0 〉 and
| 1 〉 will generally not be perfectly degenerate, but will be split by a small amount,
which decreases exponentially as the wire becomes long [11]. Similarly, the charge
density in the two states will differ by a small amount.

In this section we explore the signatures of topological superconductivity in fi-
nite systems, in the limit where the MBSs at the two ends have a finite spatial
overlap [119]. The spatial overlap can be varied by varying parameters such as
chemical potential and magnetic field, which causes the energy difference between
the two nearly degenerate ground states to oscillate [103–105]. In thermal equilib-
rium, as the energy difference crosses zero the system switch between the odd and
even many-body states†, causing the charge density to jump. Between these jumps,
the average number of electrons will vary continuously with the system parameters.

We examine the spatial distribution of the jumps in charge density. We find that,
although the Majorana wave functions (and hence the tunneling density of states)
are peaked at the ends of the wire, the discontinuity in charge density arising from

∗The two states, | 0 〉 and | 1 〉 , differ only in their fermion number parity. This, however, is a
nonlocal observable which can only be revealed in a global measurement.
†We note that although the system’s Hamiltonian conserves fermion parity, the fermion parity

can still change when a parameter is varied on laboratory time scales. This is due to the presence
of a small number of thermally activated quasiparticles in the bulk superconductor.
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the overlap of the Majoranas is spread along the wire. We suggest that these jumps
in the charge can be measured, for example, using a single-electron transistor.

Whereas existing experimental signatures, such as the ZBCP, require direct con-
tact to the wire for tunneling measurements, charge sensing avoids this issue and
provides an orthogonal measurement to confirm recent experimental developments.
Furthermore, by comparing density of states measurements, which is expected to
exhibit Majorana features at the wire ends, with a uniformly-distributed charge
measurements, one can rule out alternative explanations for the ZBCP, such as the
Kondo effect [94].

We start by considering, as a toy model for a TSC, the spinless p-wave super-
conductor. In a finite system it is described by the BdG Hamiltonian

Hp =

∫ L

0

dxΨ†(x)Hp(x)Ψ(x) ; Ψ†(x) = [ψ†(x), ψ(x)]

Hp(x) =

(
−∂2

x

2m
− µ

)
τ z − i∆′∂xτ y,

(3.33)

where L is the length of the system, µ is the chemical potential, and ∆′ is the
amplitude of the p-wave pairing potential. Upon analyzing the jumps in charge
density in the case of Hp, we would be able to relate the results to the case of a
proximity-coupled semiconductor wire, as the two models are equivalent in certain
limits.

Let the eigenfunctions ofHp(x) be denoted by the vectors, φν(x) = [uν(x), vν(x)]T,
and their respective eigenenergies, εν . The expectation value of the charge density
is given by

〈ρ(x)〉T =
∑
ν

|uν(x)|2f(εν) + |vν(x)|2f(−εν), (3.34)

where the sum is only over the positive energies, εν > 0, and f(ε) is the Fermi-Dirac
distribution. At zero temperature, the change in the average charge density due to
the occupation of the νth state is∗

δρν(x) = |uν(x)|2 − |vν(x)|2. (3.35)

When the system is in the topological regime, µ > 0, the Hamiltonian has a pair
of eigenstates, φ0(x) and τxφ∗0(x), related by particle-hole symmetry, with energies

∗Notice Eqs. (3.35) and (3.34) are general and are not specific to the case of a spinless p-wave
superconductor.
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±ε0 which goes to zero in the limit L → ∞. These eigenstates define a fermionic
excitation

f † =

∫
dxΨ†(x) · φ0(x) ; f =

∫
dxΨ†(x) · [τxφ∗0(x)] . (3.36)

We can write f and f † in terms of two Majorana operators∗,

f = (γR + iγL)/2 ; f † = (γR − iγL)/2, (3.37)

which results in

γR =

∫
dx
[
uR(x)ψ†(x) + u∗R(x)ψ(x)

]
, (3.38a)

γL =

∫
dx
[
uL(x)ψ†(x) + u∗L(x)ψ(x)

]
, (3.38b)

where uR = u0 + v∗0, and uL = (u0− v∗0)/i. The functions uR and uL are localized at
the two ends of the system. Without loss of generality we take uR to be localized
near the right end, and uL near the left end. Using Eq. (3.35) for the Majorana case
(ν = 0), one has in terms of the Majorana wave functions, uR(x) and uL(x),

δρ0(x) = Im [uR(x)u∗L(x)] . (3.39)

Namely, the jump in charge density as the Majorana changes its occupation goes
to zero in the limit L → ∞, since in this case the overlap between uR and uL

vanishes. This is a manifestation of the nonlocality of the Majorana bound state;
a measurement of a local observable such as the charge density cannot reveal its
occupation.

We are interested with the distribution of δρ0(x) for a system with a long but
finite length, L. The Majorana wave function can be approximated by

uL(x) =
2√
ξ
e−x/ξ sin(kFx),

uR(x) =
2√
ξ
e(x−L)/ξ sin[kF(x− L)],

(3.40)

which is valid in the limit, L� ξ � 1/kF, with kF =
√

2mµ and ξ = 1/m∆′ being
the Fermi momentum and the coherence length, respectively. Inserting this into
Eq. (3.39), results in

δρ0(x) =
4e−L/ξ

ξ
sin(kFx) sin[kF(x− L)]. (3.41)

∗The Majorana operators, γR and γL describe excitations of the Hp only in the case ε0 = 0.
This is because each of them is a superposition of two excitations with energies ε0 and −ε0.
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Notice that while the wave function of each of the Majorana bound states is peaked
near one of the ends of the wire, the charge density difference oscillates with a
uniform amplitude along the wire. This effect can be measured using a scanning
SET, or with multiple SETs at several positions along the wire. It can then serve as
a signature of topological superconductivity. The total charge difference associated
with the state is given by δN0 =

∫
dxδρ0(x) ≈ e−L/ξL/ξ.

In Fig. 3.8 we present numerical tight-binding simulations of the system de-
scribed in Eq. (3.12) in the strictly 1d case. Figure 3.8(a-b) show the ground-state
fermion parity and the compressibility, respectively, as a function of chemical poten-
tial and magnetic field. Figure 3.8(c) shows the single-particle excitation spectrum
as function of Zeeman field EZ, for µ = 0. The energy oscillations of the over-
lapping Majorana mode is emphasized in red. These oscillations are the source of
the fermion parity switches and the compressibility peaks in Fig. 3.8(a-b). Finally,
Fig. 3.8(d) presents the Majorana wave function (top panel) and the distribution of
the charge density jumps (bottom panel).

3.5 Discussion

When current from a topological superconductor is split into two metallic leads,
the current cross correlation, PRL, exhibit a universal behavior as a function of
bias voltage V . The cross correlation is negative for all V and approaches zero
at high voltage as −1/V . This behavior is robust and does not rely on a specific
realization of the topological superconductor hosting the Majorana, or on a specific
form of coupling to the leads. It can be observed even in disordered multichannel
systems at finite temperatures. For the effect to be observed the width of the
Majorana resonance, Γ, has to be smaller than the energy of the first subgap state.
Importantly, the temperature T does not have to be smaller than Γ.

These results for the current cross correlation have their roots in the defining
properties of MBSs. The high-voltage behavior can be shown to stem from the
nonlocal nature of MBS; the fact that the occupation of the Majorana mode cannot
be revealed by any local probe. The low-voltage behavior stems from the fact that
the MBS induces perfect Andreev reflection at zero bias.

It is interesting to compare the situation of a MBS with the case of an accidental
low-energy Andreev bound state (ABS). When the normal-metal leads are coupled
to an ABS, the cross correlation PRL has a nonuniversal behavior. In particular,
the observed behavior is sensitive to details of the system, such as the realization of
disorder [see Fig. 3.6(b)]. The cross correlation can be either positive or negative at
low voltage (eV ≤ Γ). At high voltage it will generally approach a positive constant,
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(a) (b)

(c) (d)

Figure 3.8: (a) Ground state Fermion parity of a finite wire as a function of
chemical potential µ and magnetic field B for ∆ind = 0.25meV , λR = 0.2eV Å,
g = 50, m∗ = 0.013m0 and wire length L = 2µm. Once in the topological regime
EZ >

√
µ2 + ∆2

ind, one can observe switches of parity due to the oscillating splitting
of the overlapping Majorana states. (b) The compressibility ∂N/∂µ, with N the
total electron number, as a function of chemical potential and magnetic field. This
quantity can in principle be measured using a single electron transistor (SET) placed
in proximity to the wire. (c) Quasiparticle energy spectrum as function of Zeeman
field EZ with length L = 2µm, and for µ = 0. Once in the topological regime,
we see the mid-gap degenerate Majorana states, which then split and oscillate. (d)
Top: Intensity of the wave function (a.u.) for a Majorana-pair state whose energy
crosses zero at a degeneracy point in the spectrum (B ∼ 0.24T ). As expected,
the wave function is concentrated at edges, and decays toward the centre. Bottom:
The change in charge density (a.u.) when this state becomes occupied. The charge
difference is spread along the wire length.
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however, this constant can in principle be very small. Namely, there can be cases
where the ABS will mask itself as an MBS in both differential conductance and
current cross correlation. In fact, this is a generally true statement when discussing
experimental signatures of MBSs versus ABSs. This is because a zero-energy ABS
can always be resolved into two MBSs. If one then couples the experimental probe
to only one of them, one is bounded to witness the behavior of a MBS. It should
be noted, however, that this would generally require a lot of fine tuning. First, the
ABS has to be tuned to zero energy which is not the generic case, and then the
probe, which can have many degrees of freedom∗, has to be decoupled from one of
the MBSs composing the ABS.

By implementing oppositely-polarized spin filters on the two arms of the T junc-
tion, one can in principle measure the spin-resolved current cross correlation which
was discussed in Sec. 3.2. This obviously involves an additional experimental chal-
lenge, however, it has the advantage of resulting in a sharper distinction between the
MBS and the ABS. When probing the MBS, the result would be qualitatively the
same as in the non spin-resolved case. The ABS, on the other hand, induces cross
correlations which are much more universal in the spin-resolved case, compared with
the general case. In the spin-resolved case, the cross correlation are positive and
approach a constant at high voltages, eV � Γ, in sharp distinction to the MBS.
This can be understood from the fact that the high-voltage spin-resolved correlation
probes the spin density carried by the bound state. In the MBS it is necessarily zero,
while in the ABS it is generally nonvanishing, especially as one uses magnetic filed
to tune the ABS to zero energy. To summarize, this means that the spin-resolved
cross correlation can serve as a more distinctive signature of MBSs.

While we have concentrated in this chapter on topological superconductors (TSCs)
in class D, the results for the cross correlations holds also for TSCs in class DIII,
namely for time-reversal invariant TSCs (or TRITOPS). In the TRITOPS phase
there are two MBSs at each end of the system, as dictated by Kramers’ theorem.
This pair of MBSs, however, is different than a trivial ABS. To see that this Kramers’
pair of MBSs should yield the same behavior in cross correlation as a single MBS, let
us resolved each of the leads in the T junction to pairs of channels related by time-
reversal symmetry†. We assume each such channel contains both a right-moving
and a left-moving mode‡. We can then perform a unitary transformation on each

∗In the case of current correlation measurements, for example, these would be the coupling
constants of the channels in the leads to one of the MBSs, or the parameters in the scattering
matrix of the T junction [see Fig. 3.4 and Eq. (3.19)]
†Notice such a pair of channels necessarily belong to the same lead.
‡This is the usual case in normal-metal leads. The exception is when using as leads an anomalous

1D system, such as an edge of a topological insulator [81].
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such pair of channels such that each of them is coupled to a different MBS of the
Kramers’ pair. It is then clear that the overall cross correlation will be a sum of
correlations from two independent setups of a T junction having a single MBS.

In Sec. 3.4 we have examine the case of a long but finite TSC where the two
MBSs at each end of the system begin to overlap. Strictly speaking, the low-energy
excitations of the system are not MBS anymore. In particular, local observables
now have different expectation values in the filled and empty states of the fermionic
resonance. Namely, the MBSs are loosing their nonlocal property as they become
coupled. We have examine the consequences of this fact in the charge density. By
varying parameters such as the chemical potential or magnetic filed, one can obtain
a signature of the weakly-coupled MBSs by measuring the jumps in charge density
(say by using a single-electron transistor), which occur as the energy splitting of the
MBSs oscillates.

A similar effect should exists in other local observables, for example the spin
density. Like the charge density, the expectation value of spin-density is generally
different in the two many-body states, when the MBSs are coupled. This difference
in spin is considerably smaller than the spin of a single electron, and therefore
very difficult to detect using available experimental techniques. However, recent
advances suggest that such measurements might not be so far off [120, 121]. With
an extremely sensitive magnetometer, one can hope to measure the jumps in the
magnetization of the system as a function of chemical potential and magnetic filed,
as discussed for the case of charge.

93



94



Appendices for Chapter 3

3.A Details of Tight-Binding Simulation

To obtain the scattering matrix using Eqs. (3.13-3.15) we express the Hamiltonian
H in first quantized form using a 4NxNy × 4NxNy matrix, HTB, defined by

H =
∑

mn Ψ†mHTBΨn ; Ψ† = (Φ†,Φ) , (3.42)

where Φ†m=2Ny(nx−1)+2(ny−1)+s = c†r=(nxa,nya),s creates an electron with spin s on site

(nx, ny) of an Nx ×Ny square lattice. Here, s = 1 for spin =↑ and s = 2 for spin ↓.
In the simulations of Sec. 3.2 we used Nx = 90, Ny = 1, while in those of Sec. 3.3
we used Nx = 90, Ny = 6.

The matrixWTB in Eq. (3.14) describes the coupling between the extended modes
of the leads and the sites of the lattice. In each lead there are M spinful transverse
channels. Including both leads, both spin species, and the particle-hole degree of
freedom, WTB is a 4NxNy × 8M matrix of the following form

WTB =

(
We 0
0 −W ∗

e

)
; We =

(
WL WR

)
, (3.43)

where WL and WR described the coupling to the left and right lead, respectively.
As depicted in Fig. 3.9, each lead is coupled only to those lattice sites which are
adjacent to it. Moreover, the coupling to each site is modulated according to the
transverse profile of the particular channel. This is described by

WL = W 0 ⊗


1
0
...
0


1

2

Ny

⊗ SL ; WR = W 0 ⊗


0
...
0
1


1

Ny−1

Ny

⊗ SR ,

W 0
nm =

{
wm sin πnm

M+1
, 1 ≤ n ≤M

0 , M < n ≤ Nx
, m = 1, . . . ,M.

(3.44)
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Figure 3.9: Illustration of the tight-binding model for the T junction studied in
Secs. 3.2 and 3.3. Each lead is tunnel-coupled to the sites adjacent to it. The purple
sites are ones in which there is a nonvanishing induced pair potential [cf. Eq. (3.13)].
The drawing demonstrates the case of Sec. 3.3 where the wire is modeled by Ny = 6
parallel chains, and each lead contains M = 4 spinful channels.

Here, SL and SR are 2 × 2 matrices describing the spin-dependent transmission of
each of the two leads. In Sec. 3.2 which discusses spin-resolved correlations they are
taken to be SR,L = (σ0 ± n̂ · σ)/2, where σ0 is the 2 × 2 identity matrix and n̂ is
the spin-polarization axis. In Sec. 3.3, on the other hand, we take SL = SR = σ0.
The parameters wm describe the coupling of each transverse channel to the leads.
In Sec. 3.2 we have simulated single-channel leads with w2

m=1 = 0.25∆0, while in
Sec. 3.3 we have taken the leads to have four channels each, with w2

m = 0.03∆0,∀m ∈
{1, 2, 3, 4}. Given the coupling matrix, WTB, and the first-quantized Hamiltonian,
HTB, the reflection matrix is calculated using Eqs. (3.14) and (3.15).

3.B Model for an Andreev Bound State

In Eq. (3.8) we introduced a general form of a tunneling Hamiltonian describing a
normal lead coupled to a zero-energy Andreev bound state under the assumption of
conservation of the z component of the spin. For concreteness, we shall now derive
this Hamiltonian starting from a model of a single-level quantum dot coupled to a
superconductor and to a normal lead, in the presence of external magnetic field. The
superconductor’s degrees of freedom can be integrated out, resulting in an effective

96



low-energy Hamiltonian

H = HL +HD +HT,

HL =
∑
ks

εkψ
†
ksψks,

HD =
∑
ss′

(ε0δss′ − EZσ
z
ss′)d

†
sds′ + (∆̄d†↑d

†
↓ + h.c.),

HT =
∑
ks

wsψ
†
ksds + h.c.,

(3.45)

where d†s creates a spin-s electron in the dot, ε0 is the energy of the quantum dot
level, EZ is the Zeeman splitting, and ∆̄ is the induced pair potential in the dot. We
assume that the charging energy is much smaller than ∆̄ and is therefore neglected.
Diagonalizing HD, one has (up to a constant)

HD =

(√
ε20 + ∆̄2 − EZ

)
a†a+

(√
ε20 + ∆̄2 + EZ

)
b†b, (3.46)

where a = cos(α)d↑ + sin(α)d†↓, b = sin(α)d†↑ − cos(α)d↓, and where cos(2α) =

ε0/
√
ε20 + ∆̄2, sin(2α) = ∆̄/

√
ε20 + ∆̄2. To have a single Andreev bound state at

zero energy we can now tune the magnetic field to have EZ =
√
ε20 + ∆̄2. Finally,

projecting HT onto the low-energy subspace described by a and a† results in

HT ' a†
∑
k

(
w∗↑ cos(α)ψk↑ − w↓ sin(α)ψ†k↓

)
+ h.c., (3.47)

which is of exactly the same form as Eq. 3.8 with t̃↑ = w∗↑ cos(α) and t̃↓ = −w↓ sin(α).

3.C Finite-Size Effects

As mentioned in Secs. 3.2 and 3.3, an isolated MBS gives rise to a negative cor-
relation PRL (or P↑↓ in the spin-resolved case). In a long but finite wire there can
be a small overlap of the wave-functions of the MBSs at the two ends of the wire.
It is instructive to examine the effect of this overlap on the spin-resolved current
correlations.

In Fig. 3.C we concentrate on the spin-resolved case and present P↑↓ as a function
of bias voltage V for different lengths of the superconducting section LS. The system
parameters are otherwise the same as those in Fig. 3.2(c). Due to the finite overlap
of the Majorana end states there is a small region at very low voltages where P↑↓
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Figure 3.10: Spin-resolved current correlation P↑↓ vs bias voltage V at T = 0 for
different lengths of the superconducting section LS for the case of a Majorana bound
state. The region of positive P↑↓ at small voltages is due to the overlap between the
two Majorana bound states at the wire ends. As LS increases the overlap becomes
smaller. As a result the positive region becomes shorter and its maximum value
becomes smaller.

becomes positive. As LS increases, and the overlap between the MBSs decreases,
the positive-P↑↓ region becomes shorter and its maximum value becomes smaller.

This finite-size effect is related to the one described in Fig. 3.3(b). There we
vary the overlap between the MBSs by changing the coherence length (increasing
EZ) until reaching the limit where the overlap is maximal. Here, on the other hand,
we vary the overlap by elongating the wire until reaching the limit where the overlap
vanishes. Notice that in Fig. 3.3(b) we concentrate on values of B for which a zero-
energy states is present in spite of the spatial overlap of the MBSs [cf. Fig. 3.2(a)].
Here, on the other hand, the overlap is accompanied by an energy splitting of the
MBSs.
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Chapter 4

Tuning Majorana Modes in a
Quantum Dot Chain

4.1 Introduction

As was discussed in previous chapters, one of the most promising platforms for
realizing and manipulating isolated Majorana Bound States (MBSs) is a proximity-
coupled semiconductor wire under magnetic field [15, 16]. Indeed, recent exper-
iments in semiconductor nanowires have observed transport signatures which are
consistent with the presence of MBSs [25–28, 90, 122]. We also pointed out that
uniquely associating these signatures with MBSs is not trivial as they can be the
results of other physical mechanisms [91, 93, 94, 123–125] such as the Kondo effect
or weak anti-localization. furthermore, even as evidences for MBSs in semiconductor
wires are mounting, controlling and manipulating MBSs for the future purpose of
braiding them is still a far away goal.

Indeed, several obstacles still exist in the way towards creating and manipu-
lating robust MBSs. Disorder, for example, can have a detrimental effect on the
robustness of the topological phase, since in the absence of time-reversal symme-
try it may cause the induced superconducting gap to close [126]. This requires
experiments to be performed in very clean systems. Additionally, the presence of
multiple transmitting modes reduces the amount of control one has over such sys-
tems [71, 89, 114, 127], and the contribution of extra modes to conductance hinders
the observation of MBSs [128]. Thus, nanowire experiments need setups in which
only few modes contribute to conductance.

In this work we approach the problem of realizing systems in a non-trivial topo-
logical phase from a different angle. We wish to emulate the Kitaev chain model [11]
which is the simplest model exhibiting unpaired Majorana bound states. The pro-
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Figure 4.1: Examples of systems allowing implementation of a Kitaev chain. Panel
(a): a chain of quantum dots in a 2DEG. The QDs are connected to each other, and
to superconductors (labeled SC), by means of quantum point contacts. The first
and the last dots are also coupled to external leads. The normal state conductance
of quantum point contacts (QPCs) between adjacent dots or between the end dots
and the leads is G‖, and of the QPCs linking a dot to a superconductor is G⊥. The
confinement energy inside each QD can be controlled by varying the potential Vgate.
Panel (b): Realization of the same setup using a nanowire, with the difference that
each dot is coupled to two superconductors in order to control the strength of the
superconducting proximity effect without the use of QPCs.
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posed system consists of a chain of quantum dots (QDs) defined in a two-dimensional
electron gas (2DEG) with spin orbit coupling, in proximity to superconductors and
subjected to an external magnetic field. Our geometry enables us to control the
parameters of the system to a great extent by varying gate potentials and supercon-
ducting phases. We will show how to fine tune the system to the so-called “sweet
spot” in parameter space, where the MBSs are well-localized at the ends of the
system, making the topological phase maximally robust. A sketch of our proposed
setup is presented in Fig. 4.1(a).

The setup we propose and the tuning algorithm are not restricted to systems
created in a two-dimensional electron gas. The essential components are the ability
to form a chain of quantum dots and tune each dot separately. In semiconducting
nanowires the dots can be formed from wire segments separated by gate-controlled
tunnel barriers, and all the tuning can be done by gates, except for the coupling to
a superconductor. This coupling, in turn, can be controlled by coupling two super-
conductors to each dot and applying a phase difference to these superconductors.
The layout of a nanowire implementation of our proposal is shown in Fig. 4.1(b).

The geometry we propose has the advantage of eliminating many of the problems
mentioned above. By using single level quantum dots, and also quantum point con-
tacts (QPC) in the tunneling regime, we solve issues related to multiple transmitting
modes. Additional problems, such as accidental closings of the induced supercon-
ducting gap due to disorder, are solved because our setup allows us to tune the
system to a point where the topological phase is most robust, as we will show. We
present a step-by-step tuning procedure which follows the behavior of the system in
parallel to that expected for the Kitaev chain. As feedback required to control every
step we use the resonant Andreev conductance, which allows to track the evolution
of the system’s energy levels. We expect that the step-by-step structure of the tun-
ing algorithm should eliminate the large number of non-Majorana explanations of
the zero bias peaks.

A related layout together with the idea of simulating a Kitaev chain was proposed
recently by Sau and Das Sarma [129]. Although similar in nature, the geometry
which we consider has several advantages. First of all, coupling the superconductors
to the quantum dots in parallel, allows us to not rely on crossed Andreev reflection.
More importantly, being able to control inter-dot coupling separately from all the
other properties allows to address each dot or each segment of the chain electrically.
This in turn makes it possible to perform the tuning of the system to the sweet spot
regime in a scalable manner. This can be achieved by opening all the QPCs except
for the ones that contact the desired dots.

We begin in Sec. 4.2 by briefly reviewing a generalized model of Kitaev chain,
and identify the ”sweet spot” in parameter space in which the MBSs are the most
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localized. The system of coupled quantum dots is described in Sec. 4.3. For the
purpose of making apparent the resemblance of the system to the Kitaev chain, we
present a simple model which treats each dot as having a single spinful level. We
then come up with a detailed tuning procedure describing how one can control the
parameters of the simple model, in order to bring it to the desired point in parameter
space. In Sec. 4.4 our tuning prescription is applied to the suggested system of a
chain of QDs defined in a 2DEG, and it is shown using numerical simulations that
at the end of the process the system is indeed in a robust topological phase. Finally,
we conclude in Sec. 4.5.

4.2 Generalized Kitaev Chain

In order to realize unpaired Majorana bound states, we start from the Kitaev
chain [11] generalized to the case where the on-site energies as well as the hop-
ping terms are not uniform and can vary from site to site. The generalized Kitaev
chain Hamiltonian is defined as

HK =
L−1∑
n=1

[(
tne

iθna†n+1an + ∆ne
iφna†n+1a

†
n + h.c.

)
+ εna

†
nan

]
, (4.1)

where an are fermion annihilation operators, εn are the on-site energies of these
fermions, tn exp(iθn) are the hopping terms, and ∆n exp(iφn) are the p-wave pairing
terms.

The chain supports two Majorana bound states localized entirely on the first and
the last sites, when (i): εn = 0, (ii): ∆n = tn, and (iii) φn+1−φn−θn+1−θn = 0. The
larger values of tn lead to a larger excitation gap. The condition (iii) is equivalent,
up to a gauge transformation, to the case where the hopping terms are all real,
and the phases of the p-wave terms are uniform. The energy gap separating the
Majorana modes from the first excited state then equals

Egap = 2 min {tn}n . (4.2)

The above conditions (i)–(iii), constitute the “sweet spot” in parameter space to
which we would like to tune our system. Since all of these conditions are local and
only involve one or two sites, our tuning procedure includes isolating different parts
of the system and monitoring their energy levels. For that future purpose we will use
the expression for excitation energies of a chain of only two sites with ε1 = ε2 = 0:

E12 = ±(t1 ±∆1). (4.3)
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Exactly at the sweet spot, in order to couple MBSs formed at the ends of the
chain, one needs to change at least L Hamiltonian parameters, where L is the length
of the chain. This happens because any local perturbation would only delocalize
Majorana between the dots on which it acts. Hence if a typical imperfection of
the tuning due to presence of noise or the imperfection of tuning itself is of an
order δ, then the residual coupling between Majoranas will be of order of (δ/t)L.
Quadratic protection from noise for two such dots in the sweet spot regime was
reported in Ref. [130]. While for quantum computation applications the length of
chains required for sufficient noise tolerance may be relatively large, as we show in
Sec. 4.4, in order to detect robust signatures of MBSs, three dots may be sufficient.

4.3 System Description and the Tuning Algorithm

The most straightforward way to emulate the Kitaev chain is to create an array of
spinful quantum dots, and apply a sufficiently strong Zeeman field such that only
one spin state stays close to the Fermi level. Then the operators of these spin states
span the basis of the Hilbert space of the Kitaev chain. If we require normal hopping
between the dots and do not utilize crossed Andreev reflection, then in order to have
both tn and ∆n nonzero we need to break the particle number conservation and spin
conservation. The former is achieved by coupling each dot to a superconductor,
the latter can be achieved by spatially varying Zeeman coupling [131, 132], or more
conventionally by using a material with a sufficiently strong spin-orbit coupling.
Examples of implementation of such a chain of quantum dots in a two dimensional
electron gas and in semiconducting nanowires are shown in Fig. 4.1.

We neglect all the levels in the dots except for the one closest to the Fermi
level, which is justified if the level spacing in the dot is larger than all the other
Hamiltonian terms. We neglect the Coulomb blockade, since we assume that the
conductance from the dot to the superconductor is larger than the conductance
quantum [133]. We consider a single Kramers doublet per dot with creation and
annihilation operators c†n,s and cn,s, with n the dot number and s the spin degree of
freedom. Since we consider dots with spin-orbit interaction, cn,s is not an eigenstate
of spin. Despite that, only singlet superconducting pairing is possible between cn,s
and cn,s′ as long as the time reversal symmetry breaking in a single dot is weak. By
applying a proper SU(2) rotation in the s-s′ space we may choose the Zeeman field
to point in z-direction in each dot. As long as the Zeeman field does not change the
wave functions of the spin states the superconducting coupling stays s-wave. The
general form of the BdG Hamiltonian describing such a chain of spinful single-level
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dots is thus given by:

HS =
∑
n,s,s′

{(
µnδs,s′ + EZσ

z
s,s′

)
c†n,scn,s′ +

1

2

(
∆ind,ne

iΦniσys,s′c
†
n,sc

†
n,s′ + h.c.

)
+
[
wn
(
eiλnσ

)
s,s′

c†n,scn+1,s′ + h.c.
]}

,

(4.4)

where σi are Pauli matrices in spin space. The physical quantities entering this
Hamiltonian are the chemical potential µn, the Zeeman energy EZ, the proximity-
induced pairing ∆ind,n exp(iΦn), and the inter-dot hopping wn. The vector λn char-
acterizes the amount of spin rotation happening during a hopping between the two
neighboring dots (the spin rotates by a 2|λ| angle). This term may be generated
either by a spin-orbit coupling, or by a position-dependent spin rotation, required
to make the Zeeman field point in the local z-direction [131, 132, 134]. The induced
pairing in each dot ∆ind,n exp(iΦn) is not to be confused with the p-wave pairing
term ∆n exp(iφn) appearing in the Kitaev chain Hamiltonian (4.1).

In order for the dot chain to mimic the behavior of the Kitaev chain in the sweet
spot, each dot should have a single fermion level with zero energy, so that εn = 0.
Diagonalizing a single dot Hamiltonian yields the condition for this to happen:

µn =
√
E2

Z −∆2
ind,n. (4.5)

When this condition is fulfilled, each dot has two fermionic excitations

an =
ei

Φn
2

√
2EZ

(√
EZ − µn c†n↑ − e

−iΦn
√
EZ + µn cn↓

)
(4.6)

bn =
ei

Φn
2

√
2EZ

(√
EZ − µn c†n↓ + e−iΦn

√
EZ + µn cn↑

)
. (4.7)

The energy of an is zero, the energy of bn is 2EZ. If the hopping is much smaller
than the energy of the excited state, wn � EZ, we may project the Hamiltonian
(4.4) onto the Hilbert space spanned by an. The resulting projected Hamiltonian is
identical to the Kitaev chain Hamiltonian of Eq. (4.1), with the following effective
parameters:

εn = 0,

tne
iθn = wn (cosλn + i sinλn cos ρn)×

[sin (αn+1 + αn) cos(δΦn/2) + i cos (αn+1 − αn) sin(δΦn/2)] ,

∆ne
iφn = iwn sinλn sin ρne

iξn×
[cos (αn+1 + αn) cos (δΦn/2) + i sin (αn+1 − αn) sin (δΦn/2)] ,

(4.8)
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where

µn = EZ sin(2αn), ∆ind,n = EZ cos(2αn), (4.9)

λn = λn (sin ρn cos ξn, sin ρn sin ξn, cos ρn)T , (4.10)

and δΦn = Φn − Φn+1.
It is possible to extract most of the parameters of the dot Hamiltonian from

level spectroscopy, and then tune the effective Kitaev chain Hamiltonian to the
sweet spot. The tuning, however, becomes much simpler if two out of three of the
dot linear dimensions are much smaller than the spin-orbit coupling length. Then
the direction of spin-orbit coupling does not depend on the dot number, and as
long as the magnetic field is perpendicular to the spin-orbit field, the phase of the
prefactors in Eq. (4.8) becomes position-independent. Additionally, if the dot size
is not significantly larger than the spin-orbit length, the signs of these prefactors
are constant. This ensures that if δΦn = 0, the phase matching condition of the
Kitaev chain is fulfilled. Since δΦn = 0 leads to both tn and ∆n having a minimum
or maximum as a function of δΦn, this point is straightforward to find. The only
remaining condition, tn = ∆n at δΦ = 0, requires that αn + αn+1 = λn.

The above calculation leads to the following tuning algorithm:

1. Open all the QPCs, except for two contacting a single dot. By measuring
conductance while tuning the gate voltage of a nearby gate, ensure that there
is a resonant level at zero bias. After repeating for each dot the condition
εn = 0 is fulfilled.

2. Open all the QPCs except the ones near a pair of neighboring dots. Keeping
the gate voltages tuned such that εn = 0, vary the phase difference between the
neighboring superconductors until the lowest resonant level is at its minimum
as a function of phase difference, and the next excited level at a maximum.
This ensures that the phase tuning condition φn+1 − φn − θn+1 − θn = 0 is
fulfilled. Repeat for every pair of neighboring dots.

3. Start from one end of the chain, and isolate pairs of dots like in the previous
step. In the pair of n-th and n+ 1-st dots tune simultaneously the coupling of
the n+ 1-st dot to the superconductor and the chemical potential in this dot,
such that εn+1 stays equal to 0. Find the values of these parameters such that
a level at zero appears in two dots when they are coupled. After that proceed
to the following pair.

Having performed the above procedures, the coupling between all of the dots
in the chain is resumed, at which point we expect the system to be in a robust
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topological phase, with two MBSs located on the first and last dots. In practice
one can also resume the coupling gradually by, for instance, isolating triplets of
adjacent dots, making sure they contain a zero-energy state, and making fine-tuning
corrections if necessary, and so on.

4.4 Testing the Tuning Procedure by Numerical

Simulations

We now test the tuning procedure by applying it to a numerical simulation of a
chain of three QDs in a 2DEG. The two-dimensional BdG Hamiltonian describing
the entire system of the QD chain reads:

HQDC =

[
p2

2m
+ V (x, y)

]
τ z + λR(σxpy − τzσypx) + EZτ

zσz

+ ∆ind [cos(Φ)τy + sin(Φ)τx]σy.

(4.11)

Here, σi and τi are Pauli matrices acting on the spin and particle-hole degrees of
freedom respectively. The term V (x, y) describes both potential fluctuations due
to disorder, and the confinement potential introduced by the gates. The second
term represents Rashba spin-orbit coupling, ∆ind(x, y) · exp [Φ(x, y)] is the s-wave
superconductivity induced by the coupled superconductors, and EZ is the Zeeman
splitting due to the magnetic field. Full description of the tight-binding equations
used in the simulation is presented in Appendix 4.A.

The chemical potential of the dot levels µn is tuned by changing the potential
V (x, y). For simplicity we used a constant potential Vn added to the disorder po-
tential, such that V (x, y) = Vn + V0(x, y) in each dot. Varying the magnitude of
∆ind,n is done by changing conductance G⊥ of the quantum point contacts, which
control the coupling between the dots and the superconductors. Finally, varying
the superconducting phase Φ(x, y) directly controls the parameter Φn of the dot to
which the superconductor is coupled, although they need not be the same.

The tuning algorithm required monitoring the energy levels of different parts of
the system. This can be achieved by measuring the resonant Andreev conductance
from one of the leads. The Andreev conductance is given by [23, 24]

G = G0

[
N − Tr(reer

†
ee) + Tr(rher

†
he)
]
, (4.12)

where G0 = e2/h, N is the number of modes in a given lead, ree is the normal
reflection matrices, and rhe is the Andreev reflection matrices. Accessing parts of
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Figure 4.2: Andreev conductance measured from the left lead as a function of bias
voltage and QD potential (measured relative to quarter filling) for the second dot.
Changing the chemical potential allows to tune quasi-bound states to zero energy
(white circle).

the chain (such as a single dot or a pair of dots) can be done by opening all inter-dot
QPCs, and closing all the ones between dots and superconductors, except for part
of the system that is of interest.

We begin by finding such widths of QPCs that G‖ ≈ 0.02 and G⊥ ≈ 4G0.
This ensures that conductance between adjacent dots, is in tunneling regime and
that the dots are strongly coupled to the superconductors such that the effect of
Coulomb blockade is reduced [133]. The detailed properties of QPCs are described
in Appendix 4.A and their conductance is shown in Fig. 4.8.

First step: tuning chemical potential. We sequentially isolate each dot, and
change the dot potential Vn. The Andreev conductance as a function of Vn and bias
voltage for the second dot is shown in Fig. 4.2. We tune Vn to the value where a
conductance resonance exists at zero bias. This is repeated for each of the dots and
ensures that µn = 0.

Second step: tuning the superconducting phases. We now set the phases of the
induced pairing potentials Φn to constant. As explained in the previous section, this
occurs when ∆n and tn experience their maximal and minimal values. According to
Eq. (4.3) this happens when the separation between the energy levels of the pair of
dots subsection is maximal. Fig. 4.3 shows the evolution of these levels as a function
of the phase difference between the two superconductors. The condition δΦ1 = 0 is
then satisfied at the point where their separation is maximal.
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Figure 4.3: Conductance as a function of bias voltage and superconducting phase
difference for a two-dot system. The two lowest energy levels are given by Eq. (4.3)
of a two site Kitaev chain, as indicated. At the point where their separation is
maximal (SC phase difference 0 in the plot), the phase difference δΦn of the induced
superconducting gaps vanishes.

Third step: tuning the couplings. Finally we tune tn = ∆n. This is achieved
by varying G⊥, while tracking the Andreev conductance peak corresponding to the
tn −∆n eigenvalue of the Kitaev chain we are emulating. After every change of G⊥
we readjust Vn in order to make sure that the condition εn = 0 (or equivalently
E2

Z = µ2
n + ∆2

n) is maintained. This is necessary because not just ∆n, but also µn
depend on G⊥. Therefore, successive changes of G⊥ and Vn are performed until the
smallest bias peak is located at zero bias. The tuning steps of the first two dots are
shown in Fig. 4.4. We repeat steps 2 and 3 for each pair of dots in the system.

Finally, having full all three conditions required for a robust topologically non-
trivial phase, we probe the presence of localized Majorana bound state in the full
three-dot system by measuring Andreev conductance (see Fig. 4.5). In this specific
case, the height of the zero bias peak is approximately 1.85G0, signaling that the
end states are well but not completely decoupled. Increasing the transparency of
the QPC connecting the first dot to the lead brings this value to G = 1.98G0.
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Figure 4.4: Conductance as a function of bias voltage during simultaneous tuning of
G⊥ and Vn for the first pair of dots. The three different plots represent the situation
before (dotted line), at an intermediate stage (dashed line), and after (solid line)
the tuning. The arrow indicates the evolution of the first peak upon tuning, and the
number of successive changes of G⊥ and Vn are shown for each curve. By bringing
the first peak to zero, the third tuning step is achieved.
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Figure 4.5: Conductance as a function of bias voltage for a system composed of
three tuned quantum dots (dashed line). The zero bias peak signals the presence of
Majorana bound states at the ends of the chain. The first and second excited states
are consistent with those expected for a three-site Kitaev chain, namely E1 = 2t1
and E2 = 2t2 (vertical dashed lines), given the measured values of t1 = ∆1 and
t2 = ∆2, obtained after finalizing the two dot tuning process. As described in the
text, after increasing the transparency of the lead QPC leads to a zero bias peak
having a height G = 1.98G0 (solid line).
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4.5 Discussion

In conclusion, we have demonstrated how to tune a linear array of quantum dots
coupled to superconductors in presence of Zeeman field and spin-orbit coupling to
resemble the Kitaev chain that hosts Majorana bound states at its ends. Further-
more, we have presented a detailed procedure by which the system is brought to the
so-called “sweet spot” in parameter space, where the Majorana bound states are the
most localized. This procedure involves varying the gates potentials and supercon-
ducting phases, as well as monitoring of the excitation spectrum of the system by
means of resonant Andreev conductance.

We have tested our procedure using numerical simulations of a system of three
QDs, defined in a 2DEG, and found that it works in systems with experimentally
reachable parameters. It can be also applied to systems where quantum dots are
defined by other means, for example formed in a one-dimensional InAs or InSb wire.

The setup we propose can also be extended to more complicated geometries
which include T -junctions of such chains. Benefiting from the high tunability of the
system and the localization of the MBSs, it might then be possible to implement
braiding [113, 135] and demonstrate their non-Abelian nature.
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Appendices for Chapter 4

4.A System Parameters in Numerical Simulations

In this section, we describe the parameters used throughout the numerical simula-
tions. The quantum dots and quantum point contacts are modeled using a tight-
binding model defined on a square lattice, with leads and superconductors taken as
semi-infinite.

The characteristic length and energy scales of this system are the spin-orbit
length lSO = 1/mλR, and the spin-orbit energy ESO = mλ2

R/2. We simulate an InAs
system in which the effective electron mass is m = 0.015me, where me is the bare
electron mass, taking values of ESO = 0.5 K = 43µeV and lSO = 250 nm.

We consider a setup composed of three quantum dots, like the one shown in
Fig. 4.6. Each of the three dots has a length of LDOT = 208 nm and a width
WDOT = 104 nm. Quantum point contacts have a longitudinal dimension of LQPC =
42 nm, which is the same as the Fermi wavelength at quarter filling.

The value of the hopping integral becomes t = 1/(2ma2) = 55.8 meV, with
a = 7 nm. Disorder is introduced in the form of random uncorrelated onsite potential
fluctuations, leading to a mean free path lmfp = 218.8 nm. The system is placed in
a perpendicular magnetic field characterized by a Zeeman splitting EZ = 336µeV,
which, given a g-factor of 35K/T , corresponds to a magnetic field Bz = 111 mT.
Each dot is additionally connected to a superconductor characterized by a pairing
potential |∆SC| = 0.86 meV.

The potential profile across a quantum point contact is given by

VQPC(x) =
h̃

2

{
2− tanh

[
s̃

L̃

(
x+

w̃

2

)]
+ tanh

[
s̃

L̃

(
x− w̃

2

)]}
, (4.13)

where x ∈ [−L̃/2, L̃/2] is the transverse coordinate across the quantum point con-

tact, h̃ is the maximum height of VQPC, s̃ fixes the slope at which the potential
changes, and w̃ is used to tune the QPC transparency. Two examples of potential
profiles are shown in Fig. 4.7.
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Figure 4.6: Geometry of the quantum dot chain. The quantum dots have a width
WDOT and length equal to LDOT. Quantum point contacts have a longitudinal size
LQPC and a transverse dimension equal to either LDOT or WDOT. Leads are semi-
infinite in the x direction, and superconductors are modeled as semi-infinite systems
in the y direction.

Figure 4.7: Potential profile VQPC(x) across the transverse direction of a quantum
point contact. For the maximum value of this potential, no states are available for
quasiparticles in the 2DEG. The two curves show potential profiles for two different
QPC transparencies, corresponding to s̃ = 17 and w̃ = 87.4, 39.5 nm for the solid
and dashed curves respectively.
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Figure 4.8: Conductance of a quantum point contact as a function of w̃ of Eq. (4.13),
for a single QPC. The vertical lines indicate the values at which QPCs are set after
tuning. The inter-dot QPCs are all set to the tunneling regime while the ones
connecting the dots to the superconductors are set to higher transparencies.
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ם בין אָ תְ מִ בקשורים. שני החלקים הראשונים של הפרק דנים  מָיוֹרַנָהבוחנים חתימות של מצבי  אנו 3בפרק 

קָמָץ המורכב -צומת ". מערך זה הינומָיוֹרַנָהל אלומה מסוג צ  פָ ים "מְ במערך אותו אנו מכנ חשמליים זרמים

אנו  .מֻאֲרָק על טופולוגי-ל אמצעית עשויה מוליךגֶ רֶ ומְ  ,V ,במתח חשמליזרועות עשיות מוליך רגיל  משתי

בין הזרמים  מִתְאָםהתנהגות אוניברסלית של ה הדד בצומת מכתיבקשור ומבוּ מָיוֹרַנָהת מצב אוּצְ מָ מראים שהִ 

ין מִתְאָםבשתי הזרועות. ה במתחים גבוהים. התנהגות זו נותרת  V/1-זִרְמִי הינו שלילי ודועך לאפס כמו -הב 

בניגוד לכך,  בים, ואף שורדת בטמפרטורות סופיות.ורמסדר ושל ערוצים רוחביים -עמידה גם בנוכחות של אי

ין מִתְאָםשל הגורם להתנהגות לא אוניברסלית בעל אנרגיה נמוכה י מְסוּג אָנְדְרֶי יב רִ קְ מצב קשור מִ  זִרְמִי. -הב 

מצב  של מקרההר, היכן שההבחנה בין סִחְרוּ-מופרדרְמִי זִ -יןב   מִתְאָםאת המקרה של  בפירוט אנו מנתחים

בחלקו האחרון של הפרק אנו בוחנים מצב האָנְדְרֶי יב הקשור היא החדה ביותר.  של מקרהההקשור ו מָיוֹרַנָהה

הקשורים  מָיוֹרַנָהארוך אך סופי, כך שישנה חפיפה מרחבית בין שני מצבי ההטופולוגי הינו -עלמצב בו מוליך ה

הקשורים אינם נושאים מטען חשמלי,  מָיוֹרַנָהבשני קצותיה של המערכת. בעוד שבמערכת אינסופית מצבי ה

ה הקשורים מתחילים לחפוף. אנו מראים שהגם ששיא מָיוֹרַנָהאין זה עוד המקרה כאשר מיקומיהם של מצבי ה

הקשורים  מָיוֹרַנָהידי מצבי ה-של צפיפות המצבים מתקבל בקצותיה של המערכת, המטען החשמלי הנישא על

חתימה ניסויית של מצבי מיורנה יכולה לשמש כהזו  אינטואיטיבית-הלאההתנהגות  מָרוּחַ על פני המערכת.

 ה במערכות סופיות.שָ לְ חֻ בְ -קשורים מצומדים

קשורים במערך ניסויי נשלט  מָיוֹרַנָהתיאורטי את האפשרות של מימוש מצבי אנו בוחנים באופן  4בפרק 

ידי פיצול של המערכת לשרשרת של נקודות קוונטיות, אשר מכוונות -ואיתן. אנו מציעים להשיג זאת על

 היא במצב טופולוגי מוגןשים בהם המערכת יכולה להיחשב באופן אפקטיבי כמודל קִיטֶי יב, כך אלעמוד בתנ

המוצבים על  ,קשורים בנקודות הקיצוניות של השרשרת. מערך זה מתגבר על מכשולים מָיוֹרַנָהמלווה במצבי 

בדרך אל מימוש מצבי מיורנה קשורים מופרדים. אלגוריתם הכיוון של  ,מצבים גבוהה-סדר וצפיפות-אי ידי

על. ספקטרוסקופיה -וליכיהמערכת שאנו מציגים כולל שליטה במתחי שְעָרִים חשמליים ובפאזות של מ

בכל שלב זוג נקודות קוונטיות ע את הכיוון באופן סתגלני, כאשר תְהוּדָתִית מסוג אָנְדְרֶי יב מאפשרת לנו לבצ

מראה שישנו שיא אשר הדיפרנציאלית עובר כיוון באופן בלתי תלוי בזוגות האחרים. חישוב של המוליכות 

 מה של טיבה הטופולוגי של הפאזה.במתח חשמלי אפסי משמש כחתיט טַ נְ קווּמְ 



 

 תקציר

 

השאלה האם חלקיק  חלקיק של עצמו.-אֶטוֹרֶה מָיוֹרַנָה העלה השערה על קיום של חלקיק שהוא האנטי 1937-ב

מתקיים בטבע כחלקיק יסודי נותרת כיום ללא מענה. בתחום  -" מָיוֹרַנָהאשר קיבל את השם "פֶרְמִיוֹן הַ  -זה 

 מָיוֹרַנָהידי נדיבותו של הטבע. אכן, פֶרְמִיוֹן הַ -מוגבלים עלזאת, אין אנו ה, לעומת ל חומר מְעוּבֶ הפיסיקה ש

קשוּר בהקשרים של פיסיקת החומר המעובה( יכול  מָיוֹרַנָהמאוּפַס או מצב  מָיוֹרַנָהפַן )אשר מכונה לרוב אוֹ

פאזה זו   על טופולוגית.-וּר בעל אפס אנרגיה על גבולה של פאזה חדשה הנקראת מוליכותריעִ להתהווֹת כְ 

ד על, מגנטיות וצימוּ-וליכותבעלות מספר נמוך של ממדים כתוצאה משילוב של מיכולה להיווצר במערכות 

מְקוֹמִי, תכונה אשר -מצבי המיורנה הקשורים נובע מטיבם האִיהרבה מהעניין שמעוררים . הילָ סִ מְ -ררוּסִחְ 

-אי סטטיסטיקת חליפיןכתוצאה מכך, ומ קוֹהֶרֶנְטִיוּת.מותירה אותם חסרי רגישות להפרעות מקומיות ולאיבוד 

 שגיאות.-עיבוד מידע קוונטי עמידטובת כמצע לבעתיד לשמש  יש להם פוטנציאל ,תחילופי

קשורים במערכות של פיסיקת החומר המעובה, בין אם מנקודת מבט תיאורטית  מָיוֹרַנָהבבואנו לחקור מצבי 

על -. ראשית, מהן המערכות אשר מניבות מוליכותת מספר שאלותעולוובין אם מנקודת מבט יישומית, 

מצבי  עלבפרט, מהם המערכים הפיסיקאליים האיתנים ביותר ואשר מאפשרים שליטה מרבית וטופולוגית? 

הקשורים במערכות אלו? ובפרט,  מָיוֹרַנָההקשורים? שנית, מהן החתימות הפיסיקאליות של מצבי ה מָיוֹרַנָהה

המקומיות שלהם? בתזה המוצגת כאן, אנו מנסים לשפוך אור על נושאים -האם ביכולתנו להבחין בתכונת אי

 אלו.

קירה של ההתפתחויות האחרונות בהיכרות עם נושא מוליכות העל הטופולוגית, ובס 1אנו מתחילים בפרק 

קשורים. אנו מתרכזים בפרט במימושים של ה מָיוֹרַנָההבי מצב העניינים העדכני בחקר מצ לאהובילו אשר 

קשורים במדידות  מָיוֹרַנָהובחתימות של מצבי  ,חוטים מוליכים למחיצה-על טופולוגית במערכות ננו-מוליכות

 .במערכות אלה של מוליכות דיפרנציאלית

אנו מראים, שבניגוד למקרה בו  .על טופולוגי בעל סימטריה להיפוך בזמן-עוסק במימוש של מוליך 2פרק 

אלקטרון דוחה הינו הכרחי למימוש של הפאזה -הסימטריה להיפוך בזמן נשברת, כאן הידוד אלקטרון

-מהדדים למוליך-ימוד של מערכת של אלקטרונים בלתיידי צ-הטופולוגית. בפרט, לא ניתן לממש פאזה זו על

אלקטרון דוחה. אנו מציגים -פעה של הידוד אלקטרוןעל קונבנציונאלי. בשלב הבא אנו פונים לחקור את ההש

נכנס זה ומראים שמודל  על,-ה למוליךבָ רְ קִ ממדית בְ -נמוכות כללי עבור מערכת חד-וחוקרים מודל אנרגיות

טווח. את ההשפעה של -כתוצאה מהידוד דוחה קצר על הטופולוגי הסימטרי להיפוך בזמןה-מוליךאל פאזת 

בנוסף,  ת הָרְנוֹרְמָלִיזַצְיָה.רָ בוּשל חָ ניתוח ממוצע ובעזרת -עזרת קירוב שדהבים הידוד האלקטרונים אנו חוקר

אנו מציעים שני מערכים ניסויים ומראים שהם מתוארים באנרגיות נמוכות על יד המודל הנ"ל. כדי לבחון את 

פוֹק נומרי ובעזרת -ימודל מיקרוסקופי עבור אחד המערכים הללו בעזרת חישוב הַרְטְרִ  בוחניםמסקנותינו, אנו 

 חבורת הרנורמליזציה של מטריצת הצפיפות.
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