
 

Chapter 6: Robust Signaling by bifunctional components  

We begin our exploration of robustness by asking how a circuit made of noisy 

components can make precise computations. Such precision can be critical, for example, 

if the circuit needs to respond to stressful situations, and compute a response that is just 

right for the input stress. In this chapter we turn from transcription networks to the faster 

networks of protein-protein interactions that convey signals from the environment and 

culminate in the activation of transcription factors. These networks are called signal 

transduction pathways. Typically, the signal is sensed by a receptor (a sensor protein 

that sticks out of the cell membrane) that senses signals outside the cell and acts to 

chemically modify proteins inside the cell, thereby changing their activity. These proteins 

in turn can modify other proteins and so on. Finally, transcription factors get modified 

and activate genes that respond to the signals. These reactions take place on the scale of 

seconds to minutes. So far, we considered these pathways as instantaneous, and regarded 

them as the signals Sx and Sy that activate transcription factors. Now we look at more 

detail into these pathways.  

6.1 Robust input-output curves  

Let’s define the robustness we seek. Suppose that a signal transduction circuit has an 

input signal s and an output, f(s), such as the level of activated transcription factor that 

activates genes to respond to the signal. The output as a function of input, f(s), is the 

circuit’s input-output curve. A non-robust input-output curve depends on the 

concentrations of the proteins that make up the circuit (Fig 6.1). Since variations in 

protein concentration are an unavoidable property of biological matter, a non-robust f(s) 

means that different individual cells will show a different response to the same input 

signal. The input is inaccurately read by each cell.  



In contrast, a robust input-output curve is insensitive to (and ideally completely 

independent of) variations in the levels of the proteins that make up the circuit. A robust 

input-output curve f(s) allows all cells to have the same output to a given input signal 

(Fig 1). Cells accurately perceive their environment.  

 

6.2 Simple signaling circuits cannot provide robust input-output relationships  

Input-output robustness is difficult to achieve. 

To demonstrate this, let’s consider a simple 

circuit (Fig 6.2) made of the typical 

components of signal transduction pathways. 

Signal is sensed by a receptor protein X that 

spans the cell membrane, and has a part that is 

outside the cell and a part that is inside the 

cell. On its outside part, the receptor detects 

the input signal. Signal causes the receptor to 

change conformation and hence transmit 

information to the part that is inside the cell. Information is then passed on to a 

messenger protein Y in the form of chemical modification, such as phosphorylation, in 

which a phosphoryl group PO4- is added to Y. The added group causes the messenger 

protein to change conformation into an active conformation. To pass this bit of 

information, inside the cell, X acts as a kinase, an enzyme that takes phosphoryl from 
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ATP adds it to protein Y (we say that X phosphorylates Y), at a rate that depends on the 

input signal. The phosphorylated messenger, Yp, is a transcription factor that binds 

promoters and activates output genes. Yp is the output of the circuit, the active 

transcription factor (Y*). To allow signaling to stop when the signal goes away, Yp is 

continually dephosphorylated (phosphoryl is removed into the cytoplasm in the form of 

inorganic phosphate Pi) by a phosphatase protein Z.  

We will now solve the input-output curve of this circuit, to see that the curve depends on 

the concentrations of all of the three proteins that make up the circuit, X Y and Z. There 

is no input-output robustness.  

The math is simple. 

============ 

Example X.1 

Show that the simple design for a signal-transduction pathway has a non-robust input-

output curve.  

Receptor X phosphorylates Y at a rate v(s) that depends on input signal s, to produce Yp, 

the output of the circuit. The phosphorylation is removed from Yp by a phosphatase Z at 

rate vz. Let’s compute the steady-state input-output curve Yp=f(s), and see how it 

depends on the concentrations of the proteins in the circuit, X Y and Z. 

Y can either be phosphorylated, Yp, or not, Yo, such that the total concentration of Y 

protein is the sum of these two, Yt=Yo+Yp. We’ll describe the dynamics of Yp using 

mass-action kinetics: dephosphorylation occurs when Yp and Z collide, at rate vz Z Yp, 

and phosphorylation occurs when X and Yo collide, at a rate v(s) X (Yt-Yp), where we 

used Yo=Yt-Yp. At steady-state, phosphorylation and de-phosphorylation must balance, 

dYp/dt=v(s)X(Yt-Yp)-vz Z Yp=0. Solving for Yp, we find that the input-output curve is 

an increasing function of the signal v(s) 

Yp=f(s)=v(s) X Yt/(v(s)X+vz Z)    (6.1) 



This input-output curve depends on the levels 

of all three protein in the circuit: the receptor 

X, total messenger Yt and phosphatase Z (Fig 

6.3). The more X and Y a cell has, and the 

less Z it has, the higher the input-output 

curve for a given signal s. Thus, each cell 

will respond differently to the same input 

signal. Since proteins typically vary in 

concentration by tens of percents, and this 

variation lasts an entire cell generation time, 

it will be common to have a two-fold 

difference in output between cells. There is 

no input-output robustness. 

