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Lecture 8 

Aging-related diseases  
 
Hundreds of ailments have incidence that skyrockets with age. These are the age-related 
diseases. Examples include cancer, failure of specific organs such as heart failure, kidney 
failure and lung failure, neuro-degenerative diseases such as Alzheimer’s disease and 
Parkinson’s disease, osteoarthritis and type-2 diabetes. With ageing also comes weakened 
muscle and bone strength, impaired hearing, cataract, susceptibility to infection, and slow 
healing from injury.  
About 150 years ago the major causes of death were infectious diseases and childbirth 
complications. With the advent of clean water, disinfectants, vaccines and antibiotics, 
infectious diseases cause much fewer deaths. Age-related diseases are now by far the major 
causes of death.   
Age-related diseases are diverse and affect different systems. It is therefore striking that 
they share a common pattern in their incidence curves. Incidence is the probability to get 
the disease at a given age among all people who survive to that age and don’t have the 
disease. Incidence is often calculated by taking 100,000 people without the disease at age 
𝜏, and asking how many will be diagnosed among those surviving to age 𝜏 + 1 year.   
 
The incidence of age-related diseases rises 
exponentially with age, and drops at very old ages 
(Fig 8.1). The slope of this exponential increase is 
similar for different diseases, but not identical, around 
6-8% per year. Understanding this exponential rise is a 
major aim of this lecture. We need to understand what 
is different about the decade of age 20-30 and the 
decade of age 70-80 that makes these diseases so much 
more likely.  
 
That age-related disease are major killers can be seen 
by the risk of death plotted by different causes (Fig 
8.2). The risk of dying from each of the diseases also 
rises exponentially with age. Importantly, not all death 
is due to these diseases, and a substantial fraction of the 
elderly die without significant disease or disability. 
These are sometimes called the wellderly. 
One goal of this lecture is to explain this pattern of 
exponential rise and old age decay. Another goal is to 
use this understanding to explain the root cause of 
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diseases of unknown origin. In doing so we will see analogies between diseases, forming 
columns in our periodic table of diseases that will be the desert in the last lecture of our 
course. 

 

Diseases caused by threshold-crossing of a parameter affected by senescent cells have 
an exponential incidence curve  

We build on the model for senescent-cell accumulation that we discussed in the last 
lecture.  
We will show that a disease has an approximately exponential 
incidence curve with age, which declines at very old ages, in the 
following situation: 

(i) Onset of the disease occurs when a physiological parameter 𝜙 
exceeds a threshold, fc (Fig 8.3).  

(ii) Senescent cells are a causal factor for the disease: the 
parameter f increases due to the total-body senescent cells 
level, 𝑋. Increasing levels of X can thus push f beyond its 
threshold 𝜙!. The threshold is crossed when 𝑋 reach a level 𝑋!, 
called the disease threshold (Fig 8.4). 

(iii) The disease threshold 𝑋!  varies between people due to genetic 
and environmental factors.  

We saw in this course several diseases who occur as a phase transition or bifurcation, 
when a parameter crosses a threshold. One example is type 2 diabetes, when beta cell 
removal exceeds renewal. Another is fibrosis, when the separatrix to the healing state is 
crossed. Generalizing this, it is plausible to assume that criterion (i) holds for many if not 
all age related diseases. 
For each disease we need to find the important physiological parameter f that crosses a 
threshold. In this lecture we will do so for several classes of disease.  
Next, we need senescent cell load to affect the parameter. This is plausible because 
senescent cells secrete factors called SASP into the circulation that cause inflammation 
and slow stem-cell proliferation [55, 56]. Inflammation and reduced regeneration are 
powerful disease-inducing factors. Recall that these SASP factors are useful in young 
organisms for wound healing. However, with age 
senescent-cells accumulate to such as extent that 
the inflammation and reduced regeneration they 
cause triggers pathological processes. High 
senescent cell levels also saturate or exhaust the 
immune cells that remove them, including NK cells 
and macrophages, reducing total body immune 
capacity. Senescent cells can also have additional 
local effects in each organ.  
When the above conditions are met, the disease 
arises in a given person when senescent cells level 𝑋 
crosses the disease-specific threshold 𝑋!  (Fig 8.5). 
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Thus, incidence of the disease can be described as a first-passage-time process. We ask 
when the stochastic process of senescent cell accumulation first crosses the threshold	𝑋!.  
It is likely that X must exceed the threshold for sufficient time for the disease to be 
expressed symptomatically. In practice, once 𝑋 crosses the threshold, it tends to remain 
above the threshold for extended periods of time. Thus, a first-passage-time problem is a 
reasonable approximation for disease onset. 
To describe the dynamics of senescent cell level X, let’s use the SR-model of the previous 
lecture. Recall that senescent-cell concentration 𝑋 is governed by a stochastic differential 
equation: 𝑑𝑋/𝑑𝑡 = 𝜂𝑡 − "#

$%#
+ √2𝜖𝜉, with a production rate that rises with age	𝜂𝑡, a 

saturating removal rate	 "#
$%#

 , and noise modelled as a white-noise term	√2𝜖𝜉. We use a 
reference set of parameters for humans. We assume for simplicity that the parameters 
are the same for different people. Simulations of this model show stochastically rising 
trajectory of 𝑋 (Fig 8.5). 
In the previous lecture we solved the first-passage-time 
problem, to find the distribution of times in which 𝑋 first 
crosses a threshold. The solution to this first-passage-time 
problem is an exponential incidence curve that slows at 
very old ages (Fig 8.6, dashed line). The probability of 
crossing the threshold 𝑋! 	rises exponentially with age, 𝑒&', 
with a slope of approximately 

	𝛼 ≈ (#!
)

,  
where 𝜂 and 𝜖 are the senescent cell production and noise parameters. This explains the 
exponential rise of disease incidence. The threshold for death in humans is estimated to 
be   𝑋! = 𝑋*+,'- = 17 (the units are such that in young individuals,	𝑋 = 1 on average). 
Since diseases have different exponential slopes, each disease has its own threshold	𝑋!, 
which does not exceed	𝑋*+,'-. Each threshold 𝑋!  provides a different exponential slope.  

We can ask why the slope is smaller if noise 𝜖  is larger. The slope equation can be 
considered as a ratio between the strength of the production of senescent cells 𝜂 and the 
noise  𝜖. The larger the noise relative to production, the less strong the relentless pull 
towards high senescent cells by production, and the slower the rise of age-related 
phenotypes. In the case of production much bigger than noise, the dynamics are 
deterministic and everyone crosses the threshold at the same time, resulting in an 
incidence curve that rises from zero to one at a particular timepoint, This has infinite 
slope, as predicted by the equation. 

