
Chapter 8 Fold-change detection 

8.1 Universal features of sensory systems  

Sensory systems in animals like vision and hearing and sensory systems of cells like 
bacterial chemotaxis share universal features. One of these features is exact adaptation, 
which, as we saw in the previous chapter, is the ability to adjust to the background 
signal. When we go form sunlight into a dark room lit by a candle, at first we don’t see 
very well but after a while our pupils dilate to let in more light and our eyes adjust. 

A second universal feature is sensing of relative changes rather than absolute changes. 
Suppose that we adapt to our room lit by a candle, and then we add a second candle. 
We sense a large change in light. But if we add the same candle to room lit by a 
chandelier with 50 candles, we barely notice the change. The absolute number of 
photons added is the same, one candle’s worth, but the relative change is very different. 

Historically, response to relative changes, also known as Weber’s law, was first 
described in human senses such as weight perception. Weber, in the 19th century, let 
people hold a weight xo for a while, and then slowly added small weights to measure 
the minimal detectable increase Δ𝑥#$% , at which people first felt the extra weight. It 
turns out that the minimal detectable increase was proportional to the initial weight xo, 
Δ𝑥#$% = 𝑘	𝑥), where k is Weber’s constant (k~0.1 for weight perception, k). You can 
detect 10g on the background of 100g, but you only detect 100g on a background of 1 
kilo. In all cases, sensing of relative changes  is found for a range of several decades of 
input signal (typically 2-5). Relative sensing is lost at very weak signal on the brink of 
detection or very strong signals that saturate the receptors.  

Even psychological senses seem to work on relative changes. For example, psychologists 
measure subjective well-being using carefully designed questionnaires. Each person has 
an individual steady-state level of well-being. Positive events such as getting a raise in 
salary raise well-being for a while, but then well-being adapts back exactly to baseline. 
The immediate change in well-being seems to depend on relative changes. If you have 
been earning 10$ a week, a 10$ raise is cause for celebration. If you have been earning 
1000$ a week, a 10$ raise will go almost unnoticed.  

Many sensory systems of cells also show these universal features - exact adaptation and 
sensing of relative changes. For cells, as well as for animals, sensing relative changes is 
important in order to be robust to the noise in the input. To respond correctly, the cell 
must tell the difference between a true input signal and noise. Suppose that a cell 
senses a signal molecule by means of receptors. It suddenly experiences an increase of 



10 binding events per second of the signal molecule to the receptors. Is this a true signal 
or just noise?  

The answer depends on the background level of the input signal – or in other words, on 
the recent context of the signal. If the cell has been sitting for a while in a background of 
1 binding event per second, a rise of 10/sec is an eyebrow-raising 10-fold increase, and 
is likely to be important. If instead the cell has been soaking in 1000 binding events/sec, 
the same increase of 10/sec is tiny ( even smaller than the typical noise of 

√1000~30	mol/sec), and should be rejected as a fluctuation. Thus, decisions had best 
be based on relative changes, not absolute changes. 

In this chapter we will see how relative changes are sensed. We will begin with the 
system we studied in the last chapter, bacterial chemotaxis, because the circuit is well 
understood. We will then ask which kinds of circuits in general can sense relative 
changes.   

Fold-change detection  in bacterial chemotaxis 

The chemotaxis system of E coli, the navigation system that allows bacteria to climb 
gradients of attractant, can sense relative 
changes across several order of 
magnitude of background signal. This 
wide dynamic range was discovered by 
Mesibov, Ordal and Adler (1973). They 
placed swimming E coli in a dish and let 
them adapt to a background level So of 
the attractant alpha-methyl aspartate. 
Then they place a pipette with attractant 
concentration 3.2 times So into the dish 
(Fig 8.1). The experimenters repeated this 
experiment with different levels of So. The 
number of bacteria that swam into the 
pipette in an hour was roughly the same 
across three orders of magnitude of 
attractant levels (Fig 8.2).  It made no 
difference whether concentrations were in micromolar or millimolar, bacteria could still 
detect the 3.2-fold higher concentration of attractant in the pipette.  