============== 

In order to achieve input-output robustness, we 

need the protein levels to somehow cancel out in 

the expression for the input-output curve. 

Remarkably, bacterial two-component systems 

– a class of thousands of systems, each made of 

a specific receptor X and its dedicated 

messenger Y – are able to provide this 

robustness. At the heart of their design is a 

bifunctional component. The receptor X 

catalyzes two opposing reactions: 

phosphorylating Y at one catalytic site on the receptor, and de-phosphorylating Y at a 

different catalytic site (Fig 6.4). Thus, the opposing kinase and phosphatase activities are 

rolled up into the same protein, instead of being separated on two different proteins1. 

                                                             
1 To avoid confusion, note that every enzyme catalyzes a reaction and its reverse, with 
total flux determined by the concentrations of product and substrate. Bifunctional 
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A canonical example of this paradoxical design is the osmotic response system of E coli, 

EnvZ-OmpR. In this two-component system the receptor X is EnvZ, and the messenger 

Y is OmpR. When osmotic pressure is high, the receptor X phosphorylates Y to form Yp, 

a transcriptional activator of osmo-response genes (more precisely, X is an autokinase 

and a phosphotransferase, using ATP to phosphorylate itself and then transferring the 

phosphoryl to Y). Yp regulates genes such as transporters and enzymes that act to adjust 

the cell to the osmotic pressure in its environment. A robust input-output curve is crucial 

in this system because the response to osmotic pressure had better be accurate, to avoid 

the cell bursting or imploding.  

Tom Silhavy and colleagues discovered that X carries out two antagonistic reactions 

(Hsing et al., 1998): it not only acts as a kinase that phosphorylates Y; it is also the 

phosphatase of Yp (Fig 6.4). It thus both adds and removes the chemical modification.  

This bifunctionality, acting as both a kinase and phosphatase, was suggested by Russo 

and Silhavy (1993)) to enable robustness in the circuit. The intuitive reason is that a 

change in the concentration of the bifunctional protein X changes both phosphorylation 

and dephosphorylation rates by the same factor (Russo and Silhavy, 1993), thus canceling 

out the effect on the steady-state output Yp.  

Robustness in this system was modeled mathematically and demonstrated experimentally 

by Eric Batchelor and Mark Goulian (2003)). Batchelor and Goulian experimentally 

changed the levels of the proteins X and Y in the circuit. They found that the output is 

robust despite large changes in the level of the proteins. For example, the output (the 

amount of Yp at a given input level of osmolarity) changed by less than 20% upon 

changes of 20-fold in the amount of total Y protein. 

                                                             
enzymes do something more specific: they catalyze different reactions, at different 
catalytic sites. For example phosphorylation entails breaking down ATP, whereas 
dephosphorylation does not rebuild ATP (the reverse reaction) but instead moves the 
phosphoryl into the cytoplasm in the form of inorganic phosphate. Paradoxical enzymes 
are bifunctional enzymes that catalyze opposing reactions. 



Guy Shinar et al. (2007) extended the theoretical analysis of this system, providing an 

analytical solution for its behavior. The special biochemical features of the receptor 

(autokinase, phosphotransferase, and phosphatase) combine to make Yp levels insensitive 

to variations in the concentrations of all proteins in the circuit—X and Y—and yet 

responsive to the input signal of the system.  

It’s fun to solve this system, in order to see how this cancelation comes about. The 

solution also uses a black-box trick that can be generalized to other systems.  

============ 

Example 6.2 

Show that the bifunctional EnvZ-OmpR design has input-output robustness at steady-

state with respect to fluctuations in the levels of proteins X and Y.  

One way to solve this example is to 

write down seven mass-action 

equations for the system of Fig 6.5, 

and find their fixed point. This 

algebra is relegated to exercise XX. 

An easier way to obtain the input–

output curve presents itself when 

we view the system as a black box 

that breaks down ATP and releases 

phosphoryl groups back to the cytoplasm (Fig 6.5). Consider the fluxes of phosphoryl 

into and out of the system. The influx, Jin, is equal to the rate of auto-phosphorylation in 

which the receptor takes phosphoryl from ATP and phosphorylates itself at a rate that 

depends on the input signal, va(s). Thus Jin=va(s) X. The outflux is the rate of 

dephosphorylation of Yