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Lecture 6 

Aging and the saturation of damage removal 
 

We’ve just seen some basic facts about aging on the population level, such as the Gompertz law. 

We also discussed how different forms of molecular damage might cause aging, in part through the 

accumulation of senescent cells. In this lecture we will explore a way to connect between the 

molecular and population levels. To do so, we will build conceptual framework to understand the 

stochastic processes of damage accumulation and removal. 

 

Senescent cell dynamics show nearly exponential rise with age and lengthening correlation 

times  

We saw that senescent cells (SnC) are an important accumulating factor that is causal for aging: 

removing SnC slows aging whereas adding SnC increases risk of death. It makes sense, then, to 

explore how the amount of senescent cells in the body, which we denote by X, varies with age in 

different individuals.  

For simplicity, we will pretend that SnC are a single entity, despite the fact that they are likely to 

be a name for many different cell states and cell types, accumulating in the different organs of the 

body. For organisms without SnC, such as C. elegans and fruit flies, we will think of X as a type 

of damage, such as protein damage, that is a primary cause for aging.  

 

To get a feeling for the dynamics of SnC, let’s 

consider an experiment, by Burd, Sharpless et 

al, who measured SnC abundance in 33 mice 

every 8 weeks for 80 weeks. To measure whole-

body SnC amounts, Burd et al used genetic 

engineering to produce mice that made photons 

in proportion to the number of SnC they have 

(Fig 6.1). In a nutshell, they used a gene from 
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fireflies called luciferase that produces photons when it acts on a certain substrate. They introduced 

the luciferase gene into the mouse DNA, and placed it under the control of a DNA element, called 

the p16 promoter, that is normally activated only in SnC. Therefore, only the senescent cells in 

these mice make the protein luciferase. When the substrate for this protein is injected into the 

mouse, the mice produce light. Mice normally don’t make photons, so that observing the light 

emitted from their special mice allowed Burd et al to estimate X. The experiment has several 

limitations, such as stronger absorption of light from inner regions, some genetic disruption of the 

natural p16 system which enhanced the chance of cancer after 80 weeks so the experiment could 

not probe very old ages, and experimental noise. But the experiment serves as a good starting point.  

Looking at total light emitted from these mice as a 

measurement of X, we see that X rises and falls across 

time and generally increases with age (Fig 6.1). The data 

suggests two timescales: fast timescale of fluctuations 

over weeks, and a slow timescale in which X rises on 

average over years. This fast-slow timescale separation 

will be useful for building our model (Fig 6.2).  

Analyzing the data provides four features: 

(i) The average X grows nearly-exponentially with age (Fig 6.3). Such nearly-exponential 

accumulation with age is also seen in experiments on human tissues. 

(ii) The variation in X between individuals grows with age. Old mice have a larger range of 

X than young mice, and some old mice have X levels similar to young mice. This variation 

grows, however, more slowly than the growth of average: the mean X divided by standard 

deviation grows linearly with age !"#
$%&(")

~𝜏 (Fig 6.4 inset).  
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(iii) Distributions of X among 

individuals at a given age are 

skewed to the right, so that there 

are more individuals with higher 

than average X than individuals 

with lower than average X (Fig 

6.5). The skewness of these distributions gradually drops with age. 

 

(iv) The correlation time of X 

increases with age. This 

means that a mouse that is 

higher or lower than average 

stays so for longer periods of 

time at old age than at young 

ages. (Fig 6.6). It's as if, with 

age, the stochastic variation in X becomes more persistent. 

 

A model with increasing production and saturating removal can explain SnC dynamics 

These dynamical features of SnC can be explained by a simple model, called the saturating 

removal (SR) model, as discovered by Omer Karin in his PhD with me. Omer scanned a wide class 

of models, and found the essential features that a model needs in order to explain the SnC dynamics 

discussed above.  

The first important feature is to have two timescales, a fast and a slow timescale: X is produced and 

removed on a timescale that is much faster than the lifespan. This separation of timescales allows 

us to write an equation for the rate of change of X as a function of time dX/dt, in which the 

parameters, such as production and removal rates, vary slowly and depend on age 𝜏. The model 

also includes stochastic noise. Thus, 
𝑑𝑋
𝑑𝑡

= 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 − 𝑟𝑒𝑚𝑜𝑣𝑎𝑙 + 𝑛𝑜𝑖𝑠𝑒 

 The model that best describes the data is biologically plausible. The production rate of X rises 

linearly with age, as 𝜂𝜏. This aligns with the biological expectation, discussed in the previous 

lecture, that SnC arise from mutant stem cells S' that produce damaged differentiated cells D' that 

become senescent cells. The number of mutant stem cells should rise linearly with age, and thus 

production rate of SnC should also be linear with age. 
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The removal of X is carried out by special repair processes, namely innate immune cells such as 

NK cells that kill senescent cells. The NK cells discover SnC by means of special marker proteins 

that SnC display on their surface. The NK cells then attach to the SnC, and inject toxic proteins to 

kill it. Mice without functioning NK cells show accelerated aging and large amounts of SnC.  Other 

immune cells called macrophages also play a role, and possibly other types of immune cells.  

