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Lecture 4  
 

 Beta-cell tissue size control has fragilities that lead to type-2 
diabetes:  

Dynamical compensation and mutant resistance in tissues 
 
We continue to use the glucose-insulin system as a model to understand fundamental 
principles of endocrine organs, the official name for hormone secreting glands. 
Endocrine organs communicate with distant organs via hormones that flow in the 
bloodstream. We will see that endocrine organs face at least three universal challenges. 
They must:  

(i) Signal precisely to distant organs whose parameters are unknown. This is the 
problem of robust homeostasis. 
(ii) Maintain a proper organ size, despite the fact that cells tend to grow 
exponentially. This is the problem of organ size control. 
(iii) Avoid mutant cells that can grow and take over the tissue. This is the 
problem of mutant resistance. 

In this lecture we will see that principles arise to allow organs to work robustly, keep 
the right functional size and resist mutants. In fact, a unifying and quite beautiful circuit 
design addresses all three problems at once! 
 
The minimal model cannot explain the robustness of glucose levels to variations in 
insulin sensitivity.  
We ended the last lecture with a mystery. The insulin-glucose feedback loop can 
provide rapid responses to a meal on the timescale of hours. However, it is sensitive to 
changes in physiological parameters like insulin sensitivity, s. The minimal model 
predicts that baseline glucose and its dynamics depend on s: insulin resistance (low s) 
causes in the model a rise from 5mM glucose baseline, and a longer response time. This 
is in contrast to the observation that most people with insulin resistance have normal 
glucose steady-state concentration and glucose responses. The minimal model is not 
robust to parameters like s. 
Therefore, robustness must involve additional processes beyond the minimal model’s 
glucose-insulin feedback loop. Indeed, the way that the body compensates for 
decreased insulin sensitivity by making more insulin. It does this by increasing the 
number and mass of beta cells. This is beta cell hyperplasia - more cells, and 
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hypertrophy - bigger cells. Thus, the total mass of beta cells rises. More beta cell mass 
means more insulin. Remarkably, the increase in insulin exactly matches the 
decrease in 𝑠. For example, people with obesity are insulin resistant and have more 
and larger beta cells than lean individuals. They thus secrete more insulin, 
compensating for insulin resistance.  
This compensation is seen in the hyperbolic relation that exists between healthy 
people: an inverse relationship between s and steady-state insulin that keeps the product 
of the two constant: 𝑠𝐼!" = 𝑐𝑜𝑛𝑠𝑡  (Kahn et al., 1993). People thus compensate for low 
insulin sensitivity with more insulin (Fig 4.1). People with diabetes have values that lie 
below this hyperbola - they appear to lie on their own hyperbola shifted to the left. The 
origin of this hyperbolic relationship has long been mysterious, but we will soon 
understand it.  
A slow feedback loop on beta-cell numbers provides compensation  
To explain how such compensation can come 
about, we need to expand the minimal model. 
We need to add equations for the way that beta-

cell total mass, 𝐵, can change.  
Here we enter the realm of the dynamics of cell 
populations. Cell dynamics are quite unlike the 
dynamics for the concentrations of proteins 
inside cells or molecules in the blood. For 
example, for glucose we used equations that, at 
their core, have production and removal terms, 𝑑𝐺/𝑑𝑡 = 𝑚 − 𝛼𝐺, and safely converge 
to a stable fixed point, 𝐺!" = 𝑚/𝛼 (Fig 4.2).  
Cells, however, live on a knife’s edge. Their 
basic biology contains an inherent instability, due 
to exponential growth. Cells divide (proliferate) 
and grow at rate p, and are removed at rate r (Fig 
4.3). The removal rate includes active cell death 
(apoptosis), and also other processes that take the 
cells out of the game like exhaustion, de-
differentiation and senescence. Since all cells 
come from cells, and all biomass is made by 
biomass, proliferation is intrinsically autocatalytic, a rate constant times the total mass 
of the cells: proliferation=p B. This is unlike the glucose equation above, 𝑑𝐺/𝑑𝑡 =
𝑚 − 𝛼𝐺,	in which the production term m is not multiplied by G. Removal of beta-cell 
mass B is, as usual, B times the rate at which cells are removed: removal= r B. As a 
result, the change in total cell mass B is the difference between proliferation and 
removal rates  
 

 (3)  𝑑𝐵/𝑑𝑡 = 𝑝𝐵 − 𝑟𝐵 = (𝑝 − 𝑟)𝐵 = 𝜇𝐵. 
 
