
 

Dynamical compensation and mutant resistance in tissues 

We now turn to circuits at a higher level of organization - the level of tissues and organs. These 
circuits are made of cells that signal to each other. Even cells in distant tissues can communicate 
via hormones that flow in the blood stream. We will see that at the tissue level there are new 
problems to worry about: parameters of distant tissues can vary, the dynamics of cells are 
inherently unstable, and mutations can occur as cells divide. Despite these problems, organ 
systems must still work precisely. We will see that new principles arise to allow organs to work 
robustly, keep the right functional size and resist mutants and disease.  

The insulin-glucose feedback loop is a well-studied model system 

As a model system, we will use the insulin control of blood glucose. Glucose is the main sugar 
used by our cells. When we eat a meal, sugar is 
absorbed and our blood glucose concentration 
rises. Within a few hours, glucose returns to its 
baseline concentration of Go=5mM (Fig 9.1). This 
5mM baseline is kept remarkably constant - to 
within 10% - over time and between people. 
Tight control over blood glucose is important: if 
glucose drops too low, the brain doesn’t have 
enough energy and we can pass out and even 
die. If glucose is too high, it damages blood 
vessels and other systems over the years, causing 
the symptoms of diabetes.  

Not only is steady-state glucose kept constant, 
the entire glucose dynamics G(t) after a meal 
is tightly controlled. For example, in a clinical 
test for diabetes, called the glucose tolerance 
test, you are asked to drink 75g of glucose. 
Then, glucose levels are measured in the 
blood over the next two hours. Different 
healthy people show nearly the same glucose 
dynamics (Fig 9.1). Deviation from the 
expected dynamics (e.g. more than 11mM 
glucose after 2h) is a criterion to diagnose diabetes (Fig 9.2).  

This exquisite control is carried out by a famous hormone circuit. Glucose is sensed by special 
cells in the pancreas called beta cells. Glucose causes beta cells to secrete the hormone insulin, 
a small protein that is carried by the blood to all tissues. Insulin is sensed by receptors in the 
cells of many tissues, and instructs the cells in the muscle, liver and fat to take up glucose from 
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the blood, reducing blood glucose concentration. This closes a 
negative feedback loop (Fig 9.3) whose timescale is hours. If 
there is high glucose, insulin levels rise, to bring glucose down 
again. 

A classic model for this negative feedback loop, called the minimal model, was developed by 
Richard Bergman et al (1979), and is widely used to analyze clinical data. The level of glucose G 
is increased by a meal input m and is reduced by the action of insulin, I, that promotes removal 
of glucose from the blood. Thus, the removal rate of glucose rises with insulin: 

(1) dG/dt=m-Si I G 

The parameter Si, called insulin sensitivity, is the effect of a unit of insulin on the removal rate 
of glucose. Insulin, in turn, is produced by beta cells, that we denote X, at a rate that increases 
with glucose, f(G), and insulin is degraded at a rate γ, with a half-life on the order of 30 min: 

(2) dI/dt=q X f(G)- γ I 

Solving this model shows that a meal input causes a rise in glucose, eliciting a rise in insulin, 
causing glucose to drop back down (Fig 9.1) 1.  

A fascinating thing about the tight regulation of glucose is that it occurs despite large differences 
between people in insulin sensitivity, Si. This parameter can be measured by injecting insulin and 
noting the reduction in blood glucose. People can vary by a factor of ten in insulin sensitivity, 
which is affected by exercise, pregnancy, infection, stress, obesity, genetics and other factors. 
Low insulin sensitivity is also called insulin resistance.  

Insulin sensitivity varies between people because it is a physiological parameter that controls 
glucose allocation between bodily systems. For example, exercise increases insulin sensitivity 
and diverts more glucose to muscle tissues. Infection decreases sensitivity, causing more glucose 
to stay in the blood to be used by the immune system. In pregnancy, the fetus secretes 
hormones to decrease mom’s insulin sensitivity and hence divert more glucose for the growth of 
the fetus - in pathological cases placing the mother at risk for diabetes.  