If this removal process worked at a constant rate	𝛽, the probability unit time to remove each SnC 

would be constant with age. The removal term would thus be −𝛽𝑋. However, such a constant 𝛽 

would result in a linear rise of X with age, as opposed to the nearly exponential rise observed. To 

see this linear rise with age, the equation is &"
&%
= 𝜂𝜏 − 𝛽𝑋, whose steady-state solution is 𝑋(𝜏) =

𝜂𝜏/𝛽.  

Thus, it makes sense from the nearly exponential rise of average X that the removal rate per SnC 

should slow down with age. Karin tested many mathematical ways for this reduction to occur. The 

best way to model this, which accounts for the four features mentioned above, is to assume that the 

removal rate drops with the amount of SnC. Such a drop could be due to several processes: 

immune cells that remove SnC could be down-regulated if they kill too often, or they can become 

damaged due to the action of SnC. The drop in removal rate can also be simply due to a saturation 

effect, in which the SnC-removing cells become increasingly occupied with rising SnC numbers. 

To model such saturation, we use a Michaelis-Menten form (see solved exercise 6.1)  

𝑟𝑒𝑚𝑜𝑣𝑎𝑙 = B"
CD"

    

Where 𝛽 is the maximal SnC removal capacity (units of 

SnC/time), and k is the concentration of X which saturate 

half of their own removal mechanism. The removal rate per 

SnC drops with SnC amounts, B
CD"

 (Fig 6.7) 

We thus obtain a model for the rate of change of X:  
𝑑𝑋
𝑑𝑡

= 𝜂𝜏 −
𝛽𝑋
𝑋 + 𝜅

								[1] 

 

Where we use 𝜏 for age and t for time to make sure that we understand that there are two timescales: 

a fast scale (days-weeks) in which damage reaches steady-state, and a slow timescale (years) over 

which production rate 𝜂𝜏 changes.  

Let’s compute the steady-state X on the fast timescale. On the fast timescale of weeks, the 

production rate 𝜂𝜏 can be considered as constant. Setting dX/dt=0 in Eq 1 we find that the steady-

state X is 

X

removal rate

 ∼ k+X
β

Figure 6.7 



〈𝑋〉 ≈
𝜅η𝜏
𝛽 − ητ

[2] 

 

Thus, X rises linearly with age at first and then accelerates and 

diverges at a critical age 𝜏O = 𝛽/𝜂 (Fig 6.8). In fact, this rise is 

almost indistinguishable from an exponential rise over the 5-

fold range of the data (Fig 6.3, Fig 6.8, dashed line). When X 

levels rise high enough, they reach levels not compatible with 

life. Thus, the critical age 𝜏O = 𝛽/𝜂 is our first approximation 

for the mean lifespan. Lifespan is longer the bigger the repair 

capacity 𝛽. Lifespan is longer the smaller the rate in which 

SnC production increases with age, 𝜂.  

To get a graphic sense of why X accelerates with age, we can 

plot the production and removal terms in Eq 1. Removal is 

beta B"
CD"

 which is a saturating curve (Fig 6.9). Note that 

removal rate per cell goes down with X as B
CD"

, and the plot 

shows total removal rate, which is the removal rate per cell 

times X, and is therefore a rising and saturating curve.  

Production rate, represented by the colored horizontal lines, is low in young organisms and rises 

with age. The points to watch are where production equals removal. These are steady-state points 

at each age. With age, the steady-state X accelerates to higher and higher levels (Fig 6.9) because 

of the saturating shape of the removal curve. When the production rises above the removal curve, 

which occurs when age goes beyond the critical age, the steady state points shifts to infinity, and 

X grows indefinitely. 

Adding noise to the model explains the variation between individuals in SnC levels 

So far, the model does not describe the fluctuations of X over time for each individual, nor the 

widening differences between individuals. To understand these stochastic features of the dynamics, 

we need to add noise to the model.  

The simplest way to add noise is to add a white-noise term 𝜉 with mean zero and variance 2𝜖 (the 

factor 2 is for convenience in the equations below). This noise describes fluctuations in production 

and removal due to internal or external reasons such as injury, infection and stress (cortisol). In 

fact, we don’t know what the noise exactly describes. White noise is a convenient way to wrap up 

our ignorance in a mathematical object that we can work with.  

