Physics of Behavior
 Uri Alon
 Exercise 3

Additional support: avimayo@weizmann.ac.il (just write and set up a meeting)

1 A decoration on the FFL. The regulator Y in C1-FFLs in transcription networks is often negatively auto-regulated. How does this affect the dynamics of the circuit, assuming that it has an AND input function at the Z promoter? Consider both an On step and an OFF step.

2 Amplifying intermediate stimuli. This problem highlights an additional function of incoherent type-1 FFLs for sub-saturating stimuli Sx. Consider an I1-FFL, such that the activation threshold of Z by X, Kzx, is smaller than the activation threshold of Y by X, Kyx. That is, Z is activated when $X^{*}>K z x$, but it is repressed by Y when $X^{*}>K y x$. Schematically plot the steady-state concentration of Z as a function of X^{*}. Note that intermediate values of X^{*} lead to the highest Z expression. When might such a design be useful?

3 Type three. Consider a type-3 coherent FFL with AND - logic at the Z promoter with Sx activates X and Sy activates Y. More precisely the promoter logic is ((NOT X*) AND (NOT Y^{*})). Sketch the dynamics in response to ON step and OFF step of Sx in the presence of Sy. Are there sign sensitive delays?

4. Shaping the pulse. Consider a situation where X in an I1-FFL with an AND-logic begins to be produced at time $t=0$, so that the level of protein X gradually increases. The input signal $S x$ is present throughout.
a) How does the pulse shape generated by the I1-FFL depend on the thresholds $K x z, K x y$ and $K y z$ and on β, the production rate of protein X ?
b) Analyze a set of genes $Z 1, Z 2, \ldots, Z n$, all regulated by the same X and Y in I1-FFLs.
c) Design thresholds such that the genes are turned $O N$ in the rising phase of the pulse in a certain temporal order and turned OFF in the declining phase of the pulse with the same order.
d) Design thresholds such that the turn-off order is opposite to the turn-on order.
e) Plot the resulting dynamics.
5. Nullclines for lock-on switch: Nullclines are a useful concept for analyzing dynamical systems. To define nullclines, consider a two-component dynamical system defined generally by the equations

$$
\frac{d x}{d t}=f_{1}(x, y), \quad \frac{d y}{d t}=f_{2}(x, y)
$$

The system two nullclines are the curves at which $d x / d t=0$ and $d y / d t=0$. Thus the two nullclines are defined by the equations $f_{1}(x, y)=0$ and $f_{2}(x, y)=0$. Their important feature is their crossing points. The crossing points are fixed points of the system (steady states), because both x and y do not change $(d x / d t=0$ and $d y / d t=0)$. Here we will use nullclines to show that a double positive feedback loop (DPFL) can be mono-stable or bi-stable. We will show that Bi-stability requires cooperative input functions. The DPFL is defined by two increasing input functions, f and g, that describe the mutual repression:

$$
\frac{d x}{d t}=f(y)-\alpha_{1} x, \quad \frac{d y}{d t}=g(x)-\alpha_{2} y
$$

Thus, the nullclines in this case are $x=f(y) / \alpha_{1}$ and $y=g(x) / \alpha_{2}$.
(a) Show that if f and g are non-cooperative with a basal expression level (Michaelis-Menten functions $f \sim a+b y /(k+y), g \sim c+d x /(k+x)$), there is only one fixed point (Hint: how many solution a quadratic equation has? How many solution do we need for bi-stability)
(b) Explain why this means there is no switching.
(c) Show graphically that bi-stability, with three fixed points, a high a low and a middle unstable fixed point, can occur if f and g are sigmoidal (S-shaped).