Importantly, despite the large variation in insulin sensitivity, most people do not have diabetes, 
and show the normal glucose level of 5mM and the normal glucose dynamics in the glucose test. 
For example, people with obesity have very low Si (high insulin resistance), but more than 80% 

                                                             
1 many effects are ignored for simplicity, such as production of glucose by the liver, insulin-independent 
uptake of glucose by the brain, the hormone glucagon which increases liver glucose production when 
glucose falls below 5mM, the effects of fat and amino acids in the diet, delay for insulin to reach 
peripheral tissues, and so on. These effects are not crucial to understand the principles in this chapter 
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of them have no diabetes, with 5mM glucose and normal 
glucose dynamics (Fig 9.4). Our goal is to understand how 
the system compensates for variations in an important 
parameter like Si. 

 

 

 

 

The minimal feedback model is not robust to changes in insulin sensitivity  

So how does the insulin control-circuit compensate 
for variations in insulin sensitivity, namely variations 
in the intrinsic effectiveness of insulin on far-away 
tissues? The minimal model cannot account for this 
compensation. It shows a steady-state glucose level, 
and response dynamics, that depend on the 
parameter Si. Low levels of Si, for example, cause 
higher steady-state glucose, higher peak responses 
and longer response times (Fig 9.5) . 

 

++++ 

Solved Example 1: Show that steady-state glucose depends on insulin sensitivity in the 
minimal model. 

At steady-state, dG/dt=0 and dI/dt=0. Assuming a constant glucose input mo (say the basal 
production of glucose by the liver that occurs when we fast), we find Si Go Io=mo, and q X 
f(Go)=γ Io. Hence, Go=Si γ mo/p X f(Go). Lets use f(Go)=Go^2 as proposed by Topp(2000). This 
yields a steady state glucose level of Go=( Si γ mo/q X)^(1/3), which depends on Si. For example, 
10-fold reduction in Si lead to ~2-fold increase in Go, with blood sugar going from 5mM to a 
pathological 10mM. The time it takes glucose to return to baseline is about ten times longer 
(excXX). The minimal model thus shows dynamics whose shape depends on the parameter Si. 
Such dependence on parameters is the typical behavior of most models that we can write down.  

+++++ 
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Therefore, compensation for changes in insulin sensitivity must involve additional processes 
beyond the minimal model’s glucose-insulin loop. The way that the body compensates for 
decreased insulin sensitivity Si is by increasing the number of beta cells in order to increase 
insulin levels, to exactly match the decrease in Si. For example, people with obesity show much 
more beta cells than lean individuals. They thus 
secrete more insulin, compensating for their 
insulin resistance.  

The compensation is clearly seen in a hyperbolic 
relation that healthy people show, which 
describes an inverse relationship between Si and 
steady-state insulin secretion that keeps the 
product Si Ist =const  (Khan,1993). People thus 
compensate for low insulin sensitivity with more 
insulin (Fig 9.6) . People with diabetes lie below 
this hyperobla.   

A slow feedback loop on beta cell numbers provides compensation  

To explain how such compensation can come about, 
we need to expand the minimal model. We need to 
add equations for how beta-cell numbers, X, can 
change. Here we enter the realm of the dynamics of 
cell populations. Cell dynamics are quite unlike the 
dynamics we studied so far for the concentrations of 
proteins inside cells. For proteins circuits we used 
equations that, at their core, have production and 
removal terms, 𝑑𝑥/𝑑𝑡 = 𝛽 − 𝛼𝑥, and safely to 
converge to a stable fixed point, 𝑥)* = 𝛽/𝛼 (Fig 9.7).  

Cells, however, live on a knife’s edge. Their basic 
equations contain an inherent instability. Cells can 
proliferate and die (Fig 9.8). Since all cells are made by 
cells, the proliferation rate is intrinsically autocatalytic, a 
rate constant times the concentration of cells, 
proliferation=p X. As a result the balance between 
proliferation p X and death d X leads to exponential 
growth of cells at rate 𝜇 = 𝑝 − 𝑑	 
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dX/dt=p X- d X= (p-d)X= mu X  

If proliferation exceeds death, growth rate 𝜇 is 
positive and cell numbers explode exponentially, 
X~𝑒/*  (Fig 9.9). If death exceeds proliferation, 𝜇 is 
negative, and cell numbers exponentially decay to 
zero. Such an explosion in cells numbers occurs in 
cancer, and a decay occurs in degenerative diseases. 

So to keep cell numbers constant we need additional 
feedback control, because we need a balance 
between proliferation and death in order to reach 
zero growth rate 𝜇 = 0. The feedback needs to keep 
the tissue at a good functional size. Hence, the 
feedback mechanism must somehow register the biological activity of the cells and accordingly 
negatively control their growth rate. 

Such feedback control occurs for beta cells, as 
pointed out by Brian Topp and Dianne Finegood 
(2000), with blood glucose as the feedback 
signal. In other words, glucose controls the cells 
growth rate, so that 𝜇 = 𝜇(𝐺). The death rate of 
beta cells is high at low glucose, and falls sharply 
around 5mM glucose (Fig 9.10). Death rate rises 
again at high glucose, a phenomenon called 
glucotoxicity, which we will return to soon. For 
now, let’s focus on the region around 5mM. The curves describing the rates for proliferation and 
death cross near Go=5mM (Fig 9.11). Therefore, Go=5mM is the fixed point we seek with zero 
growth rate, 𝜇(𝐺4) = 0.(Fig 9.12)  
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Our revised model, the BIG model (Beta cells-Insulin-Glucose model, Fig 9.13), includes a new 
equation for the beta cells X 

(3) dG/dt=m-Si IG 
(4) dI/dt=p X f(G)-γ I 
(5) dX/dt=X mu(G)  mu(Go)=0 

 

 

 

The point Go=5mM is a stable fixed point for both beta cells and blood glucose. If glucose is 
above 5mM, beta cells have proliferation>death, they increase in number, leading to more 
insulin, pushing glucose back down towards 5mM. If glucose is too low, beta cells die more than 
divide, leading to less insulin, pushing glucose back up.  

This neat feedback loop operates on the timescale of days to weeks, which is the proliferation 
rate of beta cells. It is much slower than the insulin-glucose feedback that operates over 
minutes to hours. The slow feedback loop keeps beta cells at a good functional steady-state 
number and keeps glucose, averaged over weeks, at 5mM.  

The steepness of the death curve is important for the robustness of the fixed point. Due to the 
steepness of the death curve, variations in proliferation rate do not shift the 5mM fixed point by 
much (Fig 9.11). The steep death curve is thought to be generated by the cooperativity of key 
enzymes that sense glucose inside beta cells, glucokinase and AMPK (exercise XX). 

Dynamic compensation allows the circuit to buffer parameter variations 

The slow feedback on beta cells can thus maintain a 5mM glucose steady-state despite 
variations in insulin sensitivity, Si. Remarkably, this feedback model can also resolve the mystery 
of how glucose dynamics on the scale of hours are invariant to changes in insulin sensitivity. I 
mean that the BIG model shows how, in the glucose test, the response to an input m of 75g 
glucose yields the same output G(t), including the same amplitude and response time, for widely 
different values of the insulin sensitivity parameter Si. This independence on Si is very unusual, 
because varying a key parameter in most models would change their dynamics.  

This ability of a model to compensate for variation in a parameter was defined by Omer Karin et 
al (2016) as dynamic compensation (DC): Starting from steady-state, the output dynamics in 
response to an input is invariant with respect to the value of a parameter. To avoid trivial cases, 
the parameter must matter to the dynamics, for example, when you start away from steady-
state. To prove DC in our model requires rescaling of the variables in the equations. 

Solved Example2: 
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Show that the beta-cell-insulin-glucose model has dynamic compensation (DC). 

To establish DC, we need to show that starting at steady-state, glucose output G(t) in response 
to a given input m(t) is the same regardless of the value of Si. To do so, we will derive scaled 
equations that do not depend on Si. To get rid of Si in the equations, we rescale insulin to 𝐼6 =
𝑆8𝐼, and beta cells to 𝑋: = 𝑆8	𝑋	. Hence Si vanishes from the glucose equation 

(5)
𝑑𝐺
𝑑𝑡

= 𝑚 − 𝐼6𝐺 

Multiplying the insulin and beta-cell equations (Eq 3,4) by Si leads to scaled equations with no Si 