A more direct test for relative sensing in bacterial chemotaxis was presented by Lazova 
and Tom Shimizu []. They used a microfluidic device to present E. coli cells with time 
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concentration of the attractant alpha-methyl aspartate, the input signal S(t). The signals 
were all based on the same pattern: S(t) started at a background level So and then 
wiggled up and down. Then they multiplied the same signal, including its background, by 
a factor λ. In this way, the presented the bacteria with a series of signals had a scale  λ 
that ranged across several orders of magnitude. This experimental design provided 
input signals with the same fold change F(t)=S(t)/So but very different absolute changes 
(Fig 8.3). 

Lazova and Shimizu measured the chemotaxis 
output, which we denote a(t), using a 
fluorescence system developed by Sourjik and 
Berg, in which the interaction of CheY and 
flagellar motor is accurately visualized using 
fluorescence energy transfer (FRET)[]. They 
found that the output was invariant to the 
multiplicative constant λ, across three decades 
of background concentration from about 
20uM to 3 mM of attractant. Bacterial 
chemotaxis shows senses relative changes. 

Definition of fold change detection (FCD) 

Let’s define what we mean by sensing relative changes more precisely. We want the 
entire shape of the output curve to depend only on the signal normalized to its 
background, which si called the fold-
change of the signal. Consider a system 
with output a(t) that is adapted to a 
background signal So. Now let the signal 
change S(t). We define Fold change 
detection (FCD) as a response curve a(t) 
whose entire shape- including peak 
amplitude and response time- depends 
only on the relative change in input 
S(t)/So, and not on the absolute change. 
For example, an input step from level 
S=1 to level S=2 yields exactly the same 
response curve as a step from 2 to 4 (Fig 8.4). This is because both steps have the same 
2-fold change, even though the step from 2 to 4 is larger in absolute terms than the step 
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from 1 to 2. A step from 1 to 3 will yield a larger response, because the fold change is 
larger. A step from 3 to 9 will have a response identical to that of the step from 1 to 3. 

If we present a system with FCD with a 
series of steps with the same absolute 
levels, say from 1 to 2 to 3 to 4, the 
response will diminish because the fold 
change gets smaller and smaller (Fig 
8.5) 

 

 

The chemotaxis circuit provides FCD by 
means of a nonlinear integral feedback loop 

Let’s understand how bacterial chemotaxis achieves FCD. The intuitive mechanism is 
that output activity a(t) is a function of attractant signal S divided by its binding constant 
to the receptors K, a=f(S/K). The binding constant K rises proportionally to the 
background attractant signal thanks to the adaptation system. Thus, if input S is 
multiplied by lambda, so is K, and hence f(S/K) remains unchanged. K is a slowly 
changing memory of previous signal that normalizes the signal scale out. Let’s solve the 
chemotaxis model to see the origin of FCD. 

Solved example 1: Show that the model for bacterial chemotaxis shows FCD 

The equations for the model of bacteria chemotaxis (Eq 7X-X) have two variables: the 
normalized activity a (which sets the tumbling frequency), and the receptor binding 
constant K for the attractant S. 

Activity a(t) is a Hill function of the attractant 

(1) a=1/(1+(S/K)^n)=f(S/K) 

The binding constant K is determined by the methylation reactions, which in turn 
depend only on activity a, providing integral feedback to the steady state activity ast. 

(2) dK/dt=K(ast-a) 

To reach a_st, Eq 2 adjusts K to match the background S0 so that f(S0/K)=ast (Fig 8.6). If 
we multiply So by λ, and let the system adapt, at steady-state K must also rise by a 
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factor of λ, so that the ratio S/K stays at the 
proper value f(λ S0/ λ K)=f(S0/K)=a_st. In 
other words, at steady-state K is proportional 
to the attractant background So, Kst~So. 

