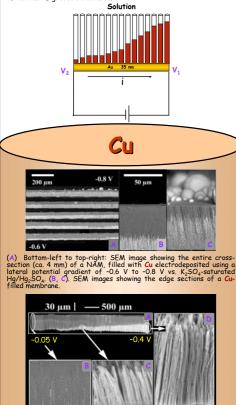


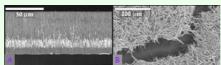
Preparation of Graded Materials by Laterally Controlled Template Synthesis

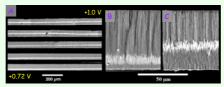

Tali Sehayek, Tatyana Bendikov, Alexander Vaskevich and Israel Rubinstein Department of Materials & Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel

Abstract

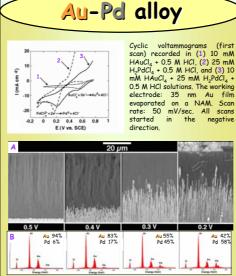
Preparation of graded materials displaying gradients of properties (e.g., roughness, composition, reactivity, porosity) is potentially important for obtaining materials of unusual properties, which can be used as sensors, catalysts, or in other applications, requiring spatially varying properties of the material. Here we present an approach to the fabrication of graded materials showing structural compositional gradients, obtained by electrochemical template hesis in nanoporous alumina membranes (NAMs), precoated on one and synthesis in nanoporous alumina memoranes (NAMS), precoared on one side with a thin evaporated gold film used as the working electrode. A lateral gradient of the properties of a material deposited in the insulating membrane is achieved by applying a controlled lateral potential drop on the working electrode during the electrochemical synthesis. The method is demonstrated with three examples: (i) synthesis. The method is demonstrated with three examples: (i) Thickness gradients of a metal (Cu) are obtained by electrodeposition (or electrodissolution) of Cu in the NAM template using a lateral voltage drop on the working electrode. (ii) Thickness gradients of a conductive polymer (polyamiline (PANi)) are obtained by electrochemical oxidation of the monomer using a lateral voltage drop. (iii) Compositional gradients are achieved by electrochemical co-deposition of Au and Pd alloy in the membrane template under a lateral

voltage drop. The gradients were characterized by scanning electron microscope (SEM) imaging of cross-sections along the line of the applied voltage gradient. Local elemental analysis by energy dispersive spectrometery (EDS) and X-ray diffraction (XRD) measurements were carried out as the clause the allow compositional gradients.

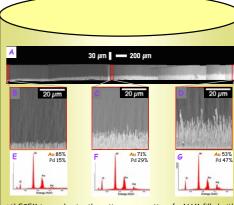

well, primarily for analyzing the alloy compositional gradients. The approach shown here opens possibilities for obtaining graded materials showing gradients of structural, magnetic, optical, conductive, or catalytic properties on the micrometer scale. Changing the lateral potential drop by varying the geometry of the gradientinducing electrodes (e.g., to circular geometry) will enable preparation of various 2D graded structures.

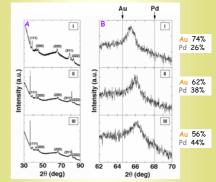

20 µm 10 µm

(*) SEM image showing the entire cross-section of a Cu-filled NAM. Cu was first deposited at -0.8 V vs. K₂SO₄-saturated Hg/Hg₂SO₄ and then partly dissolved using a lateral potential gradient of -0.4 V to -0.05 V vs. K₂SO₄-saturated Hg/Hg₂SO₄. Note the different x and y scales. (B) SEM image showing the edge section at -0.05 V. (c.)) SEM images of Cu 'nano-brushes'' obtained after uniform Cu deposition, gradient dissolution, and alumina membrane dissolution, imaged at different parts of the membrane (indicated).

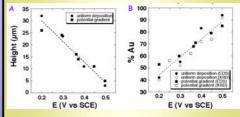

Polyaniline

(A) SEM image showing a cross-section of PANi-Ag filled NAM (a) Stand muge showing a cross-section of PAIN-Ag miled NAM, obtained by uniform PAIN deposition (cyclic voltammetry, potential range: -0.05 to +0.95 V vs. Ag/AgCl, 125 cycles), followed by Ag deposition (o1 M AgNO₂ and 1.0 M HClO₂ solution at +0.3 V vs. Ag/AgCl, for 3 minutes). (B) SEM image of a PAINi-Ag nanobrush' ned after membrane dissolution.


(A) Bottom-left to top-right: SEM image showing the entire cross-section (ca. 4 mm) of a NAM, filled with PANi and Cu. The structure section (cd. 4 mm) of a NAM, fulled with PANI and CU. The structure was obtained using a lateral potential gradient of 40.72 V to 10.0 vs. Ag/AgCl for PANi deposition, followed by uniform Cu electrodeposition at -0.8 V vs. K₂SQ₄-saturated Hg/Hg.5Q, (β , C) SEM images showing the edge sections of the PANi-Cu filled membrane


(4) ESEM images showing cross-sections of NAMs filled with Au-Pd alloy following uniform electrodeposition for 1 h at different potentials (vs. SCE, indicated), (B) Corresponding EDS spectra and calculated atomic %. Solution: 10 mM HAuCl₄ + 25 mM H₂PdCl₄ + 0.5 M HCl.

(A) XRD spectra and 0.5 V 0.5 V Au 92% calculated atomic % of Au-Pd alloys deposited Pd 8% uniformly in NAMs at indicated potentials. potentials 0.4 V 0.4 V Au 72% Pd 28% the J. (B) Magnification of the (220) diffraction 0.3 ¥ 0.3 V Au 52% Pd 48% peak; the vertical lines 7.7% ndicate peak positions 0.2 ¥ 0.2 ¥ Au 40% Pd 60% for pure Au and Pd. ing Vegard's law 70 deg) 64 66 20 (d



(4) ESEM image showing the entire cross-section of a NAM filled with Au-Pd alloy, obtained using a lateral potential gradient of +0.2 V to +0.5 V (vs. SCE). Note the different x and y scales. (B-D) Higher magnification ESEM images of different parts of the membrane (indicated). (E-G) Corresponding EDS spectra and calculated atomic %.

(A) XRD spectra and calculated atomic % of Au-Pd alloy deposited in a NAM under a potential gradient of 0.2 V to 0.5 V. I, II and III denote different parts of the sample. Diffraction lines that originated from

(B) Magnification of the (220) diffraction peak; the vertical lines indicate peak positions for pure Au and Pd

Height (A) and composition (B) of the Au-Pd nanowire alloys vs. deposition potential, for uniform and gradient depositions. The applied potential along the membrane during gradient deposition was assumed to vary linearly with distance along the lateral potential drop. The lines present linear regression fit of all the data. (s

References

iehayek, T.; Vaskevich, A.; Rubinstein, I. *J. Am. Chem. Soc.* 2003, 125, 4718-4719 Sehayek, T.; Bendikov, T.; Vaskevich, A.; Rubinstein, I. Submitted

• A new approach to the synthesis of graded materials was developed, based on spatial control of electrodeposition (or electrodissolution) in insulating templates.

• The new method was demonstrated via formation of thickness gradients of Cu and polyaniline and compositional (as well as thickness) gradients of Au-Pd alloy , in nanoporous alumina membranes.

Conclusions

• The new method opens various possibilities for obtaining graded materials showing atadients of structural magnetic optical, conductive, or catalytic properties on the micrometer scale

• Graded materials of different shapes can be obtained by controlling the geometry of the applied potential drop.