 
Decline of incidence at old ages is due to population heterogeneity 
So far, everyone would cross the threshold 𝑋!  and everyone would get the disease in the 
model. In reality only a fraction of people ever do. So, we need to further posit that only 
a fraction s of the population are susceptible. This postulate also elegantly explains the 
decline of incidence at old ages.  
A susceptible fraction stems from the classic notion of population heterogeneity in the 
field of epidemiology. The idea is that people differ in their risk for a given disease. To 
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model this, we assume that a fraction s of the population has a low disease threshold 𝑋!, 
due to genetic and environmental factors. We call this the susceptible fraction.  
The remaining population has high values of the disease threshold that are not reached 
during normal aging. We call these the non-susceptible fraction of the population. Thus, 
at very old ages, most of those that are susceptible have already succumbed to the 
disease. At these very old ages, the population is dominated by the non-susceptible 
fraction. This results in the decline in incidence rate (Fig 8.6, solid line).  
Another way of saying this is that when we calculate incidence at age 90, the 100,000 
surviving 90-year-olds in our cohort without the disease include very few susceptible 
people, most susceptible people were already diagnosed at a younger age.  
The model therefore has two parameters for each disease: the susceptible fraction s and 
the disease threshold 𝑋!. The susceptible fraction s varies between 10./ for rare diseases 
like IPF and 0.3 for common diseases like osteoarthritis.  
 
The model describes well the incidence curves of a wide range of age-related diseases 
In order to obtain a global view of 
age-related diseases, we can 
compare to a large medical-record 
database from Clalit health 
services.  We already used this 
dataset in our lecture on hormone 
seasonality. The dataset includes 
about half of the Israeli population 
over a period of 14 years (2005-
2018) totaling 50 million life-years, 
with broad socioeconomic and 
ethnic representation. This database 
includes about 900 disease category 
codes (ICD9 level 2 codes) found in 
the records of at least 104 people. 
Of these, about 200 rise at least 6% 
per year between ages 30 and 80, 
and can be defined as age-related 
diseases.  

The two-parameter model 
describes well these strongly age-
related ICD9 codes. It describes 
more than 90% if the variation in 
over 90% of the diseases (this is 
captured by the fit parameter <R2>=0.95, median R2=0.97). The typical disease threshold 
values 𝑋!  range between 12 and 16. Compare this to 𝑋 levels of about 1 in young 
individuals, and a death threshold of	𝑋*+,'- = 17. These diseases include some of the 
most common age-related conditions such as Parkinson’s disease, glaucoma, congestive 
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heart failure, end-stage renal disease, liver cirrhosis, cataract, hypertension and 
osteoarthritis (Fig 8.7).  

The model does not describe well the incidence of a few common age-related diseases. A 
notable example is osteoporosis in women (Fig 8.7C). The incidence curve rises sharply 
after age 50, in a way that the model cannot capture. Interestingly, osteoporosis in men 
is well described by the model (Fig 8.7C). This suggests that effects such as menopause-
related changes go beyond the current framework.  

Another case in which the model does not capture the incidence curve are Alzheimer’s 
disease and dementia. These diseases have an exceptionally large slope of about 20% per 
year. The model can only explain this large slope with a disease threshold 𝑋!  that exceeds 
the threshold for mortality. Fig 8.7C shows the best fit with the maximal 𝑋!  values equal 
to that of mortality (𝑋*+,'- = 17), showing an underestimate of the slope.  

This suggests that the age-related factor X in the brain might be distinct from total body 
senescent cells, and has distinct dynamics with a different 𝑋!  for mortality. A better fit is 
achieved when allowing 𝑋!  to exceed 17 (black lines in Fig 8.7C). 

We next focus on three classes of pathologies and provide, for each case, a specific 
interpretation of the critical parameter f and a specific mechanism for the threshold-
crossing assumed in the model. 

To demonstrate the theory, we will begin with cancer and COVID-19. We then consider 
an age-related disease in which lungs fail, called IPF. Its fundamental cause is a mystery. 
We will explain this disease as an outcome of fundamental principles of tissue 
homeostasis. We will then show that a seemingly unrelated disease, osteoarthritis, 
belongs to the same ‘mathematical class’ as IPF.  
 
Cancer incidence can be explained by threshold-crossing of the ratio of cancer growth 
rate to removal rate 
Incidence curves of most cancer types show the familiar exponential rise with age and 
reduction at very old ages. To explain this, we need to find why cancer is like a phase 
transiton in which a physiological parameter f crosses a threshold, and how this 
parameter is affected by senescent cells.  
Cancer cells arise continuously in the body due to accumulation of mutation. The mutant 
cells are removed by immune surveillance, primarily by the innate immune cells such as 
NK cells and macrophages, and at later stages by adaptive immunity including T-cells. If 
the cancer cells manage to grow to a critical amount of roughly 106 cells, they organize a 
local microenvironment that prevents further immune clearance. 
A classic explanation for the age-dependence of cancer is called the multiple-hit 
hypothesis: the need for several mutations in the same cell to turn it into a cancer cell. 
Most cancers require a series of mutations in order to knock-out several pathways that 
protect the cell from growing out of control. Such a multiple-hit process has a likelihood 
that rises roughly as the age to the power of the number of mutations. Cancer in the young 
often occurs because one of the mutations is already present in the germline and thus in all 
cells of the body.  



 

 

This ‘multiple hit’ hypothesis, however, cannot 
explain why cancers which require a single mutation, 
such as some leukemias, also have an exponentially 
rising incidence with age. Nor does it explain why 
incidence drops at very old ages. 
The present theory can provide an answer. Consider 
cancer cells that proliferate at rate p, and are 
removed at rate r (Fig 8.8). The rate of change of the 
number of cancer cells C is proliferation minus 
removal: 

𝑑𝐶
𝑑𝑡 = 𝑝𝐶 − 𝑟𝐶 

Cancer grows when proliferation exceeds removal, 𝑝 > 𝑟, and shrinks otherwise. We can 
thus define the relevant physiological parameter as the ratio between growth and 
removal rates: f=p/r. The critical threshold for cancer onset thus occurs at fc=1. At this 
threshold, growth equals removal.  
The parameter f is increased by senescent cells, which affect both p and r in the 
appropriate directions (Fig 8.8). With age, rising senescent cells levels inhibit the immune 
removal capacity of cancer. For example, NK cells remove senescent cells, and thus are 
occupied with senescent cells and can presumably do less of their cancer removing roles. 
The garbage trucks are overloaded. Note that NK cell numbers do not significantly change 
with age in humans. Thus, removal rate r drops with senescent cell level X, 𝑟 = 𝑟(𝑋).  
Other effects of senescent cells, such as chronic inflammation, also raise mutation rates 
due to reactive oxygen species produced by 
immune cells, and enhance proliferation p for 
many cancer types. Both effects, raising p and 
lowering removal r, cause the parameter 𝜙 to 
increase with senescent-cell load, 𝜙(𝑋) 	= 	𝑝(𝑋)/
𝑟(𝑋).	Thus, there exists a threshold	𝑋! 	at which 
f exceeds the critical value of 1 and cancer cell 
proliferation exceeds removal, reaching a clinically 
detectable pathology (Fig 8.9). Thus, we have 
criteria (i) and (ii) for the model, with cancer onset 
when	𝑋 > 𝑋!.   
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Individuals susceptible to a given form of cancer have a low threshold	𝑋!. This low 
threshold can arise from genetic factors (e.g., BRCA mutations for breast and ovarian 
cancer) and environmental factors (such as smoking for lung cancer and UV exposure for 
skin cancer) that generate more occurrences of the cancer cells in the tissue. Each pre-
cancerous site has a different proliferation rate p and removal rate r depending on the 
local niche as well as the mutational and epigenetic background of the cell. Hence, the 
more occurrences of cancer cells in the 
tissue, the higher the maximal f among 
all occurrences. This lowers the 
threshold of senescent cells needed for 
cancer onset.  

A low 𝑋!  in an individual can 
often be simply due to bad luck, a 
certain rare combination of mutations 
that arise in a cell (usually a stem cell). 
Cancer incidence is well documented, 
allowing a good test for this theory. A 
great database is called SiteSEER, with 
incidence curves of 100 cancer types in 
the US. Of these cancers, 87 are at least 
mildly age-related as defined above, 
with a mean slope of more than 3% per 
year between age 30 and 80. Of these 
87 age-related cancers, 66 are well 
described by the two-parameter model 
(R2>0.9) (Fig 8.10). The typical values 
of	𝑋! 	are 13-15, and the susceptibilities 
for different types of cancers,	𝑠, range 
from 10-4 to 0.1.  
An extension of the model can provide a range of 𝑋!  for different people. It assumes 𝑋!  
is distributed between susceptible people by a Gaussian distribution with standard-
deviation of sigma. This parameter, sigma, adds a third parameter to 𝑋!  and s. The three-
parameter model improves significantly on the two-parameter model in 15 types of 
cancer, and describes well 81 cancer types (R2>0.9). In these 15 cancers, the slope of 
incidence with age is relatively low (mean 3%, only mildly age-related). The width of the 
𝑋!	distribution is about 𝜎=3 for these cancers. Examples of incidence curves are shown in 
Fig 8.10. Interestingly, skin cancers including melanoma are among the cancers predicted 
to have a wide range of 𝑋!  in the susceptible population. One explanation is the relatively 
wide range of UV exposure in the population included in the database due to the variety 
of climates within the US, which potentially creates different thresholds in different 
individuals.  
Other cancers described better by the three-parameter model include those with sizable 
incidence at young ages. This includes cancers of bone and nervous system. This young 
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onset contribution effectively decreases the slope of incidence with age, which is 
captured by the model as a wide range of	𝑋!.  
There are several types of cancer that are not fit well by either the two- or three-
parameter models. These includes cancers which are most common at young ages, such 
as testicular cancer whose occurrence drops with age, and cervical cancer, which has a 
viral origin. The rest of the cancers that are poorly fit have a bimodal age distribution, 
with a peak at young ages and then an age-related rise above middle age. These include 
lymphomas such as Hodgkin’s lymphoma. The model in this case does not capture the 
early peak but describes incidence well if the fit is done only at old ages (>50) (R2>0.9, Fig 
8.10 lower panel, black line). 
 
Many infectious diseases, including COVID-19, have age-related mortality 
The mortality of COVID-19 also rises 
exponentially with age (Fig 8.11). This is 
typical of many infectious diseases such as 
pneumonia and flu, although many also 
have a mortality component at very young 
ages which COVID thankfully lacks. 
There can be at least two reasons for the 
exponential age-dependence of COVID-19 
within our framework. The first has to do 
with the virus establishing itself in the 
respiratory tract. The virus v has 
proliferation rate p and removal rate r, and thus follows the same equation as for cancer 
cells, 𝑑𝑣/𝑑𝑡 = (𝑝 − 𝑟)𝑣. It grows exponentially if 𝑝 > 𝑟, or equivalently if 𝜙 = 𝑝/𝑟 > 1. 
Senescent cells raise 𝜙 because they inhibit removal: the NK cells that kill virus infected 
cells are busy killing senescent cells. Thus, the virus removal r drops with X. At a critical 
level, 𝑋!, virus that would otherwise be removed grows. 
The second age-realted effect has to do with the way that COVID-19 often kills. Beyond 
damaging cells, the severe symptoms are due to over-reaction of the immune system, also 
called a cytokine storm. One component is macrophages which are activated by the 
damage caused by virus. Macrophages can enter a vicious cycle: they close a positive 
feedback loop by causing more damage and secreting cytokines that activate themselves. 
This positive feedback creates bistability. Cytokine storm results if a separatrix is crossed 
and the system locks into a hyperactive state. The inflammation caused by senescent cells 
can help tip this system to cross the separatrix. 
Generally, the immune system shifts with age towards innate immunity (e.g. macrophages) 
and away from adaptive immune system (T-cells). One reason for this shift may be signals 
from senescent cells that shift the formation of white blood cells towards the cell types that 
remove senescent cells. This ‘myeloid’ shift impairs the ability to combat viruses and 
bacteria. T-cell production also drops with age due to reduction in the thymus. 
 
Theory for IPF, a disease of unknown origin:  
IPF stands for idiopathic pulmonary fibrosis. Breaking this name down, ‘idiopathic’ 
means disease of unknown cause, ‘pulmonary’ means of the lungs, and ‘fibrosis’ means 
excess scarring. In IPF, lung capacity is progressively lost due to the scarring of tissue that 
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is essential for breathing. Patients often die within 1- 3 years. IPF is a chronic progressive 
disease that has no cure. The lifetime prevalence of IPF is about 10./, and its incidence 
rises exponentially with age, and drops after age 80 (Fig 8.1). 
To understand IPF, let’s survey the relevant organ structure. The lung is made of branching 
tubes that end in small air sacks called alveoli (Fig 8.12). The alveoli function to take 
oxygen from the air to the blood, and to let 𝐶01 from the blood out into the air. The alveoli 
are made of two layers- an inner epithelial layer that is one-cell thick, and an interstitial 
layer with our old friends fibroblasts and macrophages. IPF scarring occurs in the 
interstitial layer surrounding the alveoli (Fig 8.13).  

The thin epithelial layer is made of two types of lung cells called alveolar type-1 and-2 
cells (AT1, AT2) (Fig 8.14). We will call the first cell type, which are large flat barrier 
cells, the differentiated cells D. The second type are smaller stem cells we will call S. These 
stem cells can divide to form new S cells, or to form new D cells. The S cells also secrete 
a soapy surfactant that shields the cells from the air, protects the cells from air particles and 
prevents collapse of the alveoli when we exhale.  
The interstitial layer around the alveoli is made of elastic fibers that provide mechanical 
strength to the alveoli. This layer contains two other cell types, fibroblasts and 
macrophages, the stars of lecture 5 on fibrosis. Macrophages are ready to gobble up bacteria 
and particles that make it through the epithelial layer of S and D cells. The fibroblasts 
produce the fibers which make the elastic sheath around the alveoli. 
When there is injury to the D 
cells, they signal (using 
molecules such as TGF-beta) 
to S cells to differentiate into 
new D cells (Fig 8.15). The 
injury signal also causes S 
cells to activate inflammation 
in the interstitial layer around 
the alveoli to start a healing 
process. The S cells signal the fibroblasts to become activated myofibroblasts, proliferate 
and secrete extra fibers. In normal healing, once the new D cells are made, the excess 
fibroblasts commit programmed cell death and the extra fibers are removed. S cells divide 
and renew the tissue, and the injury is repaired. 
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In IPF, an unknown factor causes an ongoing injury. 
The S cells multiply and reach higher numbers than in 
normal alveoli (Fig 8.16). They activate the fibroblasts 
to multiply and lay down excessive fibers. These excess 
fibers cause fibrosis. The interstitial tissue around the 
alveoli becomes a thick scar that reduces the ability of 
oxygen to flow from the lung to the blood, and the 
ability of 𝐶𝑂1 to be ventilated out. It makes the alveoli 
stiff and less able to expand and contract. Eventually 
more and more alveoli become dysfunctional, leading 
to lung failure.  
A major unknown in IPF is the origin of the injury. We can use what we have learned so 
far to make a theory to address the source of the injury and explain why the risk of IPF 
rises exponentially with age, and why it occurs in only a small fraction of the population. 
We rely on recent work that shows that senescent cells are important for IPF: removing 
senescent cells improves IPF in a mouse model (IPF induced by Bleomycin). We will thus 
explore how the accumulation of senescent cells might cause IPF.  
The main idea is that senescent cells slow down the rate of stem cell proliferation; when 
proliferation drops below the stem-cell removal rate, the alveolar tissue first enriches with 
S cells, and then locally crashes. The ratio of removal and production will be our 
physiological parameter 𝜙, which rises with senescent cell levels.  
 
In labile tissues, stem cells must self-renew and also supply differentiated cells  
To understand IPF, we thus need to 
understand how stem cell-based tissues 
work. Such stem-cell tissues are different 
from the tissues we discussed in the first 
part of the course. There, we considered 
stable tissues in which a cell-type divides 
to make more of itself. For example, beta 
cells give rise to new beta cells (Fig 
8.17).   
But many other tissues, called labile tissues, have a different strategy to renew their cells. 
They use stem cells which renew and generate and differentiated cells. Labile tissues are 
often found in organs, called barrier organs, exposed to the outside world like the lung, 
intestine and skin. Because of this exposure, cells can be damaged and need to be replaced. 
These organs divide labor: the majority of cells D do the main tissue work, and the minority 
(1-5%) are stem cells S in charge of regenerating the D cells and themselves. Thus 𝑆 → 𝐷. 
In some labile tissues, such as blood and skin, there is a series of differentiated cells 𝑆	 →
𝐷2 	→ 𝐷1 →. . .→ 𝐷3. Some of these intermediate cell types can undergo a limited number 
of divisions, and are called ‘transient amplifying cells’. The transient amplification reduces 
mutational load on the stem cells: each stem cell division can result in thousands of 
differentiated cells. This elaborate structure does not seem to exist in the alveoli, which 
have one kind of differentiated cell, D=AT1, which does not undergo transient 
amplification.   
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Recall that in stable tissues such as beta cells, steady-state requires that cell proliferation 
rate equals cell death rate, otherwise the tissues grows or shrinks. In contrast, in labile 
tissues with stem cells S, the proliferation of must exceed S death, because some of the S 
divisions are needed to make the D cells. For stem cells, therefore, proliferation must 
balance two processes: stem cell removal plus differentiation.  
Stem cell removal rate, in many labile tissues, is relatively low because the stem cells are 
in a protected niche, where they are shielded from damage. Examples include the blood 
stem cells hidden in the bone marrow, skin stem cells in the deep epithelium, and the gut 
stem cells tucked away at the bottom of crypts (Fig 8.18).  

 
In contrast, the lung alveoli are an example of a labile tissue where both S and D are on the 
front lines. Both are equally exposed to damage, such as air particles, pathogens and the 
mechanical stress of breathing. There is no other choice: the alveoli must be thin to allow 
diffusion of gases, and can’t afford a deep layer for the stem cells. We cell such tissues 
‘front line tissues’. 
We are now ready to propose a mechanism for IPF.  
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Incidence of idiopathic pulmonary fibrosis can be explained by threshold-crossing of 
the ratio of progenitor removal to proliferation rates 
In front-line tissues, homeostasis is a bit harder to 
achieve than in tissues in which stem cells are 
protected, because of the higher rate of removal of 
stem cells. We prove in the solved exercise that no 
matter what the feedback circuits for homeostasis 
are, a catastrophe happens when stem-cell removal 
rate r1 exceeds their maximal proliferation rate p. In 
this case, there are not enough stem-cell divisions to 
populate the tissue and the tissue collapses (Fig 8.19). 
The rate of this collapse depends on the removal rates of the cells. After the collapse, 
tissue repair cannot proceed by regeneration and instead has to rely on processes such 
as fibrosis, migration and metaplasia. Such repair reduces tissue function and pathology 
occurs.  
The relevant physiological parameter is thus 𝜙 = 𝑟2/𝑝, the ratio of removal and 
proliferation rate of the progenitor cells. Disease onset occurs when 𝜙 exceeds 𝜙! = 1 
(Fig 8.20). This is criterion (i) of the model. 

