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Lecture 7 

Aging and the saturation of damage removal 
 

We’ve just seen some basic facts about aging on the population level, such as the Gompertz law. 

We also discussed how different forms of molecular damage cause aging, in part through the 

accumulation of senescent cells. In this lecture we connect between the molecular and population 

levels. To do so, we build a conceptual framework to understand the stochastic processes of 

senescent cell accumulation and removal. Our payoff will be a first-principle explanation of the 

Gompertz law, of the variation in aging, and of the dynamics of anti-aging interventions. 

 

Removing SnCs in mice slows age-related diseases and increases average lifespan 

In 2016 an experiment by van Duersen et al (Baker et al., 2016) galvanized the aging field. It 

showed that accumulation of SnCs is causal for aging in mice. Continuous targeted elimination of 

whole-body SnCs increased mean lifespan by 25%, and attenuated the age-related deterioration of 

heart, kidney, and fat. The experiment has been repeated by many groups using different methods 

to remove SnCs. These methods include several families of drugs called senolytics that selectively 

kill SnCs in mice. Some of these drugs are toxic for humans, but improved drugs are under 

development. Senolytics delay cancer development and cause improvement in age-related diseases 

including diabetes, osteoarthritis, Alzheimer's and heart disease.   

For a sense of the effects of SnC removal, 

see the picture of twin mice at age 2 years 

from van Duersen’s lab (Fig 7.1). One had 

SnCs removed since the age of one year. It 

runs on the wheel, has shiny fur and overall 

better health. Its sibling, treated with mock 

injections, barely runs on the wheel. It 

looks like a typical 2-year-old mouse with 

a hunchback, cataract and fur loss (Fig 7.1 

on the left).   

Figure 7.1 



SnC are not the only cause of aging, as evidenced by the fact that these mice still age, get sick and 

die. But we will pretend that they are the only (or dominant) cause. We will also pretend that SnC 

are a single entity, even though they are heterogenous and tissue-specific. These simplifying 

assumptions will help us write a stochastic process that can explain many of the empirical 

obsrevations that we described in this lecture on the population features of aging. 

 

In a nutshell, aging derives from our three laws: 

• All cells come from cells (Stem cells produce differentiated cells) 

• Cells mutate (Mutant stem cell number increases linearly with age, and they produce 

damaged/senescent cells) 

• Biological processes saturate (damged/senescent cell removal eventually saturates 

eventually, and damaged/senescent cell levels rise sharply leading to inflammaging) 

 

Natural selection is important here, as in the disposable soma theory of aging. Damage removal 

capacity is selected for the young, not the old, and hence does not increase with age. Later in the 

lecture we will make this even more general, to explain aging in invertebrates and even single celled 

organisms: damage-producing units that accumulate linearly with time, until they overwhelm the 

damage removal process which saturates. 

 

Senescent cell dynamics show a nearly exponential rise with age and lengthening correlation 

times  

We saw that senescent cells are an important accumulating factor that is causal for aging: removing 

senescent cells slows aging. In other experiments, adding them increases risk of death. It makes 

sense, then, to explore how the amount of senescent cells in the body, which we denote by X, varies 

with age in different individuals.  

For simplicity, we will consider senescent cells as a single category, despite the fact that they are a 

name for many different cell states and cell types, accumulating in the different organs of the body. 

For organisms without senescent cells, such as C. elegans and fruit flies, we will think of X as a 

type of damage, such as protein damage, that is a 

primary cause for aging. More on that below.  

To get a feeling for the dynamics of senescent 

cells, let’s consider an experiment, by (Burd et al., 

2013), who measured senescent cell abundance in 

33 mice every 8 weeks for 80 weeks (Fig 7.2).  
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To measure whole-body senescent cell amounts, Burd et al used genetic engineering to produce 

mice that made photons in proportion to the number of senescent cells they have. In a nutshell, they 

used a gene from fireflies called luciferase that produces photons when it acts on a certain substrate. 

They introduced the luciferase gene into the mouse DNA and placed it under the control of a DNA 

element, called the p16 promoter, that is activated almost exclusively in senescent cells. Therefore, 

only the senescent cells in these mice make the protein luciferase.  

When the substrate for luciferase is injected into the mouse, the mice produce light. Mice normally 

don’t make photons, so that observing the light emitted from their special mice allowed Burd et al 

to estimate senescent cell abundance, X. The experiment has several limitations, such as stronger 

absorption of light from inner regions, some genetic disruption of the natural p16 system which 

enhanced the chance of cancer after 80 weeks, so that the experiment could not probe very old ages, 

and experimental noise. But the experiment serves as a good starting point.  

Looking at total light emitted from these mice as a 

measurement of X, we see that X rises and falls across time 

and generally increases with age (Fig 7.3). The data suggests 

two timescales: fast timescale of fluctuations over weeks, and 

a slow timescale in which X rises on average over years (Fig 

7.3). This fast-slow timescale separation will be useful for 

building our model.  

Analyzing the data provides four features: 

(i) The average X grows at an accelerating rate, nearly-exponentially with age (Fig 7.4). 

Such nearly-exponential accumulation with age is also seen in senescent cells in human 

tissues. 

(ii) The variation in X between individuals grows with age (Fig 7.5). Old mice span a larger 

range of X than young mice. Some old mice even have X levels similar to young mice 

(Fig 7.2). This variation grows, however, more slowly than the growth of average: the 
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mean X divided by standard deviation grows roughly linearly with age !"#
$%&(")

~𝜏 (Fig 7.5 

inset).  

 

(iii) Distributions of X among 

individuals at a given age 

are skewed to the right, so 

that there are more 

individuals with higher than 

average X than individuals with lower than average X (Fig 7.6). The skewness of these 

distributions gradually drops with age. 

 

(iv) The correlation time of X increases with age. This means that a mouse that is higher or 

lower than average stays so 

for longer periods of time at 

old age than at young ages. 

(Fig 7.7). Thus, with age, the 

stochastic variation in X 

becomes more persistent. 

 

Interestingly, these features are shared with the human frailty index described in the last lecture, 

which also rises exponentially with age, shows widening variation (increasing standard deviation) 

with age that rises more slowly than the mean, and skewed distributions between individuals. 

A model with increasing production and saturating removal can explain senescent-cell 

dynamics 

These dynamical features of senescent cells can be explained by a simple model, called the 

saturating removal (SR) model, as discovered by Omer Karin in his PhD with me (Karin et al, 

2019). Omer scanned a wide class of models, and found the essential features that a model needs 

in order to explain the senescent cells dynamics we just discussed.  

The first important feature is to have two timescales, a fast and a slow timescale: X is produced 

and removed on a timescale that is much faster than the lifespan. This separation of timescales 

allows us to write an equation for the rate of change of X in which the parameters, such as 

production and removal rates, vary slowly and depend on age 𝜏. The model also includes stochastic 

noise. Thus, 
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𝑑𝑋
𝑑𝑡

= 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 − 𝑟𝑒𝑚𝑜𝑣𝑎𝑙 + 𝑛𝑜𝑖𝑠𝑒 

The model that best describes the data is biologically plausible. The production rate of X rises 

linearly with age, as 𝜂𝜏. This aligns with the biological expectation, discussed in the previous 

lecture, that senescent cells arise from mutant stem cells S' that produce damaged differentiated 

cells D' that become senescent cells. The number of mutant stem cells rises linearly with age, as we 

saw in the previous lecture, and thus the production rate of senescent cells should also be linear 

with age: 

𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 𝜂𝜏 

The removal of X is carried out by special garbage trucks, namely immune cells such as NK cells 

that kill senescent cells. The NK cells discover senescent cells by means of special marker proteins 

that senescent cells display on their surface. The NK cells then attach to the senescent cell, and 

inject toxic proteins to kill it. Mice without functioning NK cells show accelerated aging and large 

amounts of senescent cells.  Other immune cells, including macrophages, also play a role by 

swallowing up the remains. Possibly other types of immune cells such as T cells also help to remove 

senescent cells.  

If this removal process worked at a constant rate	𝛽 per senescent cell, the probability unit time to 

remove each senescent cell would be constant with age. The removal term would thus be −𝛽𝑋. 

However, such a constant 𝛽 does not match the data. It would result in a linear rise of X with age, 

as opposed to the nearly exponential rise observed. To see, the equation is &"
&%
= 𝜂𝜏 − 𝛽𝑋. We use 

𝜏 for age and t for time to make sure that we understand that there are two timescales: a fast scale 

(days-weeks) in which damage reaches steady-state, and a slow timescale (years) over which 

production rate 𝜂𝜏 changes. The steady-state solution, found by dX/dt=0, rises linearly with age 

𝑋$% = 𝜂𝜏/𝛽.  

Note that we can make such a steady-state solution thanks to separation of timescales. At a given 

age 𝜏, the production and removal balance to determine X_st much faster than age changes. This 

steady-state level then tracks the much slower changes in age. It’s like an equation for a child 

jumping- we can safely ignore the changes in the child’s height during the jump. 

Thus, it makes sense from the nearly exponential rise of X that the removal rate per senescent cell 

should slow down with age. Karin tested many mathematical ways for this reduction to occur. The 

simplest way to model this, which accounts for the four features mentioned above, is to assume that 

the removal rate drops with the amount of senescent cells. In other words, senescent cells inhibit 

their own removal. Such a drop could be due to several processes: immune cells that remove 

senescent cells could be down-regulated if they kill too often, or they can become inhibited by 



factors that the senescent cells secrete. The drop in removal rate can also be simply due to a 

saturation effect, in which the removing cells become increasingly outnumbered by senescent cells 

as senescent cell numbers rise. Garbage trucks are overloaded. Indeed, NK cell numbers are about 

constant with age in humans. 

To model such saturation, we use a Michaelis-Menten form (which is good both for inhibition due 

to secreted factors and for saturation by large numbers, see solved 

exercise 7.3)  

𝑟𝑒𝑚𝑜𝑣𝑎𝑙 =
𝛽𝑋
𝑘 + 𝑋

 

Where 𝛽 is the maximal senescent cells removal capacity, with units 

of senescent cells/time.  It’s the maximal capacity of the trucks. k is 

the concentration of X at which senescent cells inhibit half of their 

own removal rate. The removal rate per senescent cell thus drops 

with senescent cells amounts, )
*+"

 (Fig 7.8) 

Combining production and removal, we obtain a model for the rate of change of X:  
𝑑𝑋
𝑑𝑡

= 𝜂𝜏 −
𝛽𝑋
𝑋 + 𝜅

								[1] 

Where we use 𝜏 for age and t for time to make sure that we understand that there are two timescales: 

a fast scale (days-weeks) in which damage reaches steady-state, and a slow timescale (years) over 

which production rate 𝜂𝜏 changes. Note that this model assumes that maximal removal capacity 

𝛽	does not decline with age. Adding such a decline, namely 𝛽(𝜏), generally leaves the conclusions 

the same. For simplicity we ignore this possibility. 

Let’s compute the steady-state X. On the fast timescale of weeks, the production rate 𝜂𝜏 can be 

considered as constant. Setting 𝑑𝑋/𝑑𝑡 = 0 in Eq. 1 we find that the (quasi-) steady-state X of is 

𝑋$% ≈
𝜅η𝜏
𝛽 − ητ

[2] 

X
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 ∼ k+X
β
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Thus, Xst rises linearly with age at first. Then, the term on the 

bottom becomes closer and closer to zero, which is an explosion 

point. The rise in X thus accelerates and diverges at a critical 

age 𝜏, = 𝛽/𝜂 (Fig 7.9). In fact, this rise is almost 

indistinguishable from an exponential rise over the 5-fold range 

of the available experimental data (Fig 7.3, Fig 7.9, dashed 

line).  

When X levels rise high enough, they reach levels not 

compatible with life. Thus, the critical age 𝜏, = 𝛽/𝜂 is a rough 

approximation for the mean lifespan. The lifespan is longer the 

bigger the repair capacity	𝛽, and longer the smaller the rate at 

which senescent cell production increases with age, 𝜂.  

To get a graphic sense of why X accelerates with age, we can 

use a rate plot. We plot the production and removal terms in Eq 

1. Removal is beta )"
*+"

 which is a saturating curve (Fig 7.10). 

Note that removal rate per cell goes down with X as )
*+"

, and 

the plot shows total removal rate, which is the removal rate per cell times X, and is therefore a 

rising and saturating curve.  

Production rate, represented by the colored horizontal lines, is low in young organisms and rises 

with age. The points to watch are where production equals removal. These are the steady-state 

points at each age. With age, the steady-state X accelerates to higher and higher levels (Fig 7.10) 

because of the saturating shape of the removal curve. When the production rises above the removal 

curve, which occurs when age goes beyond the critical age, the steady state points shifts to infinity, 

and X grows indefinitely. 

Damage production rises with age, and saturates the repair capacity 

Another way to understand this model is the parable of the garbage trucks. A young organism is 

like a small village that produces a small amount of garbage (senescent cells). The village has 100 

garbage trucks, more than enough to clear the garbage. With age, the village becomes a big city 

producing a lot of garbage. Since we are not designed to be old, there are still 100 trucks. The trucks 

are overloaded, and garbage piles up in the streets. If there is a perturbation (infection, injury) and 

extra garbage is added, it stays for a long time. Once garbage is produced at a rate larger than the 

maximal capacity of the trucks, garbage piles up higher and higher. 

Figure 7.10 

1

2

3

4

5

Xst

ττC

best-fit
exponential

k η τ
β−η τ

Figure 7.9 



Similarly, the body’s immune cells that remove senescent cells get saturated or downregulated, and 

senescent cells pile up. The senescent cells cause inflammation and reduce stem cell renewal. The 

saturation of the immune cells also hampers their other tasks: fighting infection and cancer.  Thus 

risks of illness and organ dysfunction rises with age. 
 

Adding noise to the model explains the variation between individuals in senescent cell levels 

So far, the model does not describe the fluctuations of X over time for each individual, nor the 

widening differences between individuals. To understand these stochastic features of the dynamics, 

we need to add noise to the model.  

The simplest way to add noise is to add a white-noise term 𝜉 with mean zero and a variance 

described by the parameter  2𝜖 (the factor 2 is for convenience in the equations below). This noise 

describes fluctuations in production and removal due to internal or external reasons such as injury, 

infection and stress (cortisol). In fact, we don’t currently know what the noise describes. White 

noise is a convenient way to wrap up our ignorance in a mathematical object that we can work with.  

We thus arrive at the main model of this lecture, called the saturated removal (SR) model:  
𝑑𝑋
𝑑𝑡

= 𝜂𝜏 −
𝛽𝑋
𝑋 + 𝜅

+ √2𝜖𝜉								[3] 

We will use this model to understand the dynamics of senescent cells, and then to understand the 

origin of the Gompertz law. Let’s begin with understanding the variation in X between individuals 

at a given age. To do so, we need to compute the distribution of X between individuals, P(X). 

_______________________________ 

Solved example 1: compute the distribution of X at a given age 

The distribution of X, denoted P(X), is the probability of having X senescent cells. To derive it, we 

use an approach analogous to free energy in statistical 

mechanics or in chemical kinetics. The temperature 𝑘-𝑇	will be 

the analog of the noise amplitude 𝜖 in the SR model. 

To calculate the distribution P(X), we use a general method that 

applies to any stochastic differential equation of the form: &"
&%
=

𝑣(𝑋) + √2𝜖𝜉 . In the SR model, the ‘velocity’ v(x) equals 

production minus removal, namely 𝑣(𝑋) = 𝜂𝜏 − 𝛽𝑋/(𝑘 + 𝑋). 

The idea is to rewrite the equation using a potential U(X), 

defined so that its slope is equal to minus the velocity:  &.
&"
= −𝑣(𝑋).  

The potential function can be imagined as a bowl of shape U(X) (Fig 7.11). The variable X is like 

a ball rolling in the bowl (Fig 7.11). The ball rolls down the sides of the bowl, with velocity -v(x) 
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that is equal to the slope of the bowl, 𝑑𝑈/𝑑𝑋. The steeper the bowl, the faster the ball rolls. The 

bowl is coated with a thick goo (in the words of Storgatz’s nice book on dynamical systems) and 

so the ball settles down at the minimum of the bowl without oscillating. At the minimum point the 

slope is zero,  𝑑𝑈/𝑑𝑋 = 0, and that is where X=Xst. The steeper the sides of bowl, the faster the 

ball returns to Xst if it is perturbed.  

Let’s now add noise. Noise jiggles the ball positon X so that it deviates from Xst. These jiggles 

cause a distribution of X values, P(X). Again, the steeper the bowl, the less the noise can move X 

away from Xst, and the narrower the distribution P(X). 

The nice thing about the potential-function way of writing the equation is that we can easily 

compute the steady-state distribution. This distribution P(X) is given by the Boltzmann distribution, 

with 𝜖 playing the role of temperature: 

𝑃(𝑋) ∝ 𝑒/
.(")
0 								[5] 

An intuitive explanation is provided in solved exercise 7.1. The distribution P(X) is wider the 

shallower the bowl or the higher the ‘temperature’.  

For the SR model, the potential U(X) is  

𝑈(𝑋) = (𝛽 − ητ)𝑋 − 𝛽𝜅 log(𝜅 + 𝑋)								[6] 

Which can be checked by taking the derivative  – 𝑑𝑈/𝑑𝑋 and verifying that it gives 

𝜂𝜏 − 𝛽 "
"+1

. 

We can safely assume that age 𝜏	is constant over the fast timescale needed to reach the steady-state 

distribution P(X), except at very old ages. 

Plotting U(X) shows that at young ages the 

bowl is steep, and therefore the distribution is 

localized around the mean (Fig 7.12). With 

age, the bowl becomes more and more 

shallow, because its right-hand slope drops as 

−ητ. The mean position moves higher and 

higher. At the critical age, when  𝜂	𝜏 = 𝛽, the 

bowl opens up and the steady-state goes to 

infinity.  

Plugging U(X) from Eq. 6 into the Boltzmann-like law of Eq 5 we obtain the distribution  

𝑃(𝑋) ∝ 𝑒/
()/23)"

0 (𝜅 + 𝑋)
)1
0 									[6] 

Figure 7.12 
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Which reaches a peak and then falls exponentially with X. This distribution of senescent cells in 

the SR model is skewed to the right, and quantitatively matches the skewed distributions observed 

in the mouse data (Fig 7.6, red lines).   

This distribution, by the way, provides an estimate for the average X that takes noise into account,  

〈𝑋〉 ≈
𝜅η𝜏 + 𝜖
𝛽 − ητ

[7] 

The mean X rises with age (Fig 7.4, red line). The standard deviation of X also rises with age and 

diverges at τ4, as shown by calculating the standard deviation of P(X): 

𝜎 ≈
X𝜅𝛽 + 𝜖5

ητ − 𝛽
								[8] 

This rise in standard deviation matches the observed rise with age of the standard-deviation of the 

light emitted from the mice of Burd et al (Fig 7.2). The SR model even captures the fact that 

variation rises more slowly than the mean – the phenomenon of reducing relative heterogeneity. 

The ratio between average and std (the inverse of the coefficient of variation) rises linearly with 

age observed as in the mouse senescent-cell data 
< 𝑋 >
𝜎

≈
𝜅η𝜏 + 𝜖
X𝜅𝛽 + 𝜖5

~𝜏. 

_______________________________ 

The SR model also explains the increasing correlation times with age. At young ages, the bowl is 

steep. Thus, if X is away from Xst, it returns to 

Xst quickly (Fig 7.13). At old ages, in contrast, 

the bowl is almost completely flat. The trajectory 

of the ‘ball’ is dominated by noise, with very 

little restoring force coming from the steepness 

of the bowl (Fig 7.13). Hence individuals that 

stray away from 𝑋$% have a slower restoring 

force back to the mean, and stay away for longer 

times. 

Such increasing correlation times have a general name in physics, “critical slowing 

down”. They are a mark of an approaching phase transition. In our case, the phase transition is to 

infinite X, which is death. In the classical example of a phase transition, the boiling of water, large 

and slow fluctuations in density can be seen near the boiling point. In other areas of science, slowing 

down of fluctuations can be a warning sign of a big transition. Examples include climate 
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fluctuations before an ice age, or ecological fluctuations before a species extinction [Schaffer 

2009].  

The mouse data allows estimating all four model parameters, η,	𝛽,	k and 𝜖. The best fit parameters 

are approximately 𝜂	 = 	4	10/6	𝑑𝑎𝑦𝑠5	~	0.15/𝑦𝑒𝑎𝑟/𝑑𝑎𝑦, 𝛽 = 0.3/𝑑𝑎𝑦, 𝑘 = 1, 𝜖 = 0.1, in units 

where the average senescent cells in young mice is 1. The rough estimate of lifespan 𝜏, =
)
7
~2	𝑦𝑒𝑎𝑟𝑠 is about right for mice. These parameters give a concrete prediction for the half-life of 

a senescent cell. The half-life is about 5 days in young mice, and rises to about a month in old mice 

(25 days in 22 month old mice).  

 

An experimental test shows that senescent cells are removed in days from young mice but in 

weeks from old mice 

This prediction was interesting enough to test 

experimentally. We teamed up with Valery 

Krizhanovsky, a senescent cell researcher from our 

department, and his PhD student Amit Agrawal. 

The idea was to induce extra senescent cells in 

mice, and then to measure how quickly the 

senescent cell levels go back to steady state (Fig 

7.14).  

Krizhanovsky used a drug, called Bleomycin,  that induces DNA damage which makes cells 

become senescent cells. The drug was introduced into the lungs of mice. The drug is cleared away 

within a day. Due to the DNA damage, after 5 days, the lungs are full of senescent cells. Then, 

mice were killed at various 

timepoints, and the amount of 

senescent cells in their lungs was 

measured; the lung was dissolved into 

single cells, which were stained with a 

die that labels senescent cells (called 

SA-beta-gal). The individual cells 

were photographed in a machine 

called an imaging flow-cytometer 

(Fig 7.15A), and the number of 

senescent epithelial lung cell were counted. 

Figure 7.15 
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In young mice, the senescent cells half-life was 5 ± 1 days (Fig 7.15C). In old mice (22-month-

old), removal was much slower, with an estimated half-life of about a month. Note the variation in 

senescent cells between the old mice. These measurements agree well with the predictions of the 

SR model (Fig 7.15D). The agreement is striking because the SR model was calibrated on the 

luciferase-mice, with a different marker for senescent cells (p16 versus SA-beta gal), and a different 

system (whole body versus lung). This agreement adds confidence in the prediction of the SR 

model that removal of senescent cells slows with age. 

 

Mamamia/music ABBA 

Mamamia, here we go again  

My my senescent cells are growing 

Mamamia, here we go again  

My my removal rate is slowing 

Oh cytokines are raging 

Oh it must be inflammaging 

My my, how can I reduce this load  

 

Gompertz mortality is found naturally in the SR model 

In the remainder of the lecture, we explore the 

implications of rapid senescent cells turnover and slowdown of 

removal for the question of variability in mortality. As we saw 

in the previous lecture, lifespan varies even in inbred organisms 

raised in the same conditions, demonstrating a non-genetic 

component to mortality. In many species, including mice and 

humans, risk of death rises exponentially with age, the 

Gompertz law, and decelerates at very old ages (Fig 7.16).  

To connect senescent cells dynamics to mortality, we need to know the relationship 

between senescent cell abundance and the risk of death. The precise relationship is currently 

unknown. Clearly, senescent cells abundance is not the only cause for morbidity and mortality. It 

does, however, seems to be an important causal factor because removing senescent cells from mice 

increases mean lifespan, and adding senescent cells to mice increases risk of death and causes age-

related decline. 

 Let’s therefore explore the simple possibility that death can be modeled to occur when 

senescent cell abundance exceeds a threshold level 𝑋8 . The threshold represents a collapse of an 

Figure 7.16 



organ system or a tipping point such as sepsis 

(Figure 7.17). Thus, death is modelled as a 

first-passage time process, when senescent 

cells cross XC. We use this threshold-crossing 

assumption to illustrate a way of thinking, 

because it provides analytically solvable 

results. Other dependencies between risk of 

death and senescent cells abundance, such as 

Hill-functions with various degrees of 

steepness, provide similar conclusions. 

 

Solved exercise 2: Show that the SR model gives the Gompertz law of mortality. 