The net growth rate of cells, 𝜇 = 𝑝 − 𝑟, is equal 
to the difference between proliferation and 
removal parameters. If proliferation exceeds 
removal, growth rate 𝜇 is positive and total cell 
mass rises exponentially, B~𝑒#" (Fig 4.4). Such 
explosive growth occurs in cancer. If removal 
exceeds proliferation, 𝜇 is negative, and cell 
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numbers exponentially decay to zero, as in degenerative diseases. It is hard to keep total 
cell mass constant over time. This is known as the problem of organ size control. 
Organ size control is an amazing problem. Our body constantly replaces its cells: about 
a million cells are made and removed every second. We make and remove about 
100g of tissue every day. If the production and removal rates were not precisely equal, 
we would exponentially explode or collapse.  
To keep cell numbers constant, we need additional feedback control, because we must  
balance proliferation and removal in order to reach zero growth rate, 𝜇 = 0. 
Moreover, the feedback loop must keep the organ at a good functional size. Hence, the 
feedback mechanism must somehow register the biological activity of the cells and 
accordingly control their growth rate. 
Such feedback control occurs for beta cells, 
as was pointed out by Brian Topp and Dianne 
Finegood (Topp et al., 2000). The feedback 
signal is blood glucose: glucose controls the 
proliferation and removal rates, so that 𝜇 =
𝜇(𝐺). As measured directly on rodent islets, 
the removal rate of beta cells is high at low 
glucose, and falls sharply around 5mM 
glucose (Fig 4.5). Removal rate rises again at 
high glucose, a phenomenon called 
glucotoxicity, which we will return to soon. 
For now, let’s focus on the region around 
5mM. Proliferation (which includes both cell 
division and growth of mass per cell) rises 
with glucose. Therefore, the curves 
describing the rates for proliferation and 
removal cross near 𝐺$ = 5𝑚𝑀	(Fig 4.6). 
Therefore, 𝐺$ = 5𝑚𝑀 is the fixed point that 
we seek with zero growth rate.  
This way of plotting proliferation and 
removal rates is called a rate plot, an 
important tool for understanding tissue-level 
circuits. The crossing points of the curves are the 
steady-states, because cell production equals cell 
removal. At steady state, total cell mass doesn't 
change. 
Another way of plotting this is to use the net 
growth rate 𝜇,	defined	as	the difference between 
proliferation and removal. Growth rate reaches 
zero at 𝜇(𝐺$) = 0 (Fig 4.7).  
 
We can add the beta-cell mass changes to make 
a revised model, the BIG model (Beta-cell-
Insulin-Glucose model, Fig 4.8). It is simply the 
minimal model with a new equation for the 
total beta-cell mass B: 
(4)  𝑑𝐺/𝑑𝑡 = 𝑚 − 𝑠	𝐼	𝐺	 
(5)  𝑑𝐼/𝑑𝑡 = 𝑞𝐵𝑓(𝐺) − 𝛾𝐼	 

      (6)  𝑑𝐵/𝑑𝑡 = 𝐵	𝜇(𝐺),				𝜇(𝐺$) = 0  
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The point 𝐺$ = 5𝑚𝑀	is a stable fixed-
point for both beta-cells and blood 
glucose. To see why the fixed point is 
stable, we need to see that perturbing 
glucose away from the point causes it to 
flow back. We can use our rate plot (Fig 
4.9). If glucose is above 5mM, beta-cells 
proliferate more than they are removed. 
Total beta cell mass increases, leading to 
more insulin, pushing glucose back down 
towards 5mM. Conversely, if glucose is below 5mM, beta-cells are removed more than 
they are produced, leading to less insulin, pushing glucose levels back up. These stable 
dynamics are indicated by the arrowheads pointing into the fixed point in Fig 4.9.   
 
This cell-mass feedback loop operates on the timescale of weeks, which is the 
proliferation rate of beta cells. It is much slower than the insulin-glucose feedback loop 
that operates over minutes to hours. The slow feedback loop of cell mass dynamics 
keeps beta cells at a proper functional steady-state total mass and keeps glucose, 
averaged over weeks, at 5mM. This is powerful, because the only way to reach steady-
state in Eq. 6 is when 𝐺 = 𝐺$. 
 
This principle is, in essence, the same as integral 
feedback in bacterial chemotaxis  (which we studied 
in the course Systems Biology. If you want to know 
more, see the 2018 videos on my website or the book 
“Introduction to Systems Biology”, Alon 2019).  
The steep drop of the removal curve at 𝐺$ = 5𝑚𝑀	is 
important for the precision of the glucose fixed-
point. Due to the steepness of the removal curve, 
variations in proliferation rate (black curves) do not 
shift the 5mM fixed point by much (Fig 4.10). The 
steep removal curve is generated by the cooperativity of key enzymes that sense glucose 
inside beta cells (Karin et al., 2016). 
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We can understand the effect of beta cell mass changes using the phase plot for insulin 
versus glucose (Fig. 4.11,4.12). The original set point with 5mM glucose, occurs at the 
intersection of the two nullclines. Insulin resistance moves one nullcline, and raises the 
setpoint to higher levels of glucose. This is appropriate for physiological changes in 
insulin sensitivity such as in exercise or inflammation. However long term changes 
cause beta cell mass to gradually increase. This raises the other nullcline. The beta cell 
rise stops precisely when the new setpoint has G=5mM. In this compensated state, 
insulin secretion is higher than in the original setpoint, due to enlarged beta cell 
effective mass. 
 
Dynamic compensation allows the circuit to buffer parameter variations 
The slow feedback on beta cells can thus maintain a 5mM glucose steady-state despite 
variations in insulin sensitivity, s. Remarkably, this feedback model can also resolve 
the mystery of how glucose dynamics on the scale of hours are invariant to changes in 
insulin sensitivity. I mean that the BIG model shows how, in the glucose tolerance test, 
the response to an input 𝑚(𝑡)	from	75g of glucose yields the same output curve G(t), 
including the same amplitude and response time, for widely different values of the 
insulin sensitivity parameter s. Such independence of the entire dynamic curve on a 
parameter such as s is very unusual. Changing a key parameter in most models alters 
their dynamics.  
Let's start simple, with calculating the steady-state of the BIG model. The glucose 
steady-state is 𝐺!"=5mM thanks to Eq 6 - the point where cell proliferation balances 
removal. Therefore, from Eq 4, 𝐼!" = 𝑚!"/𝑠𝐺!". The lower s, the higher the insulin 
concentration. In fact, the product of insulin steady state level and insulin sensitivity is 
constant, 𝑠𝐼!" =

%!"
&!"

= 𝑐𝑜𝑛𝑠𝑡. This explains the hyperbolic relation of Fig 3.1!   
Finally, the beta-cell steady state can be found from equation 5, by setting 𝑑𝐼/𝑑𝑡 = 0, 
to find that 𝐵!" = 𝛾 '!"

()(&!")
= 𝛾 %!"

(!&!")(&!")
. This means that beta cell mass varies 

inversely with insulin sensitivity ~1/s. Beta-cell mass thus rises when s is small, as 
observed in people with insulin resistance. Therefore, the tissue-size control feedback 
over weeks makes beta-cell mass expand and contract in order to precisely buffer 
out the effects of parameters changes like insulin resistance. In fact, it keeps the 5mM 
steady-state despite variations in any of the minimal-model model parameters, 
including maximal insulin production per beta cell  q and insulin removal rate 𝛾.  
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The feedback does something even more dramatic: it makes the entire temporal 
response to a meal invariant to parameters like s. Robustness of a dynamical response 
to changes is sometimes called rheostasis, complementing the better-known concept of 
homeostasis which refers to maintaining a robust steady-state concentration (also called  
baseline concentration) of a key metabolite. 
  This is advanced material I did not discuss in class, but it is important to know. The 
ability of a model to compensate for variation in a parameter was defined by Omer 
Karin et al (Karin et al., 2016) as dynamic compensation (DC): Starting from steady-
state, the output dynamics in response to an input is invariant with respect to the value 
of a parameter. To avoid trivial cases, the parameter must matter to the dynamics 
(technically, to be observable), for example, when you start away from steady-state. To 
establish dynamic compensation in our model requires rescaling of the variables in the 
equations, as done in the next solved example (feel free to skip this solved example 
right now if you don't want the details). 
 
=========================  
Solved Example 1: 
Show that the BIG model has dynamic compensation (DC). 

To establish DC, we need to show that when starting at steady-state, glucose output 
𝐺(𝑡) in response to a given input 𝑚(𝑡) is the same regardless of the value of 𝑠. To 
do so, we will derive scaled equations that do not depend on s. To get rid of s in 
the equations, we rescale insulin to 𝐼H = 𝑠𝐼, and beta cells to 𝐵I = 𝑠𝐵	. Hence 𝑠 
vanishes from the glucose equation 

(7)	𝑑𝐺/𝑑𝑡 = 𝑚 − 𝐼H𝐺	
Multiplying the insulin and beta-cell equations (Eq 5, 6) by 𝑠 leads to scaled 
equations with no 𝑠 

(8) ,'
-

,"
	= 𝑞	𝐵I𝑓(𝐺) − 𝛾𝐼H 

(9) ,.
/

,"
= 𝐵I𝜇(𝐺)		𝑤𝑖𝑡ℎ	𝜇(𝐺0) = 0 

Now that none of the equations depends on s, we only need to show that the initial 
conditions of these scaled equations also do not depend on 𝑠.	If both the equations 
and initial conditions are independent of s, so is the entire dynamics. There are 
three initial condition values that we need to check, for G, 𝐼H	and	𝐵Nwhich	we	
assume	start	at	steady-state	at	time	t=0. Note that if the system starts not at 
steady-state, there is no DC generally. The first initial conditon, 𝐺(𝑡 = 0) = 𝐺!" 
is independent on s because 𝐺!" = 𝐺$ is the only way for 𝐵I  to be at steady-state in 
Eq 9. This means that the second initial condition, from Eq 6, 𝐼H!" = 𝑚$/𝐺$ is 
independent of 𝑠, which we can use in Eq 7 to find that the thor initial condition 
𝐵!" = 𝛾	𝐼H!"/𝐺$𝑓(𝐺0) is also independent of s. Because the dynamic equations and 
initial conditions do not depend on s, the output G(t) for any input m(t) is invariant 
to 𝑠, and we have DC.  
Although G(t) is independent on s, insulin and beta cells do depend on it, as we 
can see by returning to original variables 𝐵 = 𝐵I/𝑠 and 𝐼 = 𝐼H/𝑠. The lower s, the 
higher the steady-state insulin, as well as beta-cell mass, which rises to precisely 
compensate decreases in s. 
Similar considerations show that the model has DC with respect to the parameter 
𝑞, the rate of insulin secretion per beta cell, and hence to the total blood volume 
(exercises 3.5). There is no DC, however, to the insulin removal rate parameter, γ. 



 

=========================  
 
Let’s see how dynamic compensation works. 
We will use the separation of timescales in 
this system: cell mass changes much slower 
(weeks) than hormones (hours). Let's look at 
the slow timescale first. Suppose that insulin 
sensitivity drops by a factor of two, 
representing insulin resistance (Fig 4.13). As 
a result, insulin is less effective and glucose 
levels rise. Due to the removal curve, beta-
cells are removed less often, and their 
numbers rise over days to weeks (Fig 4.13 
upper panels show the dynamics on the scale 
of weeks). More beta-cells means that more 
insulin is secreted, and average glucose 
gradually returns to baseline. In the new 
steady-state, there is twice the number of 
beta cells and twice as much insulin. Glucose 
returns to its 5mM baseline.  
 
Let’s now zoom in to the timescale of hours (Fig 4.13, lower panel). The response of 
glucose to a meal long after the drop in 𝑠 is exactly the same as before the change 
in 𝑠 (time-point 1 and timepoint 3). The insulin response, however, is two times higher. 
Glucose dynamics in response to a meal are abnormal only during the transient period 
of days to weeks in which beta-cell numbers have not yet reached their new, 
compensatory, steady-state (time-point 2).  
The dynamic compensation model predicts that people with different 𝑠	should show the 
same glucose meal dynamics, but have insulin dynamics that scale with 𝑠. This is 
indeed seen in measurements that follow non-diabetic people with and without insulin 
resistance over a day with three standardized meals (lower panels in Fig 4.14) 
(Polonsky et al., 1988). Insulin levels are higher in people with insulin-resistance 
(lower middle panel, Fig 4.14). But when normalized by the fasting insulin baseline, 
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there is almost no difference between the two groups (lower right panel, Fig 4.14). The 
model (upper panels in Fig 4.14) captures these observations. 
 
The DC property arises from the structure of the equations: 𝑠 cancels out due to the 
linearity of the dB/dt equation with B, which is a natural consequence of cells arising 
from cells. 𝑠	also cancels out due to the linearity in B of the insulin secretion term q B 
f(G), a natural outcome of the fact that beta-cells secrete insulin.  
 
These basic features needed for DC exist in most hormone systems that perform 
homeostasis, namely tight control of an important factor in the body. For example, free 
blood calcium concentration is regulated tightly around 1mM by a hormone called 
PTH, secreted by the parathyroid gland (Fig 4.15). The circuit has a negative feedback 
loop similar to insulin-glucose, but 
with inverted signs: PTH causes 
increase of calcium, and calcium 
inhibits PTH secretion. The slow 
feedback loop occurs because 
parathyroid cell proliferation is 
regulated by calcium.  
 
Other organ systems and even neuronal systems have similar circuits (Fig 4.16), in 
which the size of the gland or organ 
expands and contracts to buffer 
variation in effectivity parameters. For 
example, thyroid hormone, essential 
for regulating our temperature and 
metabolism, is secreted by the thyroid 
gland. The controlling signal is called 
TSH, which causes the thyroid gland to 
both secrete thyroid hormone and to 
proliferate.  The systems shown in Fig 
4.16 have essentially the same circuit 
as in the insulin-glucose system. 
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The feedback mechanism seems so robust. What about diseases such as diabetes? How 
and why do things break down?  
Before full-fledged diabetes sets in, there is a stage called prediabetes. In prediabetes, 
blood glucose shifts to higher and higher steady state values above than 5mM: 
clinically, fasting glucose between 5.6mM and the diabetes threshold of 6.9 mM. It has 
no symptoms, and occurs in 1 of 3 Americans, though 80% don’t know they have it.  
Prediabetes occurs because of insulin resistance. When insulin resistance is strong, beta 
cells must grow in mass by a large factor to compensate for the reduced s. But there is, 
in biology, always a limit to such compensation processes. When beta cell mass hits 
its carrying capacity- its maximal value determines by the size of the islets- 
compensation stops working. As a result, glucose levels rise. 
Another pathway to diabetes is rapid and continual rise in insulin resistance that is too 
fast for beta cells to grow and catch up. This may happen in some cases in pregnancy, 
when insulin resistance rises due to signals secreted from the placenta in order to direct 
glucose towards the fetus rather than mom's muscle and fat cells. This may be one cause 
of gestational diabetes. 
But the worst aspects of full-fledged diabetes are due to a dynamic instability that is 
built into the feedback loop, as we will see next.  
 