Senescent cells affect proliferation and removal in a way that 
tends to increase f (Fig 8.21). Senescent cells slow down 
progenitor proliferation due to the factors in the SASP from 
both local and systemic senescent cells (Fig 8.22). Senescent 
cells can, in some tissues, also disrupt the extracellular matrix 
and increase removal rate r1. Thus, when senescent cells 
cross a threshold	𝑋!, tissue collapse is predicted to occur in 
the susceptible population (Fig 8.23). Such a collapse is seen 
in simulations of tissue homeostasis circuits coupled with 
stochastic senescent cells dynamics (Fig 8.23). When 
senescent cells cross a threshold, the population of tissue 
cells D crashes. This is criterion (ii) for the model, providing a 
basis for disease onset when	𝑋 > 𝑋!.  
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Suppose the proliferation rate of S drops with 
senescent cells level X, such that 𝑝 = 𝑝(𝑋). 
Thus, p reaches its critical value 𝑝 = 𝑟2 when 
X reaches a threshold 𝑋!,567 (Fig 8.24). In 
most people, 𝑋!,567 	 is high so that X never 
reaches it. Unfortunately, some people are 
susceptible, and have a lower 𝑋!,567, as we 
will discuss below. In youth, X starts low, and 
rises over the decades. When X approaches 
𝑋!,567, S cells rise: feedback loops sense the 
loss of D cells and increase S renewal in a desperate bid to have enough S divisions to 
regenerate D. However, this breaks down when 𝑝2 < 𝑟, causing fibrosis and eventually 
tissue collapse. Once fibrosis is activated, it generally matures over several months. Thus, 
IPF incidence is akin to the first-passage time to the threshold 𝑋!,567. Thus, in this picture, 
onset of IPF is a threshold-crossing phenomenon.  
To calculate the incidence, which is the 
probability of crossing the threshold at 
a given age, the math is the same as in 
the previous lecture (Fig 8.24). The 
threshold 𝑋!,567 	replaces the death 
threshold Xc. The hard work we did in 
the last lecture pays off! The incidence 
of the disease follows a Gompertz-like 
law, with exponent α= 𝜂	(𝑋!,567 +
𝑘)/𝜖. Incidence is thus exponential 
with age (Fig 8.25). The observed slope 
of the incidence curve suggests that 𝑋!,567is about 50% of the threshold Xc for mortality 
in the previous lecture.  
The drop-in incidence at old age occurs in our model when everyone who is susceptible 
has already gotten sick, and there few susceptible people left. Let’s understand the 
susceptibility to this disease.  
 
Susceptibility to IPF involves genetic and environmental factors that increase stem 
cell death Who is susceptible? Those with a particularly low threshold, 𝑋!,567, smaller than 
the threshold for mortality 𝑋*+,'-. To understand this, we can examine the genetic risk 
factors for IPF. Some IPF cases cluster in certain families (estimated at 15% of the cases). 
First-degree relatives of a patient have a 5-fold higher risk of contracting IPF. The gene 
variants in these families have been studied extensively. 
There are two classes of gene variants that increase the risk of IPF. The first class is in the 
surfactant genes expressed by S cells. These variants produce unfolded surfactant proteins 
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that damage S cells and increase S 
cell removal and death, the parameter 
𝑟2. Furthermore, since surfactant is 
protective, reduced surfactant may 
also increase cell death rates. 
Increasing death rate lowers the IPF 
threshold 𝑋!,567 (Fig 8.26). Thus, 
these gene variants act to decrease the 
IPF threshold, making the disease 
much more likely. 
The other class of variants also affects 
S cells. These are telomerase genes. 
Telomerase is important to allow 
stem cells to divide many times. In 
each cell division, the DNA ends 
called telomeres become shorter. 
When DNA becomes too short, the cell stops dividing and becomes senescent; this was 
how senescent cells were first discovered by Hayflick in the 1960s, a process now called 
replicative senescence. Stem cells have an enzyme called telomerase that adds back the 
missing DNA ends allowing stem cells to divide indefinitely. Thus, the telomerase variants 
reduce S cell proliferation rate p and increase their death rate 𝑟2 (or equivalently their 
removal by becoming senescent). This also raises the possibility that local senescence in 
the alveoli might be at play, in addition to the SASP from the systemic senescent cells 
throughout the body. 
IPF also has environmental risk factors, such as smoking that doubles the risk of IPF. 
Smoking is mutagenic, increasing the rate of local senescent cell production, and also 
increases the removal rates 𝑟2 and 𝑟1. Exposure to toxins such as asbestos also increases 𝑟2 
and 𝑟1 and the risk of IPF. 
Thus, both the genetic and environmental factors tend to lower 𝑋!,567 and increase the risk 
of IPF. 
To sum up, homeostasis of a front-line tissue, such as the alveoli, is fragile to a reduction 
in stem cell proliferation. As proliferation drops to approach stem cell removal rate, the 
fraction of stem cells in the tissue rises. When proliferation drops below removal, stem 
cells crash to zero, and further cell death causes a hole in the tissue, which sets off fibrosis. 
Such a reduction in proliferation is caused, at least in part, by senescent cells that 
accumulate with age. The statistics of senescent-cell fluctuations can explain the 
exponential rise of IPF incidence with age. The drop of incidence at very old ages occurs 
when most of those susceptible due to genetic and environmental factors that lower 𝑋! have 
already gotten the disease. 
 
IPF may be mathematically analogous to another age-related disease, osteoarthritis. 
The analysis of IPF raises the possibility that the exponential incidence of other age-related 
diseases might also be caused by a threshold crossing of senescent cells. To make progress, 
we need to analyze each disease and understand its biology. It is likely that there will be 
multiple classes of diseases with different reasons for the threshold. 

d1

d1

p(x)
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Figure 8.26 Individuals susceptible to IPF have a  lower 
threshold due to increased stem cell removal.   



 

 

An age-related disease that might be in the same class as IPF is osteoarthritis. 
Osteoarthritis is a very common condition that occurs in about 10% of those over 60, in 
which the protective cartilage that cushions the ends of the bones wears down over time. 
Although osteoarthritis (OA) can damage any joint, the disorder most commonly affects 
joints in knees, hips, hands and spine. The main symptoms are pain and stiffness in the 
joints. It is a progressive disease with no cure, except joint-replacement surgery.  
The joint is made of a tough fibrous cartilage. The business end of the cartilage is the very 
smooth edge region where two parts of the joins meet. This is the front line of the tissue, 
and where the wear-and-tear occurs. The cartilage is constantly remodeled by chondrocytes 
D that make the fibers for strength and elasticity, including collagen 2. These D cells are 
generated by stem cells S called progenitor cells. The stem cells in the joint are at the front 
line, just like in the alveoli. The reason is that cells have a hard time moving through the 
cartilage, and thus S cells need to be where new D cells are needed, namely at the front 
line. 
The joints suffer a lot of mechanical stress, especially in regions that support the body’s 
weight. In the young, this stress doesn’t do much and the joints are fine for 50 or more 
years. But at old ages, osteoarthritis can set in. In a process that takes a few years, cartilage 
is lost, D cell number reduces, and the fraction of S cells increases. The S cells make 
tougher fibers than in normal cartilage, such as collagen-1 instead of collagen-2, making 
the tissue stiffer and less elastic (Oellerich D., Miosge N. (2017)). As a result, cracks form, 
leading to a hole that often goes right down to the bone. This hole occurs in the part of the 
joint that bears the most weight, and thus has the highest cell removal rates (Fig. 8.27). 
People with knees that bend inward or outward have the damage at the appropriate side of 
the knee where load is highest.  

