
Preparation of Graded Materials by Laterally Controlled Template Synthesis

Tali Sehayek, Tatyana Bendikov, Alexander Vaskevich and Israel Rubinstein

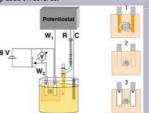
Department of Materials & Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel

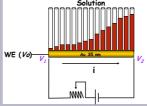
Cu

(4) Bottom-left to top-right: SEM image showing the entire cross-section (ca. 4 mm) of a NAM, filled with ${\color{blue}Cu}$ electrodeposited using a lateral potential gradient of -0.6 V to -0.8 V (vs. K_cSO_4 -saturated Hg/Hg₂SO₄). (B, C). SEM images showing the edge sections of a Cu-filled membrane. Deposition solution: 0.3 M CuSO₄ + 0.1 M H₂SO₄.

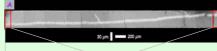
(A) SEM image showing the entire cross-section of a Cu-filled NAM. Cu was first deposited at -0.8 V (vs. K.50₄-saturated Hg/Hg.50₂) and then partly dissolved using a lateral potential gradient of -0.4 V to -0.05 V. Note the different x and y scales. (S) SEM image showing the edge section at -0.05 V. (c, D) SEM images of Cu "nano-brushes" obtained after uniform Cu deposition, gradient dissolution, and alumina membrane dissolution, imaged at different parts of the membrane (indicated).

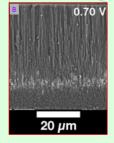
Abstract

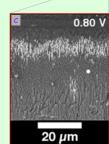

Preparation of graded materials displaying gradients of properties (e.g., roughness, composition, reactivity, porosity) is potentially important for obtaining materials of unusual characteristics, which can be used as sensors, catalysts, or in other applications requiring spatially varying properties of the material. Here we present an approach to the fabrication of graded materials showing structural and compositional gradients, obtained by electrochemical template synthesis in nanoporous alumina membranes (NAMs), precoated on one side with a thin evaporated gold film used as the working electrode. A lateral gradient of the properties of a material deposited in the insulating membrane is achieved by applying a lateral potential drop on the working electrode during the electrochemical synthesis.


The method is demonstrated with three examples: (i) Thickness gradients of a metal (Cu) are obtained by electrodeposition (or electrodissolution) of Cu in the NAM template using a lateral voltage drop on the working electrochemical oxidation of the monomer to form a polymer deposit using a lateral voltage drop, (iii) Compositional gradients are achieved by electrochemical co-deposition of Au and Pd in the membrane template under a lateral voltage drop, to form an alloy showing a continuous lateral change of the AupPd ratio.

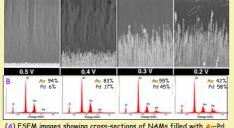
The gradients were characterized by scanning electron microscope (SEM) imaging of cross-sections along the line of the applied voltage gradient. Local elemental analysis by energy dispersive spectrometry (EDS) and X-ray diffraction (XRD) measurements were carried out as well, primarily for analyzing the alloy compositional gradients.


The approach shown here opens possibilities for obtaining graded materials showing gradients of structural, magnetic, optical, conductive, or catalytic properties on the micrometer scale. Changing the lateral potential drop by varying the geometry of the gradient-inducing electrodes (e.g., to circular geometry) will enable preparation of various 2b graded structures.

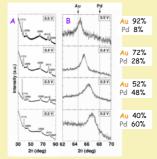

graded structures.



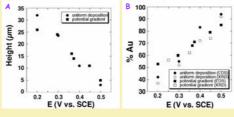
Polyaniline



(A) ESEM image showing the entire cross-section (ca. 4 mm) of a NAM, filled with PANi and Cu. The structure was obtained using a lateral potential gradient of +0.7 V to +0.8 V (vs. SCE) for PANi deposition, followed by uniform Cu electrodeposition at -0.6 V (vs. K_2SO_4 -saturated Hg/Hg_2SO_4). (8, C) Higher magnification ESEM images showing the edge sections of the PANi-Cu filled membrane. Solutions: (i) PANI deposition: 0.2 M ANi + 1.0 M $HCIO_4$. (ii) Cu deposition: 0.3 M $CuSO_4$ + 0.1 M H_2SO_4 .


Thickness Gradients

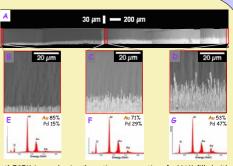
Cyclic voltammagrams (first scan) recorded in (1) 10 mM HAuCl, + 0.5 M HCl, (2) 25 mM H₂PdCl₄ + 0.5 M HCl, and (3) 10 mM HAuCl₄ + 25 mM H₂PdCl₄ + 0.5 M HCl solutions. The working electrode: 35 nm Au film evaporated on a NAM. Scan rate: 50 mV/sec. All scans started in the negative


(A) ESEM images showing cross-sections of NAMs filled with Au-Pd alloy following uniform electrodeposition for 1 h at different potentials (vs. SCE, indicated). (B) Corresponding EDS spectra and calculated alloy compositions (atomic %). Deposition solution: 10 mM HAUCl₄ × 25 mM H₂PdCl₄ + 0.5 M HCl.

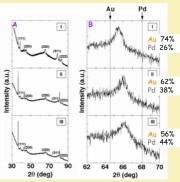
(A) XRD spectra and calculated atomic % of Au-Pd alloys deposited uniformly in NAMs at indicated potentials. Diffraction lines that originated from the glue are not assigned.
(B) Magnification of the (220) diffraction peak; the vertical lines indicate peak positions for pure Au and Pd. Compositions derived using Vegard's law.

Compositional Gradients

Au-Pd alloy


Height (A) and composition (B) of the Au-Pd nanowire alloys vs. deposition potential, for uniform and gradient depositions. The applied potential along the membrane during gradient deposition was assumed to vary linearly with distance along the lateral potential

Conclusions


- A new approach to the synthesis of graded materials was developed, based on spatial control of electrodeposition (or electrodissolution) in insulating templates.
- The new method was demonstrated via formation of thickness gradients of Cu and polyaniline and compositional (as well as thickness) gradients of Au-Pd alloy, in nanoporous alumina
- The new method opens various possibilities for obtaining graded materials showing gradients of structural, magnetic, optical, conductive, or catalytic properties on the micrometer scale.
- Graded materials of different shapes can be obtained by controlling the geometry of the applied potential drop.

References

- · Sehayek, T.; Vaskevich, A.; Rubinstein, I. J. Am. Chem. Soc. 125, 2003
- Sehayek, T.; Bendikov, T.; Vaskevich, A.; Rubinstein, I. Adv. Funct. Mater 16, 2006, 693-698

(A) ESEM image showing the entire cross-section of a NAM filled with Au-Pd alloy, obtained using a lateral potential gradient of +0.2 V to +0.5 V (vs. SCE). Note the different x and y scales. (S-b) Higher magnification ESEM images of different parts of the membrane (indicated). (E-B) Corresponding EDS spectra and calculated alloy composition (atomic %).

- (4) XRD spectra and calculated atomic % of Au-Pd alloy deposited in a NAM under a potential gradient of 0.2 V to 0.5 V. I, II and III denote different parts of the sample. Diffraction lines that originated from the glue are not assigned.
 (8) Magnification of the (220) diffraction peak: the vertical lines indicate peak positions for pure Au and Pd. Compositions derived using Vegard's law.