
Optimal Gene Circuit Design 

10.1 Introduction 

We have seen that evolution converges again and again to the same network motifs. This suggests that 
network motifs are selected because they confer an advantage to the cells, as compared to other circuit designs. 
Can one develop a theory that explains which circuit design is selected under a given environment? 
In this chapter, we will begin to explore how to apply the theory of natural selection to gene circuits. We will 
discuss the forces that can drive evolutionary selection, using bacteria as  simple model system. The 
circuit that is selected, according to this theory, offers an optimal balance between the costs and benefits 
in a given environment. 
Are cellular circuits really optimal? It is well known that most mutations and other changes to the cells’ 
networks cause a decrease in performance. To m o re  p rec i s el y  understand evolutionary optimization, 
one needs to define a fitness function that is to be maximized. One difficulty in optimization theories is 
that we may not know the fitness function in the real world. For example, we currently do not know the 
fitness functions of cells in complex organisms. Such cells live within a society of other cells, the different 
tissues of the body, in which they play diverse roles. Fitness functions might not even be well defined in 
some cases; disciplines such as psychology and economics deal with processes that do not appear to 
optimize a single fitness function, but only “satisfice” (Simon, 1996) in the sense of fulfilling several 
conflicting and incomparable constraints (see chapter XX- multi-objective optimality).  
 
My view is that optimality is an idealized assumption that is a good starting point for generating testable 
hypotheses on gene circuits. The idea is to understand the constraints under which a circuit might have 
evolved. You can end up concluding that a certain circuit is a historical accident or a messy, vaguely good 
enough solution, but it is a mistake to start by assuming this in advance.  
 
This chapter will therefore treat the simplest systems in which one can describe the fundamental forces at 
play during natural selection. For additional examples, refer to the work on optimality in metabolic 
networks in books by Savageau, Heinrich and Schuster, Palsson and optimality in animals by McNeil 
Alexander (see Further Reading in Chapter 1). 
 
Our first question is: what sets the expression level of a protein? Why are some proteins produced at a 
few copies per cell, others at thousands, and yet others at tens or hundreds of thousands? 
 
10.2 Optimal expression level of a protein under constant conditions 
 

We begin with a  situation t h a t  i s  s i m p l e  e n o u g h  s o  t h a t  fitness can be precisely defined: 
bacteria that grow in a constant environment that is continually replenished. In this case, the fitness F is 
the growth rate of the cells. The number of cells N grows exponentially with time at rate F until they get 
too dense: 
 

𝑁(𝑡) = 𝑁(0) exp(𝐹𝑡)    (10.2.1) 
 

 

Now, if two species with different values of F compete for growth and utilize the same resources, the one 
with higher F will outgrow the other and inherit the test tube. Thus, evolutionary selection in this simple 



case will tend to maximize F over time. This type of evolutionary selection process was elegantly described 
by G.F. Gause in The Struggle for Existence (Gause, 1934). 
Fitness can help us address our question: What determines the level of expression of a protein? To be 
specific, we will consider a well-studied gene system, the lac system of E. coli, which was mentioned in 
previous chapters. The lac system encodes proteins such as LacZ, which breaks down the sugar lactose for 
use as an energy and carbon source. When fully induced, E. coli makes about z= 60,000 copies of the 
LacZ protein per cell. Why not 50,000 or 70,000? What considerations determine the expression level 
of this protein?  
Notice that we ask “Why the cell makes 60,000 copies” and not “How the cell makes 60,000 copies”. “How” questions relate 
to mechanisms such as the regulatory system, the promoter sequence, and so on, which are very well characterized in the lac 
system. “Why” questions aim to place the system and its design within a wider theory, in this case optimality theory. 
Optimality theory predicts that a protein expression 
level is selected that maximizes the fitness function. Here, the 
fitness function is the fitness as a function of the number of 
copies of the protein expressed in the cell, F(z) (Fig 12.1). In 
principle, F(z) can have local maxima and deep vallies (Fig 
12.2). A journey on this fitness function can get stuck on 
local maxima or unpassable vallies. Random mutations 
can cause noise along this journey, especially when population 
sizes are small, an effect called genetic drift. Therefore, it 
is unclear a-priory whether evolution can reach the maximum 
and if so, how long this might take.  
To answer such questions requires an experiment. We will 
consider the simplest environment possible, in which 
conditions are constant and do not change with time. In 
the case of LacZ, this means an environment with a constant 
concentration of the sugar lactose. The fitness is 
composed of two terms: the cost of the protein LacZ and 
the benefit it provides to the cells, both in units of growth 
rate, such that F=benefit-cost. Erez Dekel, when he was a 
postdoc with me, designed an experiment that measured 
benefit, cost and tested the predictions of optimality theory in 
the lac system (Dekel 2005). 
 