Type-2 Diabetes is linked with instability due to a U-shaped removal curve  
Type-2 diabetes occurs when production of 
insulin does not meet the demand, and glucose 
levels go too high. It is linked with the 
phenomenon of glucotoxicity that we 
mentioned briefly above: at very high glucose 
levels, beta-cell removal rate rises (removal 
includes all processes that remove beta-cell 
function such cell death, de-differentiation and 
senescence) and eventually patients are not 
able to make enough insulin.  
Glucotoxicity and cell death was quantified in 
an experiment by Efanova et al (1998) on 
rodent beta-cell islets. They incubated the 
islets for 40h in different concentrations of 
glucose. The fraction of dead islet cells 
dropped sharply at 5mM glucose but then rose 
again above 10mM glucose (Fig 4.17).  
Glucotoxicity is dangerous because it adds an 
unstable fixed point, the point at which 
proliferation rate crosses removal rate a 
second time (white circles in Fig 4.18). As 
long as glucose concentration does not exceed 
the unstable point, glucose safely returns to 
the stable 5mM point. However, if glucose 
(averaged over weeks) crosses the unstable 
fixed point, removal rate exceeds proliferation 
rate. Beta cells die, there is less insulin and hence glucose rises even more. This is a 
vicious cycle, in which glucose disables or kills the cells that control it. It resembles 
end-stage type-2 diabetes. 
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This rate plot can explain several risk factors for type-2 diabetes. The first risk 
factor is a diet high in fat and sugars. Such a diet makes it more likely that glucose 
fluctuates to high levels, crossing into the unstable region. A lean diet can move the 
system back into the stable region.  

In fact, type-2 diabetes is largely curable if addressed at early stages, by 
changing diet and exercising. This can bring average G back into the stable region even 
if the unstable fixed point was crossed. G then flows back to normal 5Mm. The 
challenge is that it is difficult for many people to stick with such lifestyle changes. 
The second risk factor is ageing. With age, 
proliferation rate of cells drops in all tissues, 
including beta cells. This means that the 
unstable fixed point moves to lower levels of 
G (Fig 4.19), making it more likely to cross 
into the unstable region. Note that the stable 
fixed point also creeps up to slightly higher 
levels. Indeed, with age the glucose set point 
mildly increases in healthy people. 
A final risk factor is genetics. It appears that 
the glucotoxicity curve is different between 
people. A shifted glucotoxicity curve can 
make the unstable fixed point come closer to 
5mM (Fig 4.20).  
Why does glucotoxicity occur? Much is 
known about how it occurs (which is 
different from why it occurs), because 
research has focused on this disease-related 
phenomenon. Glucotoxicity is caused by 
programmed cell death that is linked to the 
same processes that controls cell division and insulin secretion (calcium influx). A 
contributing factor is reactive oxygen species (ROS) generated by the accelerated 
glycolysis in beta cells presented with high glucose. ROS causes extensive cell damage, 
and beta-cell removal. The sensitivity of beta cells to ROS does not seem to be an 
accidental mistake by evolution. Beta cells seem designed to die at high glucose- they 
are among the cells most sensitive to ROS, lacking protective mechanisms found in 
other cell types.  
Thus, it is intriguing to find a functional explanation for glucotoxicity. Mainstream 
views are that glucotoxicity is a mistake, exposed perhaps only recently due to our 
lifestyle and longevity. In this course, we take the point of view that such processes 
have an important physiological role, preventing problems in the young. their benefit 
outweighs the cost of diseases in the old. 
 
Tissue-level feedback loops are fragile to invasion by mutants that misread the 
signal  
Omer Karin et al (Karin and Alon, 2017) provided an explanation for glucotoxicity by 
considering a fundamental fragility of tissue-level feedback circuits. This fragility is to 
take-over by mutant cells that misread the input signal. Mutant cells arise when 
dividing cells make errors in DNA replication, leading to mutations. Rarely but surely, 
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given the huge number of cell divisions in a lifetime1, a mutation will arise that affects 
the way that the cell reads the input signal.  
Let’s examine such a mutation in beta cells. Beta cells sense glucose by breaking it 
down in a process called glycolysis, leading to ATP production, which activates insulin 
release through a cascade of events. The first step in glycolysis is phosphorylation of 
glucose by the enzyme glucokinase. Most cell types express a glucokinase variant with 
a halfway-binding constant to glucose of 𝐾 = 40	𝜇𝑀, but beta cells express a special 
variant with 𝐾 = 8𝑚𝑀	. This means that this glucose sensor has a half-way point of 
8mM, perfect as a sensor for the 5mM range and to the glucose levels that exceed 5mM 
in normal conditions.  
Mutations that affect the 𝐾 of glucokinase, reducing it, say, by a factor of five, causes 
the mutant cell to mis-sense glucose concentration as if it were five times higher than 
it really is. The mutant beta cells therefore do glycolysis as if there was much more 
glucose around. It’s as if the mutant distorts the glucose axis in the rate plots by a factor 
5, “thinking” that glucose concentration G is actually 5G. 
If our feedback design did not include 
glucotoxicity, such a mutant that interprets 
5mM glucose as 25mM would have a higher 
proliferation rate (black curve) than removal 
rate (red curve). It would think ‘Oh, we need 
more insulin!’ and proliferate (Fig 4.21). The 
mutant cell therefore has a growth advantage 
over other beta cells, which sense 5mM 
correctly. The mutant will multiply 
exponentially and eventually take over. This 
is dangerous because when the mutant cells 
take over, they push glucose down to a set-point level that they think is 5mM, but in 
reality, is 1mM, causing lethally low glucose. 
Mutant expansion has a second, evil property: as the mutant population starts to push 
glucose below 5mM, normal cells begin to be removed because their removal exceeds 
proliferation (as if they try to reduce insulin and increase glucose). The mutant’s 
advantage is enhanced by killing off the normal cells.  
 
Biphasic (U-shaped) response curves can protect against mutant takeover 
To resist such mutants, we must give them a growth disadvantage. This is what 
glucotoxicity does. The mutant cell misreads glucose as very high. As a result, its 