To estimate the probability that X crosses the death-threshold 𝑋,, we apply an approach which is 

analogous to the rate of a chemical reaction crossing an energy barrier Δ𝐺. This rate is the 

Boltzmann factor exp	(− 9:
;!"

). As always, in our case the noise amplitude 𝜖 plays the role of 

temperature kbT, and the energy barrier is the difference between the potential U at 𝑋, and at the 

steady-state value 𝑋$%, Δ𝐺 = 𝑈(𝑋,) − 𝑈(𝑋$%). Thus, the probability per unit time for X crossing 

𝑋,, namely the risk of death that we call the hazard, is  

ℎ ≈ 𝑒/
.("#)/.("$")

0  

This equation is called Kramer’s equation in the field of stochastic processes. An intuitive 

explanation is that the ball in the bowl needs to climb a potential difference of Δ𝑈 = 𝑈(𝑋,) −

𝑈(𝑋$%)	in order to fall off into the death region (Fig 7.18). It needs to climb using ‘kicks’ provided 

by the noise, each of size epsilon. Each noise kick can be either to the right or left. Since you need 
9.
0

 kicks, all in the right direction, the chance is exponentially small and goes as 𝑒/
%&
' . 

  

The potential U in our model 

is given by Eq.3. For the 

Gompertz law to hold, one 

needs the term  .("#)/.("$")
0

 

to decrease linearly with age 

𝜏, so that ℎ ≈ 𝑒<=. 
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The exponent of the hazard rate in the SR model indeed shows the required linearity in time. This 

is the first factor with eta t in this complicated expression: 

−
𝑈(𝑋8) − 𝑈(𝑋>?)

𝜖
=
(𝜅 + 𝑋8)𝜂𝜏 − 𝑋8𝛽 + 𝜅𝛽 ⋅ Log i

(𝜅 + 𝑋8)(𝛽 − ητ)
𝜅𝛽 j

𝜖
					[8] 

Which can be written, up to a prefactor that does not depend on age, as: 

ℎ(𝜏) ≈ (𝛽 − ητ)
1)
0 +@𝑒

(1+"#)2=
0 					[9] 

----------------------------------------------------- 

This is a big moment. The hazard rises exponentially with time as 𝑒<= with an exponent 𝛼, called 

the Gompertz ageing rate, given by 

𝛼 = (1+"#)2
0

. 

The Gompertz ageing rate parameter (whose inverse yields the 8-year doubling time in humans) 

can thus be written in terms of molecular parameters.  

Let’s get an intuition for this expression. To see why the slope depends inversely on noise, for 

example, it helps to go to extreme limits. If there was no noise, epsilon=0, all individuals would 

die at the same time, a hazard slope with infinite slope. That’s what you get from the formula if 

epsilon=0. If on the other hand noise is very large, epsilon->infinity, dynamics is dominated by a 

random-walk process. The levels of X go up and down randomly, with a constant probability per 

unit time of crossing Xc, in other words a flat hazard curve,alpha =0. And that’s just what you get 

when you put in large epsilon. You can do the same with Xc- when it is high you get a very steep 

hazard curve with death mainly at old ages, and when it is low, a shallow curve with lots of death 

at young ages.  

This solution also shows a deceleration in the rise of the hazard rate at very old ages (when ηt ≈

β), due to the prefactor (𝛽 − ητ)
()
' +@ in Eq 9. This slowdown in hazard is observed in the empirical 

hazard curves. Note that this approximation begins to be inaccurate when ηt > 	𝛽, and simulations 

of the full SR model are needed to compute the hazard curve at old ages. Simulations show that 

rise of the hazard continues to slow with age.  

 

The fact that this model provides the Gompertz law as a first 

passage time is special. Most other models do not show the 

Gompertz-law as a first passage time solution (Exercises).  

The SR model thus analytically reproduces the 

Gompertz law, including the observed deceleration of 

mortality rates at old ages (Fig 7.19). It gives a good fit to the Figure 7.19 



observed mouse mortality curve using parameters that agree with the experimental half-life 

measurements and longitudinal senescent cells data. The inferred threshold for death is 𝑋8 = 17 ±

2, meaning that the threshold 𝑋8  is about 17 times larger than the mean senescent-cell level in 

young individuals. Thus, turnover of days in the young and weeks in the old provides senescent 

cells variation such that individuals cross the death threshold at different times, providing the 

observed mortality curves.  

The SR model can address the use of drugs that eliminate senescent cells, known as 

senolytic drugs. To reduce toxicity concerns, it is important to take the drug at the lowest dose 

possible and as infrequently as possible. The model provides a rational basis for scheduling 

senolytic drug administrations. Specifically, treatment can start at old age, and be as infrequent as 

the senescent cells turnover time (~month in old mice) and still be effective. 

 

Turnover of days in young and weeks in old can also explain the human Gompertz law 

Let’s use the results from the mouse data to study human 

mortality curves. In humans, mortality has a large non-

heritable component (estimated at 80%) and hence we 

can assume that the parameters eta, beta k and epsilon are 

similar between people and that much of the variation is 

due to stochastic effects. A good description of human 

hazard curve, corrected for extrinsic mortality, is 

provided by the same parameters as in mice, except for a 

60-fold slower increase in senescent-cell production 

parameter 𝜂 with age (Figure 7.20). This slower increase in senescent cell production rate can be 

due to improved DNA maintenance and enhanced damage repair in humans compared to mice. It 

agrees with the observed slower rate of stem cell 

mutation accumulation in humans compared to 

mice.  

In fact, stem cell mutation accumulation rate is 

inverse to lifespan in mammals ranging from mice 

to dogs to horses (Fig. 7.21). It seems that the 

parameter 𝜂 is the main way that evolution tunes 

the lifespan of different mammals, as in the mass-

longevity triangle of the previous lecture. Indeed, 

Figure 7.20 
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Figure 7.21   from Cagan, Stratton, Martincorena, 2021       



long-lived animals such as elephants and naked mole rats have enhanced repair processes for DNA 

damage compared to mice.  

 

Similar considerations can explain aging statistics in flies, worms and yeast 

The SR model can be generalized beyond senescent cells. It should apply to any form of damage 

that whose production rises linearly with age and whose removal becomes saturated. We therefore 

explore the SR model to understand key experiments in model organisms such as the fruit fly  

Drosophila melanogaster and the worm (or more correctly the nematode)  C. elegans.   

The advantage of these model organisms is that interventions and mutations that affect lifespan can 

be studied with excellent statistics in lab conditions. Thus, let’s consider X as a damage that is 

causal for aging, that accumulates with age and has SR-type dynamics, namely turnover that is 

much more rapid than the lifetime, rising production rate and self-slowing removal.  

Even single-celled organisms show the Gompertz law under certain conditions. Examples include 

starved E. coli cells (Yang 2020) and yeast cells, as well as yeast cells with asymmetric replication 

called “budding”.  Let’s therefore think of how the SR model can apply to a single cell. We need a 

toxic factor that accumulates in cells with time, an irremovable damage producing unit. One 

plausible physiological candidate is aggregates of unfolded proteins, which the cell is unable to 

remove. These aggregates grow in size is the cell, and cause secondary damage such as reactive 

oxygen species (ROS). 

The amount of these aggregates, 

P(t), grows with time. Since the cell 

makes proteins at a constant rate, 

and each protein has a chance to be 

misfolded due to 

transcription/translation errors, one 

can assume that P rises at a constant 

rate, P(t)~a t. Fig 7.22 shows data 

on protein aggregates in  worms (that live for about 2 weeks), showing that number of aggregate 

‘puncta’ grows with age. It grows slower in a long lived mutant, daf-2. 

The aggregates are toxic to cells. They disrupt cellular functions and unleash reactive oxygen 

species (ROS) that damage cell components. Thus, the damage X in the cell, whatever its exact 

nature, is produced by P at rate b. Since P grows with time, damage production rate is thus 𝑏	𝑃 =

𝑎	𝑏	𝑡. We can define the parameter 𝜂 as 𝜂 =a b. According to law 2, the removal of the damage 

saturates eventually, and we have the SR model, 𝑑𝑋/𝑑𝑡 = 𝜂	𝑡 − 𝛽	𝑋/(𝐾 + 𝑋) + 𝑛𝑜𝑖𝑠𝑒.  

Figure 7.22 



Thus the universal essence of the SR model is damage producing units that are irremovable and 

produced at a constant rate so that they rise linearly with time; these units cause damage X, and the 

removal of X saturates.  

𝑑𝑃/𝑑𝑡 = 𝑎	

𝑑𝑋/𝑑𝑡 = 𝑏	𝑃 − 𝛽	𝑋/(+𝑋) + 𝑛𝑜𝑖𝑠𝑒	

These aspects are likely to apply to different forms of damage and thus we continue to apply the 

SR model also to flies, worms and single cells. 

 

Rapid shifts between hazard curves in Fruit flies 

Work in C. elegans worms and Drosophila fruit flies provides constraints to test the SR 

model. For example, a classic experiment (Mair , Goymer, Pletcher, & Partridge, 2003) measured 

the effect of lifespan-extending interventions in fruit flies when applied at mid-adulthood.  

Flies on lifespan extending diet or in low temperatures 

live longer. Their hazard curve is lower than flies in 

normal conditions. What happens when you shift in 

mid-life? Are the sins of the past forgiven? The 

answer depends on the intervention. Shifting to a 

better diet led to a rapid switch to the better survival 

curve, within a couple of days. The past was forgiven 

(Fig 7.23A). 

In contrast, shifting temperature only changed the 

slope of the death curve, and the accumulated past 

hazard was not forgotten (Fig 7.23B).  

These results can be explained by the SR 

model due to the rapid turnover of damage X and the 

irremovable nature of damage producing units. 1  

The plummet to a lower curve seen in shifts of diet in Fig 7.23A can be explained if the 

diet lowers the amount of damage produced by each damage-producing unit P. For example, the 

life-extending diet expands the repair ability of cells, each P makes less damage X per unit time, 

 
1 A workable parameter set for flies is 𝛽 = 1	ℎ𝑟/@, 𝜅 = 1, 𝜖 = 1	ℎ𝑟/@and 𝜂 =

0.03ℎ𝑟/@𝑑𝑎𝑦/@, 𝑋8 = 15. Flies on life-extending diet are fit by a lower slope 𝜂 =

0.02	ℎ𝑟/@𝑑𝑎𝑦/@. This is just an example, the data is insufficient to pin down the parameters. 
 

Figure 7.23 



namely a lower value of the parameter b. Therefore, after the shift, the term eta t =b P(t) is lower, 

and the hazard curve shifts down. The time it takes to shift curves is the turnover time of the damage 

X, on the order of hours to days in flies. It is predicted that this ‘transient’ time should grow with 

age due to slowdown of removal, a prediction that remains to be tested. 

In contrast, the slope change induced by temperature in Fig 7.23B can be explained by a 

reduced rate of production of new damage producing units. This is a reduction in the accumulation 

parameter a in the equation dP/dt=a. Thus, P keeps its accumulated number but is produced more 

slowly starting from the temperature shift at time t0. Thus, P(t)=a t0+ a’ (t-t0), where a’ is the 

reduced production rate. This results in the hazard curve shown in Fig 7.23B.  

An analogous situation occurs when mammals are chronically exposed to conditions that 

cause mutations, such as chronic exposure to radiation or chemotherapy drugs. This raises the rate 

of production of mutant stem cells, our candidate for P in mammals, and to a rise in the slope of 

the hazard curve without forgetting the past hazard. A one-time strong irradiation or mutagenesis 

is predicted to cause a shift to a new, higher hazard curve. 

 

Scaling of worm survival curves  

A further test is whether the SR model can explain the scaling of survival curves for C. 

elegans. Many life-extending or life shortening genetic, environmental and diet perturbations 

change lifespan over an order of magnitude. The survival curves collapse on the same curve when 

age is scaled by mean lifespan (Figure 7.24), as discovered in an elegant experiment by (Stroustrup 

et al., 2016). Few things get physicists more excited than a good data collapse, where different 

curves fall on top of each other when normalized.  