(6)
𝑑𝐼6
𝑑𝑡
= 𝑞	𝑋:𝑓(𝐺) − 𝛾𝐼6 

(7)
𝑑𝑋:
𝑑𝑡

= 𝑋:𝜇(𝐺)																													with	𝜇(𝐺F) = 0 

Furthermore, at steady-state, the initial condition of these scaled equations also does not 
depend on Si. There are three initial condition values we need to check, for G(t=0)=Gst, 
I~(t=0)=I~st and X~(t=0)=X~st. First, Gst is independent on Si because Gst=Go which is the only 
way for 𝑋: to be at steady state in Eq 7. Therefore, from Eq 5, 𝐼6 = 𝑚)*/𝐺4 is independent on Si, 
which we can use in Eq 6 to find that 𝑋:)* = 𝛾	𝐼6)*/𝑓(𝐺F) is also independent of Si. Since the 
dynamic equations and initial conditions do not depend on Si, the output G(t) is invariant to Si, 
and we have DC.  

Although G(t) is independent on SI, insulin and beta cell levels do depend on Si, as we can see by 
returning to original variables 𝑋 = 𝑋:/𝑆8 and 𝐼 = 𝐼6/𝑆8. The lower Si, the higher the steady-state 
insulin, keeping the product Si Ist=const=mst/Go, explaining the hyperbolic law of Fig 9.6. Also, 
Si Xst=const, as beta cells rise to precisely compensate decreases in Si. 

Similar considerations show that the model has DC with respect to the parameter q, the rate of 
insulin secretion per beta cell, and also to the total blood volume (Exc XX). There is no DC, 
however to the insulin removal rate parameter, γ . 

=========================  



Let’s see how dynamic compensation works. 
Suppose insulin sensitivity drops by a factor of 
ten, representing insulin resistance (Fig 9.14). As 
a result, insulin is less effective and glucose 
levels rise. Due to the decreasing death curve, 
beta cells die less, and their numbers rise over 
days to weeks. More beta cells mean that more 
insulin is secreted, and average glucose returns 
to baseline (Fig 9.14 upper panels show the 
dynamics on the scale of weeks). In the new 
steady state, there are ten times more beta cells 
and ten times more insulin. Glucose returns to 
its 5mM baseline.  

Let’s now zoom in to the timescale of hours (Fig 
9.14 lower panel). The response of glucose to a 
meal long after the drop in Si (timepoint 3) is 
exactly the same as before the change in Si 
(timepoint 1), but the insulin response is ten 
times higher. Glucose dynamics in response to a 
meal are abnormal only during the transient 
period of days to weeks in which beta cell 
numbers have not yet reached their new, 
compensatory, steady-state (timepoint 2).  

The DC model predicts that people with different Si should show the same glucose meal 
dynamics, but have insulin dynamics that scale with Si. This is indeed seen in measurements that 
follow non-diabetic people with and without insulin resistance over a day with three meals. 
Insulin levels are higher in people with insulin-resistance, but when normalized by the fasting 
insulin baseline, there is almost no difference between the two groups (Fig 9.15) 
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The DC property depends on the structure of the equations: Si cancels out due to the linearity of 
the dX/dt equation with X, which is a natural consequence of cells arising from cells. Si also 
cancels out due to the linearity in X of the of insulin secretion term q X f(G), a natural outcome 
of the fact that beta cells secrete insulin.  

The basic features needed for DC exist in all hormone systems, in which glands made of cells 
secrete hormones that work on other 
tissues. Indeed, hallmarks of DC are 
found in several other hormone 
systems. For example, blood calcium 
concentration is controlled tightly 
around 10mM by a hormone called 
PTH, secreted by the parathyroid gland 
(Fig 9.16). The circuit has a negative 
feedback loop similar to insulin-glucose, 
but with inverted signs: PTH causes increase of calcium, and calcium inhibits PTH secretion. An 
additional slow feedback loop occurs because parathyroid cell proliferation is regulated by 
calcium. 

 Other organ systems and even neuronal systems have similar hallmarks, giving a picture in 
which the size of the gland or organ expands and contracts to buffer variation in effectivity 
parameters. Moreover, as embryos and children grow, these slow feedback loops can help each 
gland grow precisely at a rate that keeps important variables such as glucose and calcium at 
their desired level.  