 Now let S(t) change with time, resulting in an 
output a(t). To prove FCD, we need to show 
that if we multiply S(t) by any positive 
constant λ, we still get the same output 
dynamics a(t). To test this, we use dimensional 
analysis, a useful technique that rescales S and K to dimensionless variables. We define 
the fold change as F(t)=S(t)/So, and the scaled binding constant as K~=K/S0. The re-
scaled equations can be found by plugging in these new variables into eq x,y, to find  

𝑑𝐾1
𝑑𝑡 = 𝑐𝐾1(𝑎67 − 𝑎	)	 

𝑎 = 𝑓(
𝐹(𝑡)
𝐾1

) 

Note that S(t) does not appear in these equations, only the fold change F(t)=S(t)/So. 
Likewise, S does not appear in the initial conditions K~(t=0) and F(t=0)=1. Therefore, the 
output a(t) is not affected by multiplying S(t) by λ, because the fold F is unchanged. We 
conclude that the output a(t) is determined only by fold-change in input, hence FCD. 

------------------------------------------------------------------------------------- 

8.3 FCD and exact adaptation 

Bacterial chemotaxis and the other sensory systems we mentioned show exact 
adaptation. In fact, any system with FCD must show exact adaptation. This is because if 
the output to a constant signal S0 is ast, FCD demands that the output will be the same 
if we multiply S0 by any lambda>0. Thus, steady state output ast is independent on the 
background signal, precisely the definition of exact adaptation.  

However, exact adaptation is not enough to guarantee FCD. In fact, the best-known 
circuit for exact adaptation in engineering, linear integral feedback, does not show FCD, 
nor does any other linear circuit. This is because linear equations show output changes 
that are proportional to absolute (not relative) input changes (exercise 8.XX). The 
chemotaxis circuit shows FCD by virtue of the non-linear nature of its integral feedback 
loop, namely that dK/dt ~K (a-ast) rather than the linear form dK/dt~ast-a. That extra K 
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gives a logarithmic flavor to the equations (dlog(K)/dt~ ast-a) needed to reject the input 
scale lambda. 

FCD is a pretty tough demand on a system- the entire dynamical response must depend 
only on fold change. Are there other circuits that can show FCD? 

8.4 The incoherent FFL shows FCD 

Intriguingly, demanding FCD narrows down the possible circuits to a very few. But 
among these few is a common network motifs. This motif is the incoherent type-1 FFL 
our old friend from chapter 4. It was the  first circuit shown to have FCD, by Lea 
Goentoro and Marc Kirschner et al (Goentoro 2009)  

 In the I1FFL, input X activates both an output gene Z and its repressor Y. In chapter four, 
we modeled the I1FFL using logic input functions (AND and OR gates). To see its FCD 
property, we need more graded regulation. The I1FFL can provide FCD when (i) the 
binding of X to its promoters is weak (so that Michaleis-Menten terms become linear in 
X X/(Kx+X)~X), and (ii) binding of the repressor Y is strong (that is, when Y exceeds its 
binding constant Ky to the Z promoter, Y>> Ky, so that the Michaelis-Menten binding 
term 1/(1+Y/Ky) becomes, to a good approximation, Ky/Y). In this case, we can write 

(3)	<=
<7
= 𝛽?𝑥 − 𝛼?𝑦 

(4) <B
<7
= CDE

=
− 𝛼F𝑧 

After a step of x, z first rises, but then y rises 
and represses z production, forming a pulse 
of output z that adapts exactly to the 
previous steady state (Fig 8.7). As in 
chemotaxis, having a ratio x/y in the second 
equation normalizes out the input scale. In 
the following solved exercise we show that 
these equations have FCD, using dimensional analysis  

Solved example 1: IFFL can show FCD  

Show that Eq. 3-4 show FCD. 