Thus, the two diseases have a mathematical analogy. The removal rate of both stem and 
differentiated cells is high because both are at the front line. The removal rate varies across 
the organ and is highest where the most pressure occurs. Reducing the proliferation rate of 
S cells down towards their death rate leads to a rise in the stem cell fraction S/D, secreting 
more collagen-1, and eventually the cells are lost altogether. This reduction in S 
proliferation can be caused by SASP secreted by the senescent cells in the body, as well as 

Figure 8.27 Osteoarthritis is a progressive age-realted  
failure of the joint cartilage. 



 

 

local senescent cells in the joint. Indeed, removing senescent cells alleviates OA in mice 
models. This picture thus suggests that OA occurs at a senescent-cell threshold 𝑋!,89.  
Susceptibility to OA means a low threshold	𝑋!,89, as in IPF. Such a low threshold can be 
due to genetic and environmental factors.  Environmental risk-factors for OA include being 
overweight, which increases the load on the joints. To see this, note how the higher the 
body-mass index (BMI, mass divided by height squared), the larger the susceptible fraction 
s (Fig 8.28); BMI does not seem to affect the threshold 𝑋!.  

Genetic factors are also important, as OA has about a 50% heritability. Affected genes 
include fiber components like certain collagens (including collagen-2) and other cartilage 
components, as well gene-variants for the signaling molecules IGF1 and TGF-beta relevant 
to the feedback circuit (Tim D. et.al  2004). 
It is intriguing that diseases as different as a lung disease and a knee disease might have 
common fundamental origins. In our periodic table, we can expect that front line tissues 
will have similar progressive fibrotic diseases, and form one column in the table 
We can expect, in the same vein, that stem cells in protected niches like bone marrow, gut 
and skin, are in a different mathematical class. They should be spared from such 
progressive diseases. 
 
Other age-related diseases are linked with senescent cells 
Most age-related diseases tested so far in mice are alleviated by removing senescent cells. 
For example, type-2 diabetes (T2D) is an age-related disease that has a threshold-like 
mechanism. As we saw in lecture 2, late-stage T2D involves loss of beta cells when the 
glucotoxicity threshold is crossed. With age, the proliferation rate of beta cell goes down, 
and this threshold drops lower and lower. Genetic factors that affect glucotoxicity can 
further lower the threshold. Inflammation due to senescent cells causes insulin resistance, 
as do lack of exercise and obesity. Insulin resistance can push the system beyond its ability 
to compensate, causing prediabetes, increasing the risk of crossing the threshold for T2D.  
 
A grand project is thus to find mathematical classes of diseases, to understand the ways in 
which disease incidence rises with age, and to provide clues for treatment.  
 
Removing senescent cells can reduce the incidence of age-related diseases 
Age-related diseases are currently treated one at a time. A change of paradigm is to treat 
them all at once by treating their core underlying risk factor- ageing itself. With our 
mathematical picture in hand, we can evaluate potential treatments for ageing as a core 
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Figure 8.28 Body mass index (BMI) is a risk factor for osetoarthritis 



 

 

process. We can ask what happens if senescent cells are removed. In the previous lecture 
we mentioned at least three treatment strategies: reduction of senescent cell production by 
inhibiting the mTor pathway, senolytic drugs that kill senescent cells, and immune therapy 
that targets senescent cells.  
Suppose a 60-year-old starts taking a drug once per month that removes senescent cells. 
The SR model suggests a rejuvenation on the order of decades: the incidence curve of a 
typical disease shifts within a couple of months to the curve of a younger population 
(dashed line in Fig 8.29 8.30). Even killing only half of the senescent cells once every 45 
days rejuvenates by a decade. This works even if we assume, as in Fig 8.3, that senescent 
cells account for only 25% of the damage responsible for the age-related disease, and the 
rest is due to currently unknown forms of damage. 

A non-pharmacological approach for such 
rejuvenation is the quartet of exercise, 
healthy diet, good sleep and reduced stress 
by taking care of the mind by 
psychotherapy, moderation and/or spiritual 
practice. Exercise has coordinated 
beneficial effects including lowering 
insulin resistance, and reducing excess fat 
in tissues that causes inflammation. Healthy 
diet likewise reduces fat and insulin spikes. 
Easing the mind reduces chronic stress 
(HPA axis, sympathetic nervous system) 
which positively impacts insulin resistance, 
blood pressure and inflammation. 
 
One might say that some age-related disease come from a mismatch between the diet and 
amount of physical activity we evolved for and that offered by modern lifestyle. Such 
mismatches are nicely described in one of the inspirations for this course, Medzhitov and 
Stearns book “Evolutionary medicine”.  
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We are ready to begin summing up this course in the grand periodic table of diseases in the 
next lecture. 
  

Hallelujah Alveola 
 
When I take a breath of air, 
Alveoli - glad they’re there! 
They let oxygen inside 
And take out the carbon dioxide 
Every time you take a breath of air 
 
They are nicely elastic 
And their coated with surfactant ick 
They have stem cells and worker cells 
In a single layer, working well 
Every time you take a breath of air 
 
So, let’s thank our alveoli 
Oh, without them we will die 
They let our oxygen inside 
And take out the carbon dioxide 
Every time -we –take- a –breath- of- air 
 
Aging theme song 2/animals everywhere 
 
Sometime we may think that old age is a disease 
But research shows that senior citizens are more at ease 
Subjective well being is at its max 
And so is crystallized knowledge 
And you don’t have those sleepless nights  
About your grades in college 
 
Aging, agong, aging here and there 
Aging x4 everywhere! 
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Solved example 8.1: Find an analytical form for the incidence curve and age of peak 
incidence for low s 
 
The purpose of this exercise is to find an analytical form for incidence, using some 
approximations. An analytical form is often useful for understanding the more complex 
reality. 
Let’s assume that we have a cohort of susceptible individuals. The ‘disease free’ fraction 
at age t is F(t).  The incidence I(t) is given by the number of disease free individuals of age 
t that get the disease a year, 𝐼(𝑡) = −	𝑠	𝑑𝐹/𝑑𝑡, where s denotes that susceptible fraction in 
the population. Here we ignore the death rate of the nonsuceptible population, and assume 
that s is small. 
 
We need to write incidence in terms of the first-passage-time hazard rate of the disease, 
thus the number of people per year that get it out of the remaining disease free individuals, 
ℎ = −1/𝐹	𝑑𝐹/𝑑𝑡. Thus ℎ = −𝑑𝑙𝑜𝑔𝐹/𝑑𝑡, and  𝐹 = 𝑒.∫ -"# 	*' 
 
Writing incidence, I in terms of hazard, using ℎ = −1/𝐹	𝑑𝐹/𝑑𝑡, we have 𝐼(𝑡) = 	𝑠	ℎ	𝐹, 
or 

𝐼(𝑡) = 𝑠	ℎ(𝑡)𝑒.∫ -*'"
#  

 
Now let’s make a simple approximation for the 
SR-type model, by approximating the first 
passage time to cross a threshold goes as ℎ =
𝐴𝑒&' . Here we ignore the slowdown at very 
old age. 
We thus find our analytical formula 

𝐼 = 𝑠𝐴	𝑒&'𝑒.
9
&;+

$".2< 
Taking the log of incidence, we see a linear rise 
with slope 𝛼 and then a drop at late times when 
the exponent term becomes large (Fig. 8.32) 

log(𝐼) = log(𝑠𝐴) + 𝛼𝑡 −
𝐴
𝛼
(𝑒&' − 1) 
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We can now find the time of peak incidence. Taking 𝑑𝑙𝑜𝑔𝐼/𝑑𝑡 = 0 yields α= 𝐴𝑒& 	𝑡, and 
thus the time of peak incidence is 𝑡=,> =

2
&
ln R&

9
S 

It would seem that for equal A, peak incidence should drop with the slope of incidence 𝛼 - 
steeper incidence means earlier peak 
incidence. However, real disease incidence 
data shows the opposite, the larger the slope 
the later the peak time (Fig. 8.33). In fact, 
peak time is almost linear in slope. 
This rise in peak time with slope is captured, 
almost miraculously, by the SR model. 
This is because the amplitude of the first-
passage-time probability, A, drops 
exponentially with the threshold 𝑋!, and the 
slope 𝛼 rises linearly with 𝑋!. The reason that 
A drops is that it is equal to the crossing rate 
at age zero. The higher the threshold 𝑋!, the 
lower this rate. The slope increases with 𝑋! 
as we saw in the last lecture, α~𝜂	𝑋!/𝜖.  
 
For human SR model parameters, Katzir (2021) calculated that to a good approximation 
𝑙𝑜𝑔10(𝐴) = 4.14 − 𝑋!, and 𝛼 = 	0.009𝑋! − 0.02. For the relevant range of 𝑋! between 
10 and 16, peak incidence rises close to linearly with 𝑋! between age 50 and 90 years. I 
find it amazing that the model and data agree so well. 
 
Solved example 8.2: Stem-cell feedback circuit crashes when removal rate exceeds 
maximal proliferation 

Let’s first write down the basic equations for a labile tissue. These equations account 
for stem-cell S proliferation at rate p, and their differentiation to make differentiated 
cells D at rate q. The removal rate of S cells is 𝑟2, and of D cells is 𝑟1:  

(1) "#
"$
= 𝑝𝑆 − 𝑟%𝑆 − 𝑞𝑆 

(2) "&
"$
= 𝑞𝑆 − 𝑟'𝐷 

Note that differentiation means a loss of a S cell and a gain of a D cell. As a result, the 
−𝑞𝑆 term in the first equation shows up as a +𝑞𝑆 term in the second. At steady state, 
setting Eq. 2 to zero, 𝑆?'/𝐷?' = 𝑟1/𝑞. From Eq. 1 at steady state 𝑞 = 𝑝 − 𝑟2, (or S=0 
which is loss of tissue) and thus 
 

(3) #!"
&!"

= (#
)*($

 

There are additional subtleties of whether each stem-cell division is symmetric 
(yielding two S or two D cells) or asymmetric (yielding an S and a D cell). These 
subtleties do not matter for the present discussion (exercise 8.5).  
In order to keep the tissue at homeostasis, and in particular to maintain a proper 
concentration of D cells, labile tissues need and have an additional feedback loop. In 
this feedback loop, the cells D and S signal to each other by secreting molecules that 

Figure 8.33 



 

 

affect differentiation and proliferation rates. If there are too few D cells, for example, 
these signals act to increase D cell production and restore homeostasis.  
In a typical feedback loop found in the lung and skin, D secretes a signaling molecule 
that increases S differentiation (one such molecule is 𝑇𝐺𝐹", a strong signal for 
differentiation). Similarly, S cells secrete factors that increase their own differentiation 
rate. Thus, differentiation rate is an increasing function of D and S concentrations, 𝑞 =
𝑞(𝑆, 𝐷).  
Let’s see how this 
feedback works. 
Suppose there is a loss 
of D cells (Fig 8.31). 
Since D cells signal to 
increase 
differentiation, less D 
cells mean lower 
differentiation rate q. 
Thus, at first there are even fewer D cells. This seems paradoxical. But the reduction 
in differentiation means that more S divisions go to making new S cells instead of D 
cells. S levels rise, and eventually the larger S cell population supplies more 
differentiation events per unit time than before. D levels rise back. The timescale in the 
alveoli is months, due to the turnover rate of about a month of alveolar epithelial cells. 
In joints, turnover time is probably much slower. 
This feedback process shows damped oscillations and settles down to a proper steady 
state.  As an aside, we can predict, as in 
chapter 4, that such damped 
oscillations might entrain to the 
seasons and lead to seasonal changes in 
alveolar composition, with more S cells 
and thus more surfactant in some 
seasons and less in others. 
In Fig 8.31, by the way, we used a 
concrete example of such as feedback 
loop, in which 𝑞(𝑆, 𝐷) = 𝑞@	𝑆	𝐷. Let’s 
see what happens when maximal 
proliferation rate drops to approach 
stem cell removal 𝑟2. To keep 
homeostasis, the number of S cells rises 
to compensate the reduction in their 
proliferation rate. The ratio of stem to 
differentiated cells, A%"

B%"
= 𝑟1/(𝑝 − 𝑟2), 

rises with cell removal rate 𝑟2 (8.32). In 
typical healthy alveoli tissue (16% 
AT2 cells, 8% AT1 cells but AT2 cells 
7% of surface area (Am Rev Respir 
Dis. 1982), 𝑆/𝐷 = 2 = 1/(𝑝/𝑟2 − 1) 
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thus 𝑝/𝑟2~1.5. The rise in S cells buffers the decrease in D cells due to the rise in 
removal 𝑟2  (Fig 8.33).  
 