We thus arrive at the main model of this lecture, called the saturated removal (SR) model:  

Figure 6.9 
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𝑑𝑋
𝑑𝑡

= 𝜂𝜏 −
𝛽𝑋
𝑋 + 𝜅

+ √2𝜖𝜉								[3] 

  

We will use this model to understand the dynamics of SnC, and then to understand the origin of the 

Gompertz law. Let’s begin with understanding the variation in X between individuals at a given 

age. To do so, we need to compute the distribution of X, P(X). 

Solved example 1: compute the distribution of X at a given age 

To derive the probability of having X SnC, we use an approach that is analogous to Boltzmann free 

energy in statistical mechanics or in chemical kinetics. The temperature 𝑘U𝑇	will be the analog of 

the noise amplitude 𝜖 in the SR model. 

To calculate the distribution P(X), we will use a general method that applies to any stochastic 

differential equation of the form: &"
&%
= 𝑣(𝑋) + √2𝜖𝜉 . For the SR model, the ‘velocity’ v(x) equals 

production minus removal, namely 𝑣(𝑋) = 𝜂𝜏 − 𝛽𝑋/(𝑘 + 𝑋). The idea is to rewrite the equation 

using a potential U(X), defined so that its slope is equal to v(X): −&W
&"
= 𝑣(𝑋).  

The potential function can be imagined as a bowl of 

shape U(x) (Fig 6.10). The variable X is like a ball 

rolling in the bowl (Fig 6.10). The ball rolls down the 

slope, with velocity v(x) that is equal to the slope of 

the bowl –dU/dx. The bowl is coated with a thick goo 

(Strogtaz 2000) and so the ball settles down at the 

minimum of the bowl without oscillating. At the 

minimum point dU/dx=0, and that is where X=Xst. 

The steeper the bowl, the faster the ball returns to Xst 

if it is perturbed. If we add noise, it jiggles X near Xst. 

Again, the steeper the bowl, the less noise can move X away from Xst, and the narrower the 

distribution P(X). 

The nice thing about the potential-function way of writing the equation is that we can easily 

compute the steady-state distribution. This distribution P(X) is given by the Boltzmann distribution, 

with epsilon playing the role of temperature: 

𝑃(𝑥) ∝ 𝑒[
W(\)
] 								[5] 

An intuitive explanation is provided in Exercise 6.X. The shallower the bowl, or the larger the 

‘temperature’ 𝜖 , the wider the distribution P(x).  

For the SR model, the potential U(x) is  
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𝑈(𝑋) = (𝛽 − ητ)𝑋 − 𝛽𝜅 log(𝜅 + 𝑋)								[6] 

Which can be checked by taking – 𝑑𝑈/𝑑𝑥 and verifying that it gives 𝜂𝜏 − B"
"De

. 

We can safely assume that age 𝜏	is constant 

over the fast timescale needed to reach the 

steady-state distribution P(x). Plotting 

U(x) at young and old ages shows that at 

young ages the bowl is steep, and therefore 

the distribution is localized around the 

mean (Fig 6.11). With age, the bowl 

becomes less and less steep, because its 

right-hand slope goes as −ητ . At the 

critical age, when  𝜂	𝜏 = 𝛽, the bowl opens up and the steady state goes to 𝑋 = ∞	.  

Plugging Eq. 6 for U(x) into the Boltzmann-like law of Eq 5 we obtain the distribution  

𝑃(𝑥) ∝ 𝑒[
(B[gh)\

] (𝜅 + 𝑥)
Be
] 									[6] 

Which reaches a peak and then falls exponentially with X. This distribution of SnC in the SR model 

is skewed to the right, and quantitatively matches the skewed distributions observed in the mouse 

data (Fig 6.5, red lines).  

This distribution, by the way, provides a slightly more accurate estimate for the average X,  

〈𝑋〉 ≈
𝜅η𝜏 + 𝜖
𝛽 − ητ

[7] 

 

Which rises with age (Fig 6.X, red line). The standard deviation of X also rises with age and 

diverges at τj, as shown by calculating the std of P(X): 

𝜎 ≈
l𝜅𝛽 + 𝜖m

ητ − 𝛽
								[8] 

This rise in std matches the observed rise with age of the standard-deviation of the light emitted 

from the mice of Burd et al (Fig 6.X). The SR model even captures the ratio between average and 

std, that rises linearly with age observed in the mouse SnC data 
< 𝑋 >
𝜎

≈
𝜅η𝜏 + 𝜖
l𝜅𝛽 + 𝜖m

~𝜏. 

Figure 6.11 
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The model also explains the increasing 

correlation times with age. At young ages, 

the bowl is steep. Thus, if X is away from 

Xst, it returns to Xst quickly (Fig 6.12). 

At old ages, in contrast, the bowl is almost 

completely flat. The trajectory of the 

‘ball’ is dominated by noise, with very 

little restoring force coming from the 

steepness of the bowl (Fig 6.12). Hence individuals that stray away from Xst have a slower restoring 

force back to the mean, and stay away for longer times. 

Such increasing correlation times have a general name in physics, “critical slowing down”. They 

are a mark of an approaching phase transition. In our case the phase transition is to infinite X, which 

is death. In the classical example of a phase transition, the boiling of water, large and slow 

fluctuations in density can be seen near the boiling point. In other areas of science, slowing down 

of fluctuations can be a warning sign of a big transition. Examples include climate fluctuations 

before an ice age, or ecological fluctuations before a species extinction [Schaffer 2009].  

The mouse data allows estimating all four model parameters, eta,beta k and epsilon. The best fit 

parameters are approximately eta = 4 10^-4 days^2, beta=0.3/day, k=1, epsilon=0.1, in units where 

the average SnC in young mice is 1. These estimates give a concrete prediction for the half-life of 

a senescent cell in the mice. The half-life is about 5 days in young mice, and rises to about a month 

in old mice (25 days in 22mo mice).  

 

An experimental test shows that SnC are removed in days from young mice but in weeks form 

old mice 

 

 

 

Parameter Mean SE 5% CI 95% CI 

𝜼 2.3

⋅ 10[u[𝑎𝑢]𝑑𝑎𝑦[m 

0.25 ⋅ 10[u 1.9 ⋅ 10[u 2.9 ⋅ 10[u 

𝜷 0.15	[𝑎𝑢]	𝑑𝑎𝑦[y 0.022	 0.12	 0.2	 

𝜿 0.5[𝑎𝑢] 0.1 0.4 0.7 

𝝐 0.16[𝑎𝑢]m𝑑𝑎𝑦[y 0.02 0.14 0.2 
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This prediction was interesting enough to test 

experimentally. We teamed up with Valery 

Krizhanovsky, a senescent cell researcher from 

our department, and his PhD student Amit 

Agrawal. The idea was to induce extra SnC in 

mice, and then to measure how quickly SnC go 

back to steady state (Fig 6.13).  

Krizhanovsky used a drug, called Bleomycin, 

which induces DNA damage which makes cells become SnC. The drug was introduced into the 

lungs of mice. The drug is cleared away within a day. Due to the DNA damage, after 5 days, the 

lungs are full of SnC. Then, mice were killed at various timepoints, and the amount of SnC in their 

lungs was measured; the lung was dissolved into single cells, which were stained with a die that 

labels SnC (called SA-beta-gal). The individual cells were photographed in a machine called an 

imaging flow cytometer (Fig 6.14A), and the number of senescent cells (epithelial cells of the lung 

to be precise) were counted. 

In young mice, the SnC half-life was 5+/-1 days (Fig 6.14C). In old mice (22-month-old), removal 

was much slower, with an estimated half-life of about a month. Note the variation in SnC between 

the old mice. These measurements agree very well with the predictions of the SR model (Fig 

6.14D). The agreement is striking because the SRSmodel was calibrated on the luciferase-mice, 

with a different marker for SnC (p16 versus SA-beta gal), and a different system (whole body 

Figure 6.14 
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versus lung). This agreement adds confidence in the SR model. We can be fairly sure that removal 

of SnC slows with age. 

 

Gompertz mortality is found naturally in the SR model 

In the remainder of the lecture, we explore the 

implications of rapid SnC turnover and slowdown of removal 

for the question of variability in mortality. As we saw in the 

previous lecture, lifespan varies even in inbred organisms 

raised in the same conditions, demonstrating a non-genetic 

component to mortality. In many species, including mice and 

humans, risk of death rises exponentially with age, the 

Gompertz law, and decelerates at very old ages (Fig 6.15).  

To connect SnC dynamics to mortality, we need to know the relationship between SnC 

abundance and risk of death. The precise relationship is currently unknown. Clearly, SnC 

abundance is not the only cause for morbidity and mortality. It does, however, seems to be an 

important causal factor because removing SnCs from mice increases mean lifespan, and adding 

SnCs to mice increases risk of death and causes age-related decline. 

 Let’s therefore explore the simple 

possibility that death can be modeled to occur 

when SnC abundance exceeds a threshold level 

𝑋}, representing a collapse of an organ system or 

a tipping point such as sepsis (Figure 6.16). 

Thus, death is modelled as a first-passage time 

process, when SnC cross XC. We use this 

threshold-crossing assumption to illustrate a way 

of thinking, because it provides analytically 

solvable results. Other dependencies between risk of death and SnC abundance, such as sigmoidal 

functions with various degrees of steepness, provide similar conclusions. 

To estimate the probability that X crosses the death-threshold 𝑋O, we apply an approach which is 

analogous to the rate of a chemical reaction crossing an energy barrier Δ𝐺. This rate is the 

Boltzmann factor exp	(− ��
���

). As always, in our case the noise amplitude 𝜖 plays the role of 

temperature KbT, and the energy barrier is the difference between the potential U at 𝑋O and at the 

X

age τ

time of
death
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steady state value 𝑋$%, Δ𝐺 = 𝑈(𝑋O) − 𝑈(𝑋$%). Thus, the probability for X crossing 𝑋O, namely the 

risk of death that we call the hazard, is  

ℎ ≈ 𝑒[
W("�)[W("��)

]  

 

This equation is called Kramers equation in the field of stochastic processes. An intuitive 

explanation is that the ball in the well needs to climb a potential difference of Δ𝑈 = 𝑈(𝑋O) −

𝑈(𝑋$%)	in order to fall off into the death region (Fig 6.17). It needs to climb using ‘kicks’ form the 

noise each of size epsilon. Each noise kick can be either to the right or left. Since you need �W
]

 

kicks, all in the right direction, the chance is exponentially small and goes as 𝑒[
��
� . 

  

The potential U in our model is given by Eq.3. For the Gompertz law to hold, one needs the term  
W("�)[W("��)

]
 to decrease linearly with age 𝜏, so that ℎ ≈ 𝑒��. 

The exponent of the hazard rate in the SR model indeed shows the required linearity in time, in 

bold in the equation: 

−
𝑈(𝑋}) − 𝑈(𝑋��)

𝜖
=
(𝜿 + 𝑿𝑪)𝜼𝝉 − 𝑋}𝛽 + 𝜅𝛽 ⋅ Log �

(𝜅 + 𝑋})(𝛽 − ητ)
𝜅𝛽 �

𝜖
					[8] 

We thus find that, up to a prefactor that does not depend on age: 

ℎ(𝜏) ≈ (𝛽 − ητ)
eB
] Dy𝑒

(eD"�)g�
] 					[9] 

The hazard rises exponentially with time as 𝑒�� with an exponent 𝛼, called the Gompertz 

ageing rate, given by 

𝛼 = (eD"�)g
]

. 

The Gompertz ageing rate parameter (such as the 8-year doubling time in humans) can thus be 

written in terms of molecular parameters.  
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This solution also shows a deceleration in the rise of the hazard rate at very old ages (when ηt ≈

β), due to the prefactor (𝛽 − ητ)
��
� Dy. This slowdown in hazard is observed in the empirical hazard 

curves. Note that this approximation begins to be inaccurate when ηt > 	𝛽, and simulations of the 

full SR model are needed to compute the hazard curve at old ages. Simulations show that rise of 

the hazard continues to slow with age. Other models usually do not show the Gompertz-law first 

passage time (Exercises).  

The SR model analytically reproduces the Gompertz 

law, including the observed deceleration of mortality rates at old 

ages (Fig 6.18). The SR model gives a good fit to the observed 

mouse mortality curve using parameters that agree with the 

experimental half-life measurements and longitudinal SnC data. 

The threshold for death is Xc=17+/-2, meaning that the threshold 

Xc is about 17 times larger than the mean SnC level in young 

individuals. Thus, turnover of days in the young and weeks in 

the old provides SnC variation such that individuals cross the death threshold at different times, 

providing the observed mortality curves.  

The SR model can address the use of drugs that eliminate SnCs, known as senolytic drugs. 

To reduce toxicity concerns, it is important to establish regimes of low dose and large inter-dose 

spacing. The model provides a rational basis for scheduling senolytic drug administrations. 

Specifically, treatment should start at old age, and can be as infrequent as the SnC turnover time 

(~month in old mice) and still be effective. 

 

Turnover of days in young and weeks in old can explain human Gompertz law 

Let’s use the results from the mouse data to study human mortality curves. In humans, mortality 

has a large non-heritable component (estimated at 80%) and hence we can assume that the 

parameters eta, beta k and epsilon are similar between 

people and that much of the variation is due to stochastic 

effects. A good description of human mortality data, 

corrected for extrinsic mortality, is provided by the same 

parameters as in mice, except for a 60-fold slower increase 

in SnC production rate 𝜂 with age in the human parameter 

set (Figure 6.19). This slower increase in SnC production 

rate can be due to improved DNA maintenance in humans 

compared to mice. Perhaps this parameter 𝜂 is the main 

Figure 6.18 

Figure 6.19 



way that evolution tunes lifespan of different mammals, as in the mass-longevity triangle of the 

previous lecture. Indeed, long-lived animals such as elephants and naked mole rats have enhanced 

repair processes for DNA damage compared to mice. We conclude that the critical slowing-down 

described by the SR model provides a possible cellular mechanism for the variation in mortality 

between individuals. 

 

Similar considerations can explain aging statistics in model organisms 

Fly nutrition shift data, 

The SR model can be generalized beyond SnC. It should apply to any form of damage that 

whose production rises with age and whose removal becomes saturated. We therefore explore the 

SR model to understand key experiments in model organisms without SnC such as the fruit fly  

Drosophila melanogaster and the worm (or more correctly the nematode)  C. elegans.  The 

advantage of these model organisms is that interventions that affect lifespan can be studied with 

excellent statistics in lab conditions. Thus, let’s consider X as a damage that is causal for aging, 

that accumulates with age and has SR-type dynamics, namely turnover that is much more rapid 

than the lifetime, rising production rate and self-slowing removal. Clues for the identity of such 

factors may be gene-expression variations in young organisms that correlate with individual 

lifespan, and the actions of genes that modulate lifespan. 

 

Rapid shifts between hazard curves in Fruit flies 

Work in C. elegans and Drosophila provides constraints to test the SR model. For example, 

in a classic paper, Mair et al. measured the effect of two lifespan-extending interventions in 

Drosophila, lifespan-extending diets (LE)  and temperature change, when applied at mid-adulthood 

(31). They found that the interventions had different effects on lifespan: (i) LE led to rapid switches 

in mortality rate, and (ii) changing temperature affected the slope of the mortality rate.  



These results can be explained by the SR model with rapid turnover. A relatively rapid 

turnover for Drosophila means turnover on the order of minutes to hours. We therefore set 𝛽 =

1	ℎ𝑟[y, 𝜅 = 1, and 𝜖 = 1	ℎ𝑟[y. To fit the survival curve for fully fed flies obtained by Mair et al., 

we set 𝜂 = 0.03ℎ𝑟[y𝑑𝑎𝑦[y, and death when 𝑋 > 𝑋} with 𝑋} = 15. Flies on life extending diet 

(LE) are fit by a lower value, 𝜂 = 0.02	ℎ𝑟[y𝑑𝑎𝑦[y. Note that the purpose here is to demonstrate 

that the SR model can capture the behavior of the data, and not to provide accurate estimates for 

the parameters (the data is insufficient to pin down the parameters). 

The hazard curve for the life-extending (LE) diet 

can be explained by assuming that it changes any of the 

model parameters. For example, LE can change 𝜂 in a 

reversible manner (Figure 6.20 A), and hence affect the 

rate of damage production p. In this case, changing diet 

leads to damage production 𝑝(𝑡) = 𝜂y𝑡,  where 𝜂y is the 

rate of increase in damage production of the current diet. 

The rapid turnover of damage rapidly reverts the 

mortality rates when diet changes (Figure 6.20 A). More 

generally, LE may change any parameter of the SR 

model, including removal rate β, as long as the effect on 

the parameter is reversible.  

On the other hand, the temperature intervention can be explained by assuming that it affects 

an underlying damage accumulation rate that sets 𝜂 (6.20 B), that is, temperature multiplies &�
&%

. 

Changing temperature at age t’ therefore leads to damage production 𝑝(𝑡) = 𝜂�𝑡� + 𝜂y(𝑡 − 𝑡�), 

where 𝜂� was the previous rate of increase in damage production and 𝜂y the rate after temperature 

change. This intervention affects the slope of increase in mortality rate with age, but does not revert 

the mortality rates (Fig 6.20 B).  

 

 

 

 

 

 

 

 

Figure 6.20 



C elegance scaling data 

A further test is whether the SR model can explain the scaling of survival curves for C. 

elegans under different life-extending or life shortening genetic, environmental and diet 

perturbations. These perturbations change lifespan by an order of magnitude, but the survival 

curves collapse on the same curve when age is scaled by mean lifespan (Figure 6.21 insets),as 

discovered in an elegant experiment by Stroustroup et al. The SR model provides this scaling, to a 

very good approximation, for perturbations that affect the accumulation rate 𝜂 (Figure 6.21 A). 

Interestingly, there is no scaling when a perturbation affects other parameters such as removal rate 

𝛽 or noise 𝜖 (Fig 6.21 B,D), a prediction that may apply to exceptional perturbations in which 

scaling is not found such as the eat-2 and nuo-6 mutations. In all cases, scaling cannot be found in 

models without rapid turnover. We conclude that the SR model of rapid turnover with critical-

slowing down is a candidate explanation for scaling of survival curves in C. elegans.  