Solution: First, let’s see if the circuit has exact adaptation for the output Z. Let the 
system reach steady state for a constant input Xo. To see exact adaptation, we solve the 
steady-state condition dy/dt=0, dz/dt=0. This yields Yst=xo/a1, so that the repressor is 
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proportional to the background input. The output Zst is Zst=Xo/yst/a2= a1/a2, which 
does not depend on input Xo. Thus Z shows exact adaptation.  

Now let the input signal change, x(t). To find the dynamics, let’s define new variables, as 
we did for chemotaxis, by rescaling y to the steady-state input 𝑦H = 𝑦/𝑥) and define the 
fold change F(t)=x(t)/xo. In these new variables we get, by dividing Eq (3) by xo, scaled 
equations that depend only on the fold change F(t): 

𝑑𝑦H
𝑑𝑡 = 𝛽?𝐹 − 𝛼?𝑦H	 

𝑑𝑧
𝑑𝑡 =

𝛽F𝐹
𝑦H − 𝛼F𝑧	 

Thanks to exact adaptation, the initial conditions are independent on xo. The dynamic 
equations are dependent only on fold change F, and thus the output dynamics Z(t) is 
completely determined only by fold-change in input, hence FCD. 

FCD breaks down in the I1FFL when Y is too small to ignore the binding coefficient Kyz 
(exercise XX). 

========================================================= 

FCD in the I1FFL circuit occurs for any value of the production and removal rates 
alpha1,2 and beta1,2 in Eq 3,4. These parameters affect the shape of the dynamics, by 
setting the amplitude and response time of the output pulse. Response times ranging 
from minutes to hours to days can be achieved by appropriate values of removal rates 
alpha. 

The I1FFL provides FCD because the repressor Y acts as an inner memory that records 
the previous background level. Multiplying the input x by λ leads to y dynamics also 
multiplied by λ, because Eq. 3 is linear. However, X and Y cancel each other out in the 
output dynamics because of the X/Y term in Eq. 4. This makes the output z independent 
on λ throughout the dynamics.  

 

A general condition for FCD 



The two circuits we saw so far, I1FFL and 
NLIFBL, are the only FCD circuits that have 
been experimentally characterized in 
biological systems do date (Fig 8.8, note that 
node y in the NLIFBL has autoregulation 
because K in Eq 2 multiplies its own 
production rate). Are there other possible 
FCD circuits, and if so, how many? To address 
this, Oren Shoval and Eduardo Sontag et al 
(Shoval 2010) defined a useful homogeneity 
condition for FCD by which you can check equations for the FCD property. This 
condition generalizes the dimensionless variable approach we used for chemotaxis 
model and the IFFL. It requires that if the input is multiplied by a constant λ, the system 
has an internal variable y that also increases by a factor of λ. The inner variable y is used 
as a memory that divides the output z, normalizing out λ: 

================= 

A general condition for FCD [Shoval et al:] 

Consider a system with input x, output z and 
internal variables y (Fig 8.9). The dynamics of 
y and z are given by the ordinary differential 
equations 

dy/dt=f(x,y,z) 

dz/dt=g(x,y,z) 

 A sufficient condition for FCD is that the 
system is stable, that the output z shows exact 
adaptation, and that g and f satisfy the 
following homogeneity conditions for any λ>0 (a homogenous function of order m obeys 
h(λ x)=λ^m h(x)). 

f(λx,λy,z)=λf(x,y,z) 

g(λx,λy,z)=g(x,y,z) 

If f is linear, the condition is also necessary. 
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The proof is essentially the same as for the solved examples above. A generalization in 
which y can depend more generally of lambda is shown in Exc XX. 