Figure 7.24 



The SR model provides this scaling property to a very good approximation, for 

perturbations that affect the accumulation rate 𝜂 (Figure 7.24 A). A good example for such an 

intervention is mutations that inhibit the IGF1 pathway, called daf-2 mutations in worms. This is 

one of the first life-span-extending mutations discovered, as you can read in the fascinating history 

by pioneer researcher Cynthia Kenyon [https://dx.doi.org/10.1098%2Frstb.2010.0276]. These 

mutations shift the entire survival curve 

to longer lifetimes, both median and 

maximal lifespan, and show scaling (Fig 

7.25).  

IGF1 pathway inhibition, across 

animals, makes the cells shift the balance 

from growth/reproduction to repair. They 

increase expression of stress-response pathways. Similar effects are found in caloric restriction. 

This may be an evolved response to starvation. Increased stress-response pathways repair damage 

and thus reduce the rate of damage formation per P, reducing 𝜂.  

Interestingly, there is no scaling in the SR model when a perturbation affects other 

parameters, such as removal rate 𝛽 or noise 𝜖 (Fig 7.24 B, D). This prediction that may apply to 

exceptional perturbations in which scaling is not found such as the eat-2 and nuo-6 mutations. In 

all cases, scaling cannot be found unless that model has rapid turnover.  

We conclude that the SR model is a candidate explanation for scaling of survival curves in 

C. elegans.   

 

Approaches to slow down aging and aging-related diseases: 

Current medicine focuses on treating age-related diseases one at a time- diabetes, cancer, heart 

disease and so on. A different approach would be to deal with their shared risk factor - to slow the 

aging process, or more precisely to slow the rise of senescent cells (and other aging-related damage)  

(Fig. 7.26). This is the Geroscience hypothesis: slowing the core process of ageing will prevent 

and improve many age related diseases. 

The conceptual framework we discussed points to two general strategies: reduce production rate 𝜂 

or increase removal capacity 𝛽. 

Reducing production can be achieved by boosting cellular damage-repair systems. One way to 

achieve this is calorie restriction and other types of restricted feeding. Starvation seems to shift the 

balance from growth towards maintenance, and upregulate damage repair mechanisms in cells. A 

large effort is devoted to develop drugs that mimic calorie restriction by, for example, perturbing 

Figure 7.25 



the IGF1 pathway. One promising drug is metformin, used for treating diabetes since the 1920s. 

Metformin inhibits the IGF1 pathway, among several other effects such as lowering liver glucose 

production, and seems to tip the balance from growth (replenishing cell numbers in the adult) 

towards more repair. An encouraging sign is that people taking metformin have lower risks of 

cancer. A current effort is to convince the federal food and drug administration (FDA) to allow 

clinical trials for aging (currently only trials for a specific disease are allowed). Metformin is one 

suggested drug for such a trial, along with other inhibitors such as rapamycin. 

Increasing the removal of senescent cells is also an attractive possibility. That is what senolytic 

drugs do. Senolytics remove senescent cells by exploiting the Achilles heals of senescent cells that 

are not found in most other cells. One such drug, for example, inhibits an anti-cell-death pathway 

called bcl2, exploiting the fact that this pathway helps the damaged senescent cells resist death to 

a greater extent than most other cells in the body. There are additional several families of senolytics. 

Some are entering clinical trials in humans for diseases such as idiopathic pulmonary fibrosis and 

osteoarthritis.  

Another approach targets the factors that senescent cells secrete, such as pro inflammatory factors. 

Finally, immune-based strategies can potentially increase the number of garbage trucks, and hence 

the maximal removal capacity beta. In 2020, an immune approach to fight cancer cells was adapted 

to remove senescent cells in mice. In this approach, called CAR-T, T-cells are taken from the mouse 

and genetically engineered to express a T-cell receptor that recognizes a protein found only on the 

surface of senescent cells. These T-cells are re-introduced into the mice and kill senescent cells. 

A sobering note for fantasies about immortality. Even if one removes senescent cells, the organism 

will still get sick and die eventually. For example, mutant stem cells produce damaged cells in all 

tissues, D’. Many of these damaged cells do not become senescent, but do have reduced function. 

As the fraction of damaged cells increases, the reduced function will eventually cause an organ 

system to fail. 80 year old individuals have on the order of 3000 mutations in each of their cells. 

Their organs like the skin, gut and lung are made of little local ‘kingdoms’ of cells, each from a 

different clone of stem cells, each kingdom with its individual random mutations. In about 10% of 

aged people, for example, all blood cells are made from one or a few stem cell clones in the bone 

marrow. Blood health depends on the luck of which mutations these stem cells have. Thus, although 

senescent cells are a major component, other damaged cells are likely to be important for aging.   



 

 

The research into removing senescent cells is accelerating over the past decade. As we have learned 

from past breakthroughs in biology, reality holds unexpected challenges, and initial promise usually 

doesn’t fully materialize. We don’t know if there ever will be a pill that will make you younger in 

terms of health. But there are so many avenues to try that it’s likely that such a pill will help at least 

some people with some illnesses. These are exciting times. 

For me, it’s equally exciting that physiological laws can provide an equation which seems to 

capture many quantitative features that seem almost universal in aging. In the next lecture we will 

use it to understand age related diseases. 

 

Figure 7.26 
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Exercises: 

Solved exercise 7.1: Intuitive derivation of ‘Boltzmann-like’ form of the steady-state 
distribution:  

Consider a stochastic process of the form &"
&%
= 𝑣(𝑥) + √2𝜖𝜉  . The function 𝑣(𝑥) is called the 

velocity of x. In the SR model, we have a velocity equal to production minus removal:  𝑣(𝑥) =

𝜂𝑡 − )A
*+A

. Define the potential U(x) by &.
&A
= −𝑣(𝑥). Explain intuitively why, at steady-state, the 

probability distribution is 𝑃(𝑥) = 𝑃B exp r−
.(A)
0
s. 

Solution: Consider a large number of particles moving along a one-dimensional pipe. They diffuse 

with diffusion coefficient 𝜖 and are also swept along the pipe by a velocity field	𝑣(𝑥). The particle 

density at steady-state is P(x). The flux at point x due to the velocity field is the velocity times the 

density: v(x)P(x). The flux due to diffusion can be found by Fick’s law of diffusion, which shows 

a diffusive flux from high to low densities proportional to the gradient: −𝜖𝑑𝑃/𝑑𝑥. At steady-state 

total flux is zero, so that the two fluxes must sum to zero: 𝑣(𝑥)𝑃 − 𝜖𝑑𝑃/𝑑𝑥 = 0.  Thus, &C
&A
=

D(A)C(A)
0

  . The solution is 𝑃(𝑥) = 𝑃B exp r−
.(A)
0
s. Thus, at steady-state, in regions where velocity 

is large the density P(x) shows a steep opposing slope so that diffusion flux can balance velocity 

flux. 