 
1 A gram of tissue has about 10^9 cells, which is also the approximate number of beta cells in humans. 
If cells divide 1/month, there are about 10^10 divisions per year. Mutation rate is 10^-9/base-
pair/division. That means that every possible single-letter (base-pair) change in the genome (point 
mutation) will be found in about 10 cells. Mis-sensing can be caused by at least 100 different 
mutations, so every year at least 1000 mis-sensing mutants arise. Also just to generate the 10^9 cells 
during embryonic development and childhood growth there need to be at least 10^9 divisions starting 
from the fertilized egg, resulting in at least 100 mis-sensing mutants. Depending on the tissue, cells are 
renewed on average every few days (gut epithelium) to a few months (most tissues- skin, lung, blood 
cells) to never (most neurons, most muscle cells).  
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removal rate exceeds proliferation. The 
mutant kills itself (Fig 4.22). Mutants are 
removed.  
Isn't that neat? 
The downside of this strategy is that it 
creates the unstable fixed point, with its 
vicious cycle. There is thus a tradeoff 
between resisting mutants and 
resisting disease.  
In our evolutionary past, activity and 
nutrition was probably such that average 
glucose rarely stayed very high for 
weeks, and thus the unstable fixed point 
was rarely crossed. Modern lifestyle 
makes it more likely for glucose to exceed the unstable point, exposing a fragility to 
disease. 
The glucotoxicity strategy eliminates mutants that strongly misread glucose. However, 
this strategy is still vulnerable to certain mutants of smaller effect: e.g. mutants that 
misread 5mM glucose as a slightly higher level that lies between the two fixed points 
(hatched region in Fig 3.20). Such mutants have a growth advantage, because they are 
too weak to be killed by glucotoxicity, and have higher proliferation rate than removal 
rate.  
Luckily, such intermediate-effect mutants are rarer than mutants that strongly activate 
or deactivate signaling. Designs that can help against intermediate mutants are found 
in this system: beta cells are arranged in the pancreas in isolated clusters of ~1000 cells 
called Islets of Langerhans. A mutant can take over one islet, but not the entire tissue. 
Relatively slow growth rates for beta-cells also help keep such mutants in check. Karin 
et al (Karin and Alon, 2017) estimate that often only a small fraction of the islets are 
taken over by mutants in a lifetime. And, as we will see in Part 2, there are additional 
safeguards against these mutants, whose failure provides a mechanism for why the 
immune-system attacks beta-cells in type-1 diabetes. 
The glucotoxicity mutant-resistance mechanism can be generalized to other organs: to 
resist mutant takeover of a tissue-level feedback loop, the feedback signal must be toxic 
at both low and high levels. Such U-shaped phenomena are known as biphasic 
responses, because their curves have a rising and falling phase. Biphasic responses 
occur across physiology. Examples include neurotoxicity, in which both under-excited 
and over-excited neurons die, and immune-cell toxicity at very low and very high 
antigen levels. These toxicity phenomena are linked with diseases, for example 
Alzheimer’s and Parkinson’s in the case of neurons. 
 
Summary  
By modelling the system, we came upon new questions that reveal constraints shared 
by virtually all tissue-level circuits. First, tissues have a fundamental instability due to 
exponential cell growth dynamics. They therefore require feedback to maintain steady-
state and a proper size. This is the problem of organ size control. Such feedback loops 
use a signal related to the tissue function (blood glucose in the case of beta cells), to 
make both organ size and function stay at a proper stable fixed-point. This fixed point 
is maintained as the cells constantly turn over on the scale of days to months. 
A second fact of life for hormone circuits is that they need to operate on distant target 
tissues by secreting hormones into the bloodstream. The challenge is that the target 
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tissues have variation in their response parameters, such as insulin resistance. Hormone 
circuits thus need to be robust to such distant parameters in order to maintain good 
steady-state values (homeostasis) and dynamic responses (rheostasis) of the 
metabolites they control. We saw how hormone circuits can achieve this robustness by 
means of dynamic compensation (DC). In dynamic compensation, tissue size grows 
and shrinks in order to precisely buffer the variation in parameters. DC arises due to a 
symmetry of the equations. 
Finally, tissue-level feedback loops need to be protected from another consequence of 
cell growth- the unavoidable production of mutants that misread the signal and can take 
over the tissue. This problem of mutant resistance leads to a third principle: biphasic 
responses found across physiological systems, in which the signal is toxic at both high 
and low levels. Biphasic responses protect against strong mis-sensing mutants by 
giving them a growth disadvantage. This comes at the cost of fragility to dynamic 
instability and disease.  
Thus, all three constraints- organ size control, hemostasis and mutant resistance- are 
addressed by a single integrated circuit design. The circuit design of the glucose-insulin 
circuit is also found in numerous other hormone circuits.   
 
  



 

Further reading 
 
History of the minimal model  
(Bergman, 2005) “Minimal model: Perspective from 2005” 
The BIG model 
(Topp et al., 2000) “A model of β-cell mass, insulin, and glucose kinetics: Pathways to 
diabetes” 
Dynamical compensation 
(Karin et al., 2016) “Dynamical compensation in physiological circuits” 
Resistance to mis-sensing mutants 
(Karin and Alon, 2017) “Biphasic response as a mechanism against mutant takeover in 
tissue homeostasis circuits” 
A general resource for models in physiology 
(Keener and Sneyd, no date) “Mathematical Physiology II: Systems Physiology” 
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