Both the chemotaxis and the I1FFL equations above satisfy these homogeneity 
conditions. For the IFFL, for example, f(x,y,z)=b1x-a2y, so that f(lambda x, lambda y, 
z)=lambda f(x,y,z). similarly, g(x,y,z)=b2 x/y – a2z, so that g (lambda x,lambda 
y,z)=g(x,y,z). In the chemotaxis circuit f(S,K,a)=cK(a-ast), so that f(lambad S, 
lambda,a)=lambda f(S,K,a). In contrast, linear integral feedback (without the K infornt of 
the parenthesis) does not satisfy the conditions- it shows exact adaptation, but 
f(S,K,a)=c (ast-a), which fails the homogeneity test. 

The conditons highlight that details are important for FCD. A different implementation 
of the I1FFL, called a sniffer[],in which Y inhibits Z not by transcription (dz/dt=x/y-z) but 
by degradation (dx/dt=x-yz) does not show FCD (Exercises). FCD is not found in the 
sniffer because response time depends on absolute (and not relative) input change. 

------------------ 

To look for new FCD circuits, Miri Adler and Avi Mayo et al (Adler 2017) used these 
homogeneity conditions to perform an analytic scan of a class of half-a-million three-
node circuits (in this class, the conditions are necessary and sufficient). Only 0.1% of the 
circuits showed FCD, as opposed to 10% that showed exact adaptation. Due to the 
enormous number of circuits, this means several hundred FCD circuit topologies. 
Intriguingly, Adler et al showed that the two observed designs, I1FFL and non-linear 
integral feedback loop (NLIFBL), are among the handful of circuits that (i) have the 
minimal number of interactions and (ii) optimally trade-off performance in tasks such as 
large response amplitude and fast response time. All other minimal FCD circuits do 
worse on at least one task.  

Often, FCD can be observed experimentally using input-output measurements, but the 
architecture of the underlying circuit is not fully known. Can one use dynamic 
measurements to tell if an FCD circuit is feedforward (an I1FFL) or feedback (like the 
chemotaxis circuit NLIFBL), even if the molecular players are not yet known? The answer 
is yes. I1FFL and NLIFBL differ, for example, in the way the output pulse amplitude 
depends on the fold change of an input a step: a non-cooperative I1FFL has a 
logarithmic dependence on fold and the NLIFBL a linear or power-law dependence 
(exercise xx) (Fig 8.XX). Interestingly, both circuits have a decreasing adaptation time 
with fold (exercise xx). Feedback and feedforward can also sometimes be distinguished 
by providing certain input signal ‘acid-tests’, such as pairs of input pulses (Exercise xx) 
(Rahi 2107).  



Now that we understand the circuits that can provide FCD, and see that it is common in 
cellular and organismal sensing systems, we can return to the question of what FCD is 
good for. 

FCD provides robustness to input noise, and allows scale-invariant searches 

 One answer is that FCD helps sensory 
systems tell a true input from noise. FCD 
provides a truth detector. It responds only to 
changes that are on the same scale as the 
background, weeding out small fluctuations 
(Fig 8.10). FCD therefore allows a wide input 
dynamic range, by changing sensitivity 
according to background level, a feat which 
in engineering is called gain control.As we 
saw, FCD has another role: it makes the 
response robust to unwanted effects that 
multiply the input signal by a constant 
lambda whose value cannot be known in 
advance. This solves a crucial problem in 
cells, as exemplified by an elegant experiment by Susan Gaudet and her students. 
Gaudet studied NFKb in mammalian cells, a transcription factor that responds to signals 
(such as tumor-necrosis factor, TNF), enters the nucleus and activates genes for 
inflammation and stress response. The readout of nuclear NFKb had better be accurate, 
so that cells can know whether to promote inflammation. Inflammation is a massive 
response that can fight pathogens, but causes collateral tissue damage and contributes 
to cancer and other diseases if it occurs at the wrong time.  