The feedback mechanism seems so robust. What about diseases such as diabetes? How and why 
do things break down? We will see that some forms of diabetes may be due to a dynamic 
instability that is built into the feedback loop.  

Type-2 Diabetes is linked with instability due to a U-shaped death curve  

Type-2 diabetes occurs when production of insulin does not meet the demand, and glucose 
levels go too high. It is linked with the phenomenon of glucotoxicity that we mentioned briefly 
above: at high glucose levels, beta-cell death rate rises (by death here we include all processes 
that remove beta cell function such as beta-cell exhaustion, de-differentiation and senescence) 
and eventually patients are not able to make enough insulin. 
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Glucotoxicity is dangerous because it adds 
an unstable fixed point, the point at which 
proliferation rate crosses death rate a 
second time Fig 9.17. As long as glucose 
fluctuations do not exceed the unstable 
point, glucose safely returns to the stable 
5mM point. However, when glucose 
(averaged over weeks) crosses the 
unstable fixed point, beta-cell death rate 
exceeds proliferation rate. Beta cells die, 
there is less insulin and hence glucose rises even more. This is a vicious cycle, in which glucose 
disables or kills the cells that control it. 

This rate plot can explain several risk factors for type-2 diabetes. The first risk factor is a diet 
high in fat and sugars. Such a diet makes it more likely that glucose fluctuates to high levels, 
crossing into the unstable region. A more lean diet can move the system back into the stable 
region. The second risk factor is 
ageing. With age, proliferation rate 
of cells drops in all tissues, 
including beta cells. This means 
that the unstable fixed point 
moves to lower levels of G (Fig 
9.18), making it more likely to cross 
into the unstable region. Note that 
the stable fixed point also creeps 
up to slightly higher levels. Indeed, 
with age the glucose set points appears to mildly increase in healthy people. 

A final risk factor is genetics. It appears 
that the glucotoxicty curve is different 
between people. A shifted glucotoxicity 
curve can make the unstable fixed point 
come closer to 5mM (Fig 9.19).  

Why does glucotoxicity occur? Much is 
known about how it occurs (which is 
different from why it occurs), because 
research has focused on this disease-
related phenomenon. Glucotoxicity is 
caused by reactive oxygen species (ROS) generated by the accelerated glycolysis in beta cells 
presented with high glucose. ROS cause extensive cell damage. The sensitivity of beta cells to 
ROS does not seem to be an accidental mistake by evolution. Beta cells seem designed to die at 
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high glucose- they are among the cells most sensitive to ROS, lacking systems that protect other 
cells types. Thus, it is intriguing to find a functional explanation for glucotoxicity.  

Tissue-level feedback loops are fragile to invasion by mutants that misread the signal  

Omer Karin et al (2017) provide an explanation for glucotoxicity by considering a fundamental 
fragility of tissue-level feedback circuits. The fragility is to takeover by mutant cells that misread 
the input signal. Mutant cells arise when dividing cells make errors in DNA replication leading to 
mutations. Rarely but surely, given the huge number of cell divisions in a lifetime2, a mutation 
will arise that affects the way that the cell reads the input signal.  

Let’s examine such a mutation in beta cells. Beta cells sense the input signal - glucose - by 
breaking glucose down in a process called glycolysis, leading to ATP production, which activates 
insulin release through a cascade of events. The first step in glycolysis is phosphorylation of 
glucose by the enzyme glucokinase. Most cell types express glucokinase with a halfway-binding 
constant to glucose of K=40uM, but beta cells express a special isoform with K=8mM- perfect as 
a sensor for the 5mM range. Mutations that affect the K of glucokinase, reducing it, say , by a 
factor of five, cause the mutant cell to sense five times too much glucose (the mutant beta cells 
do glycolysis as if there was much more glucose around). It’s as if the mutant distorts the 
glucose axis in the rate plots by a factor 5, “thinking” that glucose G is actually 5G. 