 

7.2. Survival and hazard functions:  

(a) Show that hazard, ℎ(𝜏),	defined as the probability of death per unit time, is related to survival 

𝑆(𝜏) as follows 

ℎ(𝜏) = −
1
𝑆
𝑑𝑆(𝜏)
𝑑𝜏

= −
𝑑𝑙𝑜𝑔𝑆(𝜏)

𝑑𝜏
 

(b) Show that 𝑆(𝜏) = 𝑒/∫ F(=)&= 

(c) What is the survival function S when the hazard follows the Gompertz-law? Plot this survival 

function. 

(d) What is the survival function if hazard is constant ℎ(𝜏) = ℎB? 

(e) A tree has a hazard function that drops with age, ℎ(𝜏) = G
@+-=

. What is the survival function? 

Plot and compare to d and c. What might be a biological cause of such a decreasing hazard 

function? 

 

7.3 Removal of Senescent cells based on saturating their own removal process: Senescent cells 

are removed by immune cells such as NK cells, which we will denote by R. There are a total of 𝑅? 



removing cells in the body, and that this number does not change appreciably with age (as is indeed 

the case for NK cells in humans). The R cells meet Senescent cells, denoted X, at rate 𝑘HI to from 

a complex [R X] which can either fall apart at rate 𝑘HJJ, or end up killing the Senescent cells at 

rate v. Thus, R+X↔[RX]àR. 

(a) Explain the following dynamic equation for the complex: 

𝑑[𝑅𝑋]
𝑑𝑡

= 𝑘HI𝑅	𝑋 − (𝑣 + 𝑘HJJ)[𝑅𝑋] 

(b) Use the fact that R cells can be either free or in a complex, so that  𝑅 + [𝑅𝑋] = 𝑅?, to show 

that the removal rate of Senescent cells is 

𝑟𝑒𝑚𝑜𝑣𝑎𝑙 =
𝛽𝑋
𝑘 + 𝑋

 

(c) What are the values of the maximal removal capacity 𝛽, and the half-way saturation point k?  

Explain intuitively.  

 

7.4 No repair: Consider an accumulation process of damage with constant production and no 

removal 
&"
&%
= 𝜂 + √2𝜖𝜉	. 

(a) What is the mean damage X as a function of age? 

(b) What is the distribution P(X)? 

(c) What is the hazard assuming that death occurs when X>Xc? Is there a Gompertz law? 

 

7.5 Age-dependent reduction in repair capacity: Consider a process in which damage is 

produced at a constant rate 𝜂, and removal does not saturate. Removal rate per cell drops with 

age, 
&"
&%
= 𝜂 + (𝛽 − 𝛽@𝜏)𝑋 + √2𝜖𝜉  . 

(a) What is the mean damage X? 

(b) What is the distribution P(X) at age ? 

(c) What is the ratio of mean and standard deviation of X:  < 𝑋 >/𝜎? 

(d) What is the hazard, assuming that death occurs when 𝑋 > 𝑋𝑐? Is there a Gompertz law? 

 

7.6 Deterministic model: Assume that the Gompertz law arises not from stochastic effects, but 

instead from individual differences, set a birth, in X production and removal parameters, in 

which each individual i has its own noise-free equation	&"
&%
= 𝜂K − 𝛽K𝑋. Death is modelled when 



X crosses threshold Xc. What distribution of production and removal parameters 𝜂K , 𝛽K 	can 

provide the Gompertz law? What features does this model not explain?  

 

7.7 What is the effect on the hazard curve of the SR model of a change in each of the parameters  

𝛽, 𝜂, 𝜖, 𝑘? Plot examples of hazard curves to demonstrate your answer. 

 
7.8  Senescent cell half-life: show that in the SR model, the half-life of a senescent cell is 

𝑡@/5 = log(2)(𝑘𝛽 + 𝜖)/𝛽(𝛽 − 𝜖𝜏) 

 

7.9  Critical slowing down:  Read (Scheffer et al., 2009). 

(a) How does critical slowing down relate to the SR model? 

(b) Suggest a phenomenon beyond those discussed in Scheffer which might show critical slowing 

down, and suggest an experiment or measurement to test this. 

 

7.10 (Challenging question) General model: Damage is produced at rate 𝜂(𝑋, 𝜏) and removed 

at rate 𝛽(𝑋, 𝜏). The equation is &"
&%
= 𝜂(𝑋, 𝜏) + 𝛽(𝑋, 𝜏) + √2𝜖𝜉   

(a) What is the steady-state distribution at age tau? 

(b) What is the risk of death as a function of age, modelled by first passage time of a threshold Xc? 

(c) Under which conditions does risk of death go as the Gompertz law? 

 

7.11 Strehler and Mildvan (1960) model for the Gompertz law. Strehler and Mildvan  

(STREHLER & MILDVAN, 1960) (SM) proposed a phenomenological process for the 

Gompertz law. Organisms are assumed to start with an initial survival capacity, termed V, 

declining linearly with age x as V(x) = V0(1 − Bx), where B indicates the fraction of vitality loss 

per unit time. Over life, animals experience random external challenges or insults with a mean 

frequency K. Challenges have random magnitudes, exponentially distributed with an average 

magnitude D that expresses the average deleteriousness of the environment. Death occurs when 

the magnitude of a challenge exceeds the remaining vitality. A detailed review of the SM theory 

can be found in Finkelstein (2012) (Finkelstein, 2012). 

(a) Show that these assumptions produce the Gompertz law ℎ(𝜏) = 𝑎𝑒-=. Calculate a and b. 

(b) What similarities and differences does this theory have with the SR model? 

 
7.12 Stem cell therapy: Would adding young stem cells to an aged organism help to address aging, 

according to the conceptual picture in this lecture? What are your thought (100 words). 
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