The challenge for precise signaling is that there is a large variation between cells in the 
total level of NFKb protein. One cell might have 10,000 NFKb proteins and its neighbor 
cell might have 30,000. After a given TNF signal, the more NFKb a cell has, the more will 
enter the nucleus to activate genes. Thus, for the same signal, each cell will see a 
different amount of NKFkb in the nucleus. In other words- an unknowable factor lambda 
- the basal amount of NFKb in each individual cell – multiplies the amount of nuclear TF 
seen after a given signal. If the response of the downstream genes was absolute and not 
relative, the outcome would be disastrous: cells would arbitrarily make the wrong 
choices. 
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 Gaudet showed that cells resolve this by using an I1FFL downstream of NFKb to respond 
only to fold-change in nuclear NFKb (Fig 8.11). The role of Y is played by inhibitors such 
as p50 that form dimers that compete with NFKb for the same site on target genes, and 
thus inhibits its effects. The I1FFL helps the 
cells to get used to the cell-specific level of 
NFKb and to normalize it out. Such buffering-
out of multiplicative protein noise might help 
explain the prevalence of the I1FFL in 
transcription networks from bacteria to 
humans.  

Multiplicative effects with an unknowable 
factor also occur in human vision. Here, the 
multiplicative factor is ambient light, L. Light 
levels can vary by almost ten orders of 
magnitude between midday and moonless 
night. Yet our eyes can see over much of this 
range. To understand the role of ambient 
light, imagine a visual search for a face in the 
crowd. We are interested in the contrast field R which carries information about the 
face. But our eyes see a light input that is the contrast R multiplied by the ambient light 
x=R L. To remove the multiplicative constant L, FCD in the visual system normalizes out 
the ambient light, and allows us to make an efficient search for a face that is invariant to 
a wide range of light levels. 

Here is an interesting detail: at the level of the retina, there is no FCD because the 
neuronal output does not show exact adaptation but instead a steady-state level that is 
logarithmic in light L, providing the brain with information about ambient light. 
However, the full visual system does display exact adaptation, as shown by experiments 
that deviously move the visual field to cancel out our rapid eye movements called 
cycades. Thus, the subject sees a constant image. After a few seconds, the visual field 
seems to turn grey and vision stops working. We see thanks to the changes caused by 
rapid eye movements. 

 A similar multiplicative factor occurs in bacterial chemotaxis. Here the goal is to move 
towards sources of attractants, and the unknowable multiplying factor is the strength 
S_source of the attractant source. The concentration of attractant diffusing away from a 
source of strength S_source is proportional to S_source, due to the linearity of the 
diffusion (or convection ) equation. Specifically, at position r, attractant levels are 
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S(r,t)=S_source exp(-(r-ro)^2/2Dt)/sqrt(4pi t), which is proportional to S-source. Thanks 
to FCD, the navigating bacterium can show runs and tumble statistics that are invariant 
to S_source (as long as concentrations are the range for FCD). The upshot is that 
bacteria can efficiently find the source position, regardless of the source strength. Such 
a process can explain the experiments of Mesibov et al with the pipette in the dish. 

 These properties of vision and chemotaxis can be called scale-invariant search, and are 
expected whenever an FCD system controls the movement of an agent in an input field 
plagued by an unknowable multiplicative factor.  

Im an imaginary experiment, a person searches for a cheesecake in a dark room using 
only the sense of smell. The room is in a cheesecake factory and has a certain 
background level of cheesecake aroma. After some sniffing around, the cake is found. 
Now do a search for half a cheesecake, but also halve the background level. If olfactory 
search is FCD, the average search time should be the same.  

Fold-change detection is an instance where biological circuits evolved to ‘learn’ a scaling 
symmetry of the physical world: the multiplicative nature of ambient light, protein level 
or chemotaxis source strength. FCD makes the output invariant to the scalar multiplying 
the input. There are other possible symmetries and invariances to explore. For example, 
invariance in hormone circuits is explored in the next chapter. Such symmetries and 
invariances play a fundamental role in physics, and offer a field for further discovery in 
biology. 

 