 
 
10.2.2 Cost of the LacZ protein 
To experimentally measure the cost function, Erez Dekel used a classic experimental tool, the inducer 
IPTG. IPTG is a chemical that mimics the structure of lactose. IPTG binds to the lac repressor and 
causes expression of the Lac proteins, but IPTG cannot be metabolized by the cells. Thus, IPTG confers no 
benefit on its own, and is called a gratuitous inducer.  
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To measure the cost of the lac system, IPTG was used to 
induce the lac system to various levels in the absence 
of lactose. The cells grew on another carbon source, 
glycerol1. Expression of LacZ reduced the growth rate 
of the cells (Figure 12.3). The cost, equal to the 
reduction in growth rate, is found to be a nonlinear 
function of Z: the more proteins produced, 
the larger the cost of each additional protein. 
Why is the cost a nonlinearly increasing function of 
Z? The reason is that production an d  
m a i n t en an ce  of the protein not only requires the 
use of the cells’ resources, but also reduces the 
resources available to other useful proteins. To describe this, we can assume that the growth rate of the 
cell depends on an internal resource R (such as the amount of free ribosomes in the cell or the cells energy 
balance2). The growth rate is typically a saturating function of resources such as R, following a Michaelis 
function: 
𝑓~ -

./-
  (10.2.3) 

The production of protein Z, and its maintenance, places a burden on the cells. This burden can be described 
as a reduction in the internal resource R, so that each unit of protein Z reduces the resource by a small 
amount, 𝑅 → 𝑅 − 𝜖𝑧. The upshot is that the reduction in growth rate begins to diverge when so much Z is 
produced that R begins to be depleted (see mathematical derivation in solved Exercise 10.4): 
 
𝑐(𝑧) = 678

9:;<
  (10.2.4) 

 
This cost function tells us that when only a few copies of the protein are made, the cost is approximately 
linear with protein level and goes as 𝑐(𝑧)~𝑐=𝑧. The cost of a single protein is about 10^-6, which makes sense 
because there are about 10^6 proteins in the bacterial cell. The cost increases more steeply when z becomes 
comparable to an upper limit of expression, M, when it begins to seriously interfere with essential 
functions of the cell. Proteins cannot come too close to the point z = M, where the cost function 
diverges. In this experiment, M is about twice Zwt.  
The experimental measurements of the cost function agree reasonably with Equation10.2.4 (Figure 12.3). 
They show that the relative reduction in growth rate due to the fully induced lac system is about 4.5%. 
Note that this cost of a few percent makes sense, because the fully induced Lac proteins make up a few 
percent of the total amount of proteins in the cell. 
 
 
10.2.1 The benefit of the LacZ protein 

We now turn to the benefit, defined as the increase in growth rate due to the action of the protein. In the case of 
LacZ, the benefit is proportional to the rate at which LacZ breaks down its substrate, lactose. The rate of the enzyme 
LacZ is well-described by standard Michaelis–Menten kinetics (see Appendix A). Hence, LacZ breaks down lactose at a 
rate that is proportional to the number of copies of the protein, z, times a saturating function of the concentration of 
lactose, L: 

                                                             
1 Control experiments showed that IPTG itself is not toxic to the cells. For example, IPTG does not measurably affect the growth rate of cells in which the 
lac genes are deleted from the genome. 
2 The cost in this experiment is due primarily to the action of the transporter lacY. When lacY imprts a lactose molecule, it exports a 
proton (antiporter mechanism). This reduces the membrane potential (XX), and thus R can be the proton motive force. 
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𝑏(𝑧, 𝐿) = A78B
./B

 (10.2.2) 

where K is the Michaelis constant3  and 𝑏=	is the 
maximal growth rate advantage per LacZ protein at 
saturating lactose. Benefit therefore grows linearly with 
protein level z. 
Benefit was measured by keeping the system 
maximally induced by means of IPTG, and by 
measuring growth rates in the presence of different levels 
of lactose. The observed benefit function rose with 
lactose levels, and was well described by 
Equation 10.2.2. (Fig 12.4). The relative increase in 
growth rate due to the fully induced level of LacZ with 
saturating amounts of the sugar lactose is about 17% 
under the conditions of the experiment. 
 
 
10.2.3 Fitness function and optimal expression level 
 
Now that we have the cost and benefit functions, we can calculate the fitness function, equal to the 
difference between benefit and cost. The fitness function is the growth rate of cells that produce z copies 
of LacZ in an environment with a lactose concentration of L: 
 
𝐹(𝐿, 𝑧) = 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 − 𝑐𝑜𝑠𝑡 = A78	B

./B
− 678

9:I
<

  (10.2.5) 

 

The fitness function displays a 
maximum, an expression level of protein z that 
maximizes growth rate, as shown in Figure 
12.5. The position of this maximum depends 
on lactose level, L. The optimal protein level zopt  

can be found by taking the derivative of the 
fitness function with respect to z: 
 
d F /d z = 0 (10.2.6) 
 
Showing that the optimal expression level 
increases with lactose L 
 

𝑧JKL = 𝑀 N1 −	P67(./B)
A7	B

Q       (10.2.7) 

 

                                                             
3 Here we Z denotes LacZ and LacY proteins- LacY is the lactose transporter which is made at levels 
proportional to lacZ because both are on the same operon. The Michaelis constant in this case is that of the transporter 
LacY, K = 0.4 mM. This is because the influx rate of lactose is limiting under most conditions. The experiment included glycerol as a backup 
carbon source, so that cells can grow without lactose. 
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because lactose increases the benefit per LacZ enzyme, and hence increases the selection pressure to 
produce more enzymes. The fully induced wild-type expression level, zWT  is predicted to be optimal when 
L ~ 0.6 mM under these experimental conditions, as shown in Figure 12.5. Growth at higher lactose levels 
is predicted to be maximized by higher levels than the wild-type level of about zWT = 60,000/cell. Conversely, 
low levels of lactose are predicted to have lower optimal expression levels (Figure 12.5).  
When there is no lactose in the environment, the optimal level is Zopt = 0, because proteins confer only 
costs and no benefits. In fact, zero expression is optimal as long as lactose L is lower than a threshold Lc, 
because costs exceed benefits. The threshold Lc  can be found by asking when zopt  in Equation 10.2.7 
becomes equal to zero: 

𝑧JKL = 0	𝑤ℎ𝑒𝑛	𝐿 < 𝐿6 = 𝐾 VA7
67
− 1W

:9
                                           (10.2.8) 

In the conditions of the experiments described above, the threshold level of lactose needed for selection of 
the gene system is Lc ~ 0.05 mM. If lactose environments with L<Lc persist for many generations, the 
organism will tend to lose the gene encoding LacZ. The loss of unused genes is a well-known 
phenomenon; for example, bacteria grown in a chemostat4  on glucose medium with no lactose lose the 
lac genes within a few days (Hartl and Dykhuizen, 1984). 
 
10.2.4 Cells reach optimal LacZ levels in a few hundred generations in laboratory evolution 
experiments 
 

We tested the predictions of this cost–benefit analysis by a 
laboratory evolution experiment. The evolution experiment 
used the technique of serial dilution. E. coli cells were grown in 
tubes with a specified level of lactose, L. Every day, 1/100 of the 
cells from each tube were passed to a tube with fresh medium 
(Fig 12.6). The cells grew in the tube until they reached 
stationary phase. The next morning, 1/100 of the cells were again 
passed to a fresh tube, and so on. Thus, every day, the cells grew 
100-fold, corresponding to log2(100) = 6.6 generations. Richard 
Lenski has been evolving E. coli for a few decades with serial 
dilution, reaching tens of thousands of generations (Good et al, 2107).We ran the experiment for several 
months, with seven tubes in parallel, each with a different lactose level, L=0,0.1,0.2,0.5,1, 2and 5 mM. 
IPTG was added to the tubes, to make sure that lac system is fully induced. The concentration of the LacZ 
protein was monitored over time.  
The cells heritably changed their LacZ expression level. The 
LacZ protein level reached the predicted optimal level within 
several hundred generations (Figure 12.7 and Figure 12.8). 
Cells growing with no lactose lost their lac expression 
altogether. These cells could no longer grow on lactose as the 
sole nutrient (the experiments had a backup nutrient, 
glycerol). Cells growing on 0.1 and 0.2mM lactose reached 
levels of expression lower than wild-type. Cells growing 
with 0.5mM lactose kept close to the wild-type expression 
level of 60,000 per cell, as predicted.  

                                                             
4 A chemostat is a device that keeps bacteria growing at a constant growth rate, by supplying a constant flow of fresh medium into a mixed aerated 
chamber, from which medium with cells is removed at the same rate. Cell generation time is locked onto the time for exchange of half of the medium in the 
chamber (Novick and Weiner, 1957; Balagadde et al., 2005; Ronen and Botstein, 2006.) 
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Cells growing with more than 0.5mM lactose reached higher levels of expression. Cells evolving at the 
highest lactose level, 5mM, reached the predicted expression of about 20% more lacZ. Then at about 450 
generations, they showed an unexpected jump to even higher levels. This is the great thing about evolution 
experiments- they often surprise you.  
Analysis of the evolutionary dynamics indicated that the cells reached their optimal, adapted levels in 
each case by means of a mutation that changed the LacZ protein level (exc XX). For each lactose 
concentration, there are on the order of 100 possible mutations that can reach the desired optimal 
expression level. At zero lactose, there is the equivalent of 1000 mutations that lose expression altogether. 
Many of these mutants arise in parallel in each tube and outgrow the wild-type cells, eventually taking over 
the tube. For the selection pressures in this experiment, on the order of a few percent, this takes on the order of 
hundreds of generations. 
 
In summary, p r o t e i n s  l i k e  L a c Z  h a v e  c o s t  a n d  b e n e f i t ,  w h i c h  c a n  b e  u s e d  t o  
calculate a fitness function. This fitness function can  predicts the optimal protein level in each 
environment. Cells rapidly evolve to this optimal value in evolutionary experiments. This gives us a 
sense of the speed and precision in which biological networks can adjust parameters such as protein 
expression levels. 
What happens when conditions change with time? We will next treat the principal way that cells deal with 
changes: gene regulation. 
 
10.3 To regulate or not to regulate? Optimal regulation in changing environments 
 
In this section, we ask why are some genes regulated and other genes expressed continually without 
regulation. When does it pay to regulate a gene? 
Consider a variable environment. Suppose that our gene product Z provides benefit to the cells only in 
environmental condition Cz. For example, a sugar metabolism enzyme Z is beneficial only when the sugar 
is available in the environment. The environment displays condition Cz with probability p, and other 
conditions, in which Z is superfluous, with probability 1 – p. This probability p is called the demand for 
Z. 
To analyze the optimal strategy, we compare three organisms with different designs for Z regulation. In 
organism one, protein Z is not regulated and is produced at a constant rate under all conditions. This is 
known as constitutive expression. In the second organism, a regulatory system R is in place, so that Z is 
produced only when needed, in condition Cz. Regulation has a cost: the cost of production and 
maintenance of the regulatory system that can read the environment, and then calculate and implement 
the required changes in Z production. Organism three has neither the gene for Z nor the genes for its 
regulation system R on its genome. It cannot express protein Z at all. 
The unregulated organism constantly produces Z, with a cost c, but gains its benefit b only a fraction p of the 
time, when Z is in demand, so that it has a fitness 

f1 = p b – c(10.3.1)   

The second organism uses a dedicated regulatory system to produce Z only under the proper conditions. 

This organism thus saves unneeded production and pays the cost, c, only a fraction p of the time. 

However, it bears the cost of the regulatory system, r, all of the time: 

f2 = p b – p c – r (10.3.2)  



Finally, the third organism that lacks the system altogether will have fitness zero, the baseline fitness 

without cost or benefit of Z: 
 

f3 = 0 (10.3.3) 
 
 

Regulation will be selected when organism two has the highest fitness, f2 > f1 and f2 > f3. This leads to the 
following inequalities: 

p < 1 – r/c and p > r/(b – c) regulation selected(10.3.4) 

Similarly, the unregulated design in which Z is constitutively expressed will be selected when f1 > f2, f3, 

leading to the inequalities: 

p > c/b and p > 1 – r/c (10.3.5)  

These inequalities (Equations 10.3.4 and 10.3.5) link a property of the environment, the fraction of time p 

that condition Cz occurs, to the cost and benefit parameters of protein Z and its regulatory system.  

The range of environments in which each of the three designs is optimal is shown in Figure 12.9. 
Regulation is selected at an intermediate range of demand, p. High demand tends to favor systems that 
are continually expressed. Constitutive expression of Z is always optimal when p = 1 (assuming b>c), because 
if Z is always needed, regulation becomes superfluous. When p = 0, the protein is never needed and the 
optimal mechanism is to never express it. Thus, in constant environments (p=0 or p=1), there is no 
regulation, and genes are lost if cost exceeds benefit. 
There exist organisms in nature whose environment is quite constant. Fo r  ex am p l e ,  a close cousin 
of E. coli, a bacterium called Buchnera, lives in symbiosis inside termites helping them digest their food. 
The termite hosts supply Buchnera with nutrients 
and stable conditions (Moran, 2002; 
Wernegreen, 2002; Moran, 2003; Wilcox et al., 2003). In 
such constant environments, every protein has either p 
= 1 or p = 0. These organisms indeed lose virtually all 
of their regulation systems, such as 
transcription factors. They also lose most of 
their genes (keeping only about 800 out of 4500 in 
E coli). They hold a small set of genes continually 
expressed. This agrees with the behavior shown in 
Figure 12.9, on the lines p =1 and p = 0. 
At the other extreme are bacteria that live in 
constantly changing and challenging 
environments such as the soil. These organisms 
have comparatively large genomes dense with prolific regulation systems.5 These bacteria probably have 0 
< p < 1 for most genes, so that regulation is selected as shown in Figure 12.9. 

                                                             
5 The number of transcription factors tends to increase with the number of genes in the genome. The number of transcription factors increases as Na, 
where N is the number of genes and a ~ 2 in bacteria and a ~ 1.3 in eukaryotes (Huynen and van Nimwegen, 1998; van Nimwegen, 2003). Thus, increasing 
the number of genes seems to require increasingly elaborate regulation mechanisms with more transcription factors per gene.[Sergei Maslov]. 
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This analysis assumes that periods Cz in which Z is in demand are long compared to a cell generation, so 
that we can ignore transients in which Z levels rise when the gene is turned on. When environments change 
rapidly enough, a fourth strategy can be optimal – stochastic gene expression in which a fraction q of the 
cells express Z constitutively and the rest do not express Z. The cells gamble. This strategy is called bet 
hedging, because if Z is in demand, the cells that happen to produce Z win, and if Z is not in demand, the 
other cells win. The optimal fraction of Z-expressing cells, q, rises with the fraction of time that Z is in 
demand, p. An analysis of bet hedging is provided in solved exercise XX. 
In summary, regulation makes sense if the environment is sufficiently variable.  
Cost–benefit analysis gives us a way to understand the forces that drive evolutionary processes. As a 
final example, let’s turn to cost–benefit analysis of a gene circuit, the feed-forward loop network motif. 
 
10.4 Environmental selection of the feedforward-loop network motif 
 

We will now try to understand, in a simplified 
model, under which environmental conditions 
a particular motif might be selected. For this 
purpose, we examine a common network motif, the 
coherent feed-forward loop (cFFL). As we saw in 
Chapter 3, the cFFL  can perform a basic dynamical 
function: it can filter out brief input pulses, and respond only 
to persistent stimuli. Although the FFL is widespread 
in transcription networks, not every gene is 
included in an FFL. In the E. coli 
transcription network, for example, about 40% 
of the known genes regulated by two inputs are 
regulated by an FFL, and 60% are regulated 
by a simple two-input design which not an FFL (both 
types of circuits are shown in Figure 12.10). It is 
therefore interesting to ask why the FFL is selected 
in some systems and not in others. 

To answer this question, we will do a simplified cost–benefit analysis for the cFFL in a given 
dynamically fluctuating environment (Dekel et al., 2005). Here, environment means the time-dependent 
profiles of the input signals in the natural habitat of the organism. We will find conditions that the 
environment must satisfy in order for the FFL to be selected over a simple-regulation circuit. We will see 
that the FFL can be selected in environments where the input signal comes in both long and short pulses, 
such that the pulse duration has a wide distribution. We will also determine the optimal values of the delay 
of the FFL circuit as a function of the environment. 
The full calculations are given in solved exercises 
10.5 to 10.9. The highlights are as follows. Suppose 
that the system is presented with a pulse of input Sx of 
duration D. The fitness function, based on the cost and 
benefit of protein Z, can be integrated over the pulse 
duration, φ(D) = ∫0D f(t)dt. This integrated fitness 
shows that short pulses of input signals have a 
detrimental effect on growth (Figure 12.11): they lead to 
a reduction in fitness. The reason for the fitness 
reduction is that when the input pulses are shorter than 
critical pulse duration, Dc, protein Z does not have 
time to build up to levels in which the 
accumulated benefit exceeds the costs of  production. 
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Since fitness is reduced by expression of protein Z in response to brief input pulses, a circuit that can 
avoid responding to brief pulses, but still allow responses to persistent pulses, can be advantageous. As 
we saw in Chapter 3, the coherent FFL can perform this type of filtering task. In the coherent type-1 
FFL with an AND input function, Z is expressed only at a delay after the signals appear. Thus, only 
pulses of input signals longer than the delay time of the FFL will lead to Z expression. 
The delay in the FFL, which we will denote TON, results from the time it takes for transcription 
factor Y to accumulate and cross its activation threshold for gene Z. Recall that this delay time is 
determined by the biochemical parameters of protein Y, namely its degradation rate, maximal level, 
and activation threshold for Z (Equation 3.6.5XX). The delay can therefore be tuned by natural selection 
to best fit the environment. 
 