 

Damage production rises with age, and saturates the repair capacity 

As a concluding analogy, let’s consider the parable of the garbage trucks. A young organism is 

alike a small village that produces a small amount of garbage (SnC). The village has 100 garbage 

trucks, more than enough to clear the garbage. With age, the village becomes a big city producing 

a lot of garbage. Since we are not designed to be old, the ere are still 100 trucks. The trucks are 

overloaded, and garbage piles up in the streets. If there is a perturbation (infection, injury) and extra 

garbage is added, it stays for a long time. 

Similarly, the body’s immune cells that remove SnC can get saturated or downregulated, and SnC 

pile up. They cause inflammation, reduce stem cell renewal and mess up the extracellular matrix. 

The saturation of the immune cells also reduces their ability to do their other tasks: fight infection 

and cancer.  Thus risks of illness rises and organ function decreases with age. 

Figure 6.21 



 

Approaches to slow down aging and aging related diseases: 

Current medicine focuses on treating each age-related disease one by one - diabetes, cancer, heart 

disease and so on. A different approach would be to deal with the risk factor itself- to slow the 

aging process, or more precisely to slow the rise of SnC (and other aging-related damage). 

The conceptual framework we discussed points to two general strategies: reduce production rate 

eta or increase removal capacity beta. 

Reducing production can be achieved by boosting cellular damage-repair systems. One way to 

achieve this is calorie restriction and other types of restricted feeding, or by drugs that mimic calorie 

restriction by, for example, perturbing the IGF1 pathway. 

Increasing removal is an attractive possibility. That is what seonlytic drugs do by removing SnC. 

They exploit Achilles heals of SnC that are not found in most other cells. Current senolytics include 

drugs originally developed for cancer but dropped because they cause problems with thrombocytes. 

They work well in mice, though and are useful for research. There is a large current effort to develop 

new senolytic drugs. Finally, immune-based strategies can potentially increase removal capacity 

beta.  

 

Appendix: Intuitive derivation of ‘Boltzmann-like’ form of the steady-state distribution:  

Consider a stochastic process of the form &"
&%
= 𝑣(𝑥) + √2𝜖𝜉  . The function 𝑣(𝑥) is called the 

velocity of x. In the SR model, we have a velocity equal to production minus removal:  𝑣(𝑥) =

𝜂𝑡 − B\
CD\

. Define the potential U(x) by &W
&\
= −𝑣(𝑥). Explain intuitively why, at steady-state, the 

probability distribution is 𝑃(𝑥) = 𝑃� exp  −
W(\)
]
¡ 

Solution: Consider a large number of particles moving along a one-dimensional pipe. They diffuse 

with diffusion coefficient 𝜖 and are also swept along the pipe by a velocity field	𝑣(𝑥). The particle 

density at steady-state is P(x). The flux at point x due to the velocity field is the velocity times the 

density: v(x)P(x). The flux due to diffusion can be found by Fick’s law of diffusion,  which shows 

a diffusive flux from high to low densities proportional to the gradient: −𝜖𝑑𝑃/𝑑𝑥. At steady-state 

total flux is zero, so that the two fluxes must sum to zero: 𝑣(𝑥)𝑃 − 𝜖𝑑𝑃/𝑑𝑥 = 0.  Thus, &¢
&\
=

£(\)¢(\)
]

  . The solution is 𝑃(𝑥) = 𝑃� exp  −
W(\)
]
¡. Thus, at steady-state, in regions where velocity 

is large the density P(x) shows a steep opposing slope so that diffusion flux can balance velocity 

flux. 

  



Exercises: 

6.1. Survival and hazard functions:  

(a) Show that hazard, ℎ(𝜏),	defined as the probability of death per unit time, is related to 

survival 𝑆(𝜏) as follows 

ℎ(𝜏) = −
1
𝑆
𝑑𝑆(𝜏)
𝑑𝜏

= −
𝑑𝑙𝑜𝑔𝑆(𝜏)

𝑑𝜏
 

(b) Show that 𝑆(𝜏) = 𝑒[∫ ¨(�)&� 

(c) What is the survival function S when the hazard follows the Gompertz-law? Plot this 

survival function. 

(d) What is the survival function if hazard is constant ℎ(𝜏) = ℎ�? 

(e) A tree has a hazard function that drops with age, ℎ(𝜏) = ©
yDU�

. What is the survival 

function? Plot and compare to d and c. What might be a biological cause of such a 

decreasing hazard function? 

 

6.2 Removal of SnC based on saturating their own removal process: SnC are removed by 

immune cells such as NK cells, which we will denote by R. There are a total of 𝑅� removing cells 

in the body, and that this number does not change appreciably with age (as is indeed the case for 

NK cells in humans). The R cells meet SnCs, denoted X, at rate 𝑘«¬  to from a complex [R X] which 

can either fall apart at rate 𝑘« , or end up killing the SnC at rate v. Thus, R+X↔[RX]àR. 

(a) Explain the following dynamic equation for the complex: 

𝑑[𝑅𝑋]
𝑑𝑡

= 𝑘«¬𝑅	𝑋 − (𝑣 + 𝑘«)[𝑅𝑋] 

(b) Use the fact that R cells can be either free or in a complex, so that  𝑅 + [𝑅𝑋] = 𝑅�, to show 

that the removal rate of SnC is 

𝑟𝑒𝑚𝑜𝑣𝑎𝑙 =
𝛽𝑋
𝑘 + 𝑋

 

(c) What are the values of the maximal removal capacity 𝛽, and the half-way saturation point k?  

Explain intuitively.  

 

6.3 No repair: Consider an accumulation process of damage with constant production and no 

removal 

 &"
&%
= 𝜂 + √2𝜖𝜉	.  

(a) What is the mean damage X as a function of age? 

(b) What is the distribution P(X)? 



(c) What is the hazard assuming that death occurs when X>Xc? Is there a Gompertz law? 

 

6.4 Age-dependent reduction in repair capacity: Consider a process in which damage is 

produced at a constant rate 𝜂, and removal does not saturate. Removal rate per cell drops with 

age, 
&"
&%
= 𝜂 + (𝛽 − 𝛽y𝜏)𝑋 + √2𝜖𝜉  . 

(a) What is the mean damage X? 

(b) What is the distribution P(X) at age 𝜏 ? 

(c) What is the ratio of mean and standard deviation of X:  < 𝑋 >/𝜎? 

(d) What is the hazard, assuming that death occurs when 𝑋 > 𝑋𝑐? Is there a Gompertz 

law? 

 

6.5 Deterministic model: Assume that the Gompertz law arises not from stochastic effects, but 

instead from individual differences, set a birth, in X production and removal parameters, in 

which each individual i has its own noise-free equation	&"
&%
= 𝜂® − 𝛽®𝑋. Death is modelled when 

X crosses threshold Xc. What distribution of production and removal parameters 𝜂®, 𝛽®	can 

provide the Gompertz law? What features does this model not explain?  

 

6.6 What is the effect on the hazard curve of the SR model of a change in each of the parameters  

𝛽, 𝜂, 𝜖, 𝑘? Plot examples of hazard curves to demonstrate your answer. 

 

6.7 Senescent cell half-life: show that in the SR model, the half-life of a senescent cell is 

𝑡y
m
= log(2)(𝑘𝛽 + 𝜖)/𝛽(𝛽 − 𝜖𝜏) 

6.8 Critical slowing down:  

Read http://www.uvm.edu/pdodds/files/papers/others/2009/scheffer2009a.pdf.  

(a) How does critical slowing down relate to the SR model? 

(b) Suggest a phenomenon beyond those discussed in Scheffer which might show critical 

slowing down, and suggest an experiment or measurement to test this. 

 

6.9 (Challenging question) General model: Damage is produced at rate 𝜂(𝑋, 𝜏) and removed at 

rate 𝛽(𝑋, 𝜏). The equation is &O
&%
= 𝜂(𝑋, 𝜏) + 𝛽(𝑋, 𝜏) + √2𝜖𝜉   

(a) What is the steady-state distribution at age tau? 



(b) What is the risk of death as a function of age, modelled by first passage time of a 

threshold Xc? 

(c) Under which conditions does risk of death go as the Gompertz law? 

 

6.10 Strehler and Mildvan (1960) model for the Gompertz law. Strehler and Mildvan (SM) 

proposed a phenomenological process for the Gompertz law. Organisms are assumed to start 

with an initial survival capacity, termed V, declining linearly with age x as V(x) = V0(1 − Bx), 

where B indicates the fraction of vitality loss per unit time. Over life, animals experience 

random external challenges or insults with a mean frequency K. Challenges have random 

magnitudes, exponentially distributed with an average magnitude D that expresses the average 

deleteriousness of the environment. Death occurs when the magnitude of a challenge exceeds 

the remaining vitality. A detailed review of the SM theory can be found in Finkelstein (2012). 

(a) Show that these assumptions produce the Gompertz law ℎ(𝜏) = 𝑎𝑒U�. Calculate a and b. 

(b) What similarities and differences does this theory have with the SR model? 