If our feedback design did not include 
glucotoxicity, such a mutant that 
interprets 5mM glucose as 25mM would 
think ‘oh, we need more insulin!’ and 
proliferate (Fig 9.20). The mutant cell 
therefore has a growth advantage over 
other beta cells, which sense 5mM 
correctly. The mutant will proliferate 
exponentially and eventually take over. 
This is dangerous because when the 
mutant takes over, it pushes glucose down to a set-point level that it thinks is 5mM, but in 
reality is 1mM  - causing lethally low glucose. 

                                                             
2 Here is a conservative estimate. 1g of tissue has about 10^9 cells. If they divide 1/month, there are 
10^12 divisions in a human lifespan. Mutation rate is 10^-9/letter/division, and so each position in the 
genome is mutated 10^3 times in this gram of tissue. There will be 1000 cells expressing each possible 
point mutation in each protein. Avoiding mutant growth may be one reason why adult cells divide much 
slower than they could (embryonic cells can divide every few hours). Depending on the tissue, cells are 
renewed on average every few days, weeks or months.  
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Biphasic (U-shaped) response curves can protect against mutant takeover 

To resist such mutants, we must give them a 
growth disadvantage. This is what glucotoxicity 
does. The mutant cell misreads glucose as too 
high, and kills itself (Fig 9.21). Mutants are 
removed.  

The downside of this strategy is that it creates 
the unstable fixed point, with its vicious cycle. 
There is thus a tradeoff between resisting 
mutants and resisting disease.  

In our evolutionary past, lifestyle and nutrition was probably such that average glucose rarely 
stayed very high for weeks, and thus the unstable fixed point was rarely crossed. Modern 
lifestyle makes it more likely for glucose to exceed the unstable point, exposing a fragility to 
disease.  

The glucotoxicity strategy eliminates mutants that strongly misread glucose, but it is still 
vulnerable to certain mutants of smaller effect: e.g .mutants that misread 5mM glucose as a 
slightly higher level that lies between the two fixed points (Fig 9.21). Such mutants have a 
growth advantage, because they are too weak to be killed by glucotoxicity, but still have more 
proliferation than removal.  

Luckily, such intermediate-effect mutants are much rarer than mutants that strongly activate or 
deactivate signaling. Designs that can help against intermediate mutants are found in beta cells: 
beta cells are arranged within the pancreas in isolated clusters of ~1000 cells called islands of 
Langerhans, so that a mutant can take over just one island and not the entire tissue. Slow 
growth rates for beta-cells also help keep such mutants in check. Exercise xx estimates that a 
small fraction of the islets are taken over by mutants in a lifetime (Ec XX)  

The glucotoxicity mutant-resistance mechanism can be generalized: to resist mutant takeover of 
a tissue-level feedback loop, the feedback signal must be toxic at both low and high levels. Such 
phenomena are known as biphasic responses, and occur across physiology. Examples include 
neurotoxicity, in which both under-excited and over-excited neurons die, and immune-cell 
toxicity at very low and very high antigen levels. These toxicity phenomena are linked with 
diseases such as Alzheimer’s and Parkinson’s in the case of neurons. 

Summary  

Tissues have robustness constraints that are not found when thinking about protein circuits 
inside cells. First, tissues have a fundamental instability due to exponential cell growth 
dynamics. They require feedback to maintain steady-state. Such feedback loops can use a signal 
related to the tissue function, to make both organ size and organ function stay at a stable fixed 
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point. This fixed point is maintained as the cells constantly turn over on the scale of days to 
weeks. 

Tissue-level circuits, such as hormone circuits, are also challenged by the fact that they often 
need to operate on distant target tissues. These target tissues have variation in their interaction 
parameters, such as insulin resistance. Hormone circuits can show robustness to such 
parameters by means of dynamic compensation, which arises due to a symmetry of the 
equations to the parameter. In dynamic compensation, tissue size grows and shrinks in order to 
precisely buffer against such parameter variation.  

Tissue-level feedback loops need to be protected from another consequence of cell growth- the 
unavoidable production of mutants that misread the signal and can take over the tissue. This 
constraint leads to a third principle: biphasic responses found across physiological systems, in 
which the signal is toxic at both high and low levels. Biphasic responses protect against mutants 
by giving them a growth disadvantage. This comes at the cost of fragility to dynamic instability 
and disease. Additional principles of tissue-level circuits no doubt await to be discovered. 

 