The delay in the FFL acts to filter out pulses that are shorter than TON  (Figure 12.12 FFL). This avoids 
the reduction in growth for short pulses. However, the delay also has a disadvantage, because during long 
pulses, Z is produced only at a delay and misses some of the potential benefit of the pulse (Figure 12.12 
FFL). This means that there are some situations in which the FFL does more harm than good. To assess 
whether the FFL confers a net advantage to the cells, relative to simple regulation, requires analysis of the 
full distribution of pulses in the environment, where the probability of pulse of duration D is P(D). 
Let us assume for simplicity that the pulses are far apart, so that the system starts each pulse from zero 
initial Z levels (and Y levels in the case of the FFL). In this case, the average fitness, averaged over many 
input pulses, can be found by integrating the fitness per pulse over the pulse distribution, F = ∫P(D) φ(D) 
dD. The design with higher average fitness has a selective advantage. 
 
These considerations map out when each circuit has a selective advantage in terms of the 
environment in which they evolve. This is expressed as relations between certain integrals of the pulse 
distribution. Exercises 10.7 and 10.8 show that these relations can be solved exactly for certain 
distributions.  
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These solutions indicate that the FFL is selected in some environments and not in others. For example, the 
FFL is never selected over simple regulation in environments with an exponential pulse distribution, P(D) 
~ e–D/Do.. On the other hand, the FFL can be selected in environments with a bimodal pulse distribution, 
which has a probability p for short pulses that reduce fitness, and a probability 1 – p for long, beneficial 
pulses. The optimal delay for an FFL in such an environment is equal to the duration of the short pulses. 
This delay filters out the non-beneficial pulses, with minimal negative impact on fitness during long 
pulses.  
One can draw a selection diagram that shows 
which circuit design has higher mean fitness 
(Figure 12.13). This selection diagram shows that 
the FFL is more fit than simple regulation in a region 
where brief pulses are common and the benefit-to-
cost ratio of the gene system is not too high. 
Simple regulation is superior when brief pulses are 
rare. When costs exceed benefits, neither circuit is 
selected. Exercise 10.10 applies this to the case of two 
sugar systems in E. coli, one with simple regulation 
(lactose) and one with a cFFL (arabinose). 
I hope that this simplified analysis gives a taste for 
the possibility of studying the selection of gene 
circuits, and their optimal parameters, in temporally changing environments. 
 
10.5 Summary 
In this chapter we discussed cost–benefit analysis as a theoretical framework for optimal circuit design. 
We saw that for exponentially growing bacteria, the fitness function corresponds to the cell growth rate. The 
cost and benefit functions can be directly measured, showing for the lac system a cost that increases 
nonlinearly with the amount of protein produced. The fitness function, equal to the difference between 
benefit and cost, has a well-defined optimum in each environmental condition. Optimal protein levels that 
maximize growth rate are reached rapidly and precisely by evolutionary selection in controlled evolutionary 
experiments. 
We also analyzed the cost and benefit of gene regulation. We saw that gene regulation is worth maintaining 
only in variable environments. In constant environments, regulation tends to be lost, as is the case in 
organisms living as parasites within the relatively constant conditions provided by their hosts. 
Finally, we saw that cost–benefit analysis can also be carried out in a dynamically changing 
environment, to suggest criteria for the selection of network motifs such as the coherent FFL. According 
to this simplified analysis, the FFL can be selected in environments that have deleterious short pulses of 
induction, which need to be filtered out by the function of the FFL. 
We currently have more information about the structure of biological circuits than about the precise 
environment and ecology in which they evolved. One might imagine an inverse problem — “inverse 
ecology” — deducing information about the environment based on the observed circuits. This is based on 
the idea that optimal circuits contain, in a sense, an internal model of the environment. For example, the 
optimal delay time of the FFL contains information about the distributions of input pulses. Thus, an 
intriguing goal is to use optimality considerations to understand the molecular details of mechanisms based 
on the environment in which they were selected. 
We will continue with these ideas in the next chapters.  
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