The basic equation structure for labile tissue with sizable stem cell removal has a 
fragility. When proliferation rate of stem cells drops below their death rate, 𝑝 < 	 𝑟2, a 
catastrophe happens- the tissue collapses. To see this, consider Eq 3 
  

𝑆?'
𝐷?'

=
𝑟1

𝑝 − 𝑟2
 

Thus, the fraction of S cells in the tissue diverges as proliferation drops towards the S-
removal rate 𝑟2 (Fig 8.33). There are more and more stem cells relative to D cells, to 
supply the needed amount of D cells, as well as their own renewal. Elegantly, the rising 
amounts of S cells also lead to more surfactant that protects the alveolus. In IPF, this is 
a doomed attempt to prevent tissue collapse.  
The ability of S cells to produce the needed amount of cells for the tissue breaks down 
when proliferation p falls below the death rate 𝑟2. The cell population crashes to zero.  
To see this mathematically, we take our equation, and bound it by a simpler equation 
which crashes. We first increase the right-hand-side by using the smaller of the two 
removal rates (let’s say without loss of generality	𝑟2 < 𝑟1) 

𝑑(𝑆 + 𝐷)
𝑑𝑡 = 𝑝𝑆 − 𝑟2	𝑆	– 𝑟1	𝐷	 < 𝑝𝑆 − 𝑟2(𝑆 + 𝐷) 

We can further increase the right-hand-side by changing S to S+D because D is always 
positive 

𝑑(𝑆 + 𝐷)
𝑑𝑡 < 𝑝(𝑆 + 𝐷) − 𝑑(𝑆 + 𝐷) = (𝑝 − 𝑟2)(𝑆 + 𝐷) 

We end up with a simple linear equation for total number of cells T=S+D which goes 
as  
    *C

*'
= (𝑝 − 𝑟2)𝑇.	 

Thus, when the maximal proliferation rate falls below removal, 𝑝	 < 𝑟2, the total cell 
number is bounded below an equation that goes to zero exponentially fast with time.  
This makes sense: in each unit time, addition of new cells goes as S renewal, and 
removal of cell mass goes as death. Renewal rate must not go below death rate or there 
is exponentially fast loss of cells. 

 
  



 

 

Exercises: 
8.1 Stem cell feedback that keeps constant S: Consider the following feedback loop in a 
labile tissue. Both stem cells and D cells secrete factors that increase differentiation rate. 
The differentiation rate is 𝑞(𝑆, 𝐷) = 𝑞@𝑆𝐷.  
(a) Write down the equations for this circuit. 
(b) Simulate this circuit (or use linear stability analysis) and test whether the steady-state 
is stable. 
(c) Show that the steady-state concentration of S cells is independent on S proliferation, p. 
(d) What is the concentration of D cells as a function of p? 
(e) Is the effect of this feedback biologically useful? 
 
8.2 Oscillations in a labile tissue circuit: consider a feedback loop with a single 
interaction in which D increases differentiation rate 𝑞(𝑆, 𝐷) = 	𝑞@𝑆𝐷.  
(a) Write the equations and simulate them. 
(b) Explain the resulting oscillations in S and D numbers intuitively. 
(c) Read about the predator-prey model in ecology called the Lotka-Volterra model. What 
is the analogy? 
(d) Why are ecology population models for species population an interesting resource for 
modelling cell circuits? 
 
8.3 Protected stem cells: Consider a tissue in which the stem cell removal rate r1 is 
negligible, whereas the D cells have a sizable removal rate r2. 
(a) Suppose that a feedback loop provides a stable-steady state. What happens to the S/D 
ratio as S proliferation p is lowered? Is there a point of collapse? 
(b) What diseases might characterize such tissues, more often than tissues with stem cells 
at the front line (high r1)? 
(c) Design a feedback loop that provides D levels that are insensitive to variations in stem-
cell proliferation p. 
 
8.4 NK cell homeostasis circuit: NK cells are constantly produced by stem cells in the 
bone marrow. They have a high removal rate r2, with a lifetime of hours, unless they go 
into the bodies tissues and find cells that make a survival signal (IL15-IL15R). Most cells 
of the body produce this survival signal. When NK cells touch the donor cells, they receive 
the signal, and their death rate drops to zero.  NK cells constantly patrol the body and go 
into and out of the blood stream and into the tissues. 
(a) Write equations for NK cell numbers. 
(b) What determines the NK cell lifetime of about a week in humans? 
(c) NK cells were introduced into a mouse mutant that cannot produce its own NK cells. 
These cells lasted for at least six months. Explain this result. 
(d) Explain how this homeostasis mechanism ensures that the number of NK cells matches 
the number of cells in the tissues that require NK cell surveillance. 
 
8.5 Stem cell symmetric and asymmetric divisions: Consider the case where a stem cell 
can divide to form either two stem cells or two differentiated cells, 2S or 2D. This is called 
symmetric division. Asymmetric division is the case where there is also a third possibility, 
of dividing to form one D and one S cell. 



 

 

(a) What is the difference in the mathematical equations for the S and D populations in the 
two cases? 
(b) How does this affect the S/D ratio as proliferation p approaches removal 𝑟2? 
 
8.6 Two disease thresholds: Consider two age-related diseases with senescent cell 
thresholds Xc,1 and Xc,2. Suppose the two diseases can occur in the same person (the 
person is susceptible to both diseases). What would you expect about the relative timing of 
the diseases in the same person? How would you test this hypothesis? What are some 
confounding factors? 
 
8.7 Osteoarthritis: Explain why osteoarthritis occurs in certain regions of the joint. In the 
hip it occurs in the top part of the joint. In the knee it occurs at the inside rim in people 
with legs oriented slightly as an X-shape, and at the outside rim of the knee in people with 
a bowlegged, O-shaped configuration. 
 
8.8 Removal rates: In healthy alveoli tissue there are approximately twice as many AT2 
cells (S) than AT1 cells (D). Since S cells are smaller they make up only 7% of the surface 
area Am Rev Respir Dis. 1982). Estimate using the simple calculations in the lecture what 
is the ratio between S proliferation and removal rates. In the knee joint, progenitor cells (S) 
amount to about 4% of the total cell population, rising to about 8% in OA. What is the ratio 
of proliferation to removal rates? 
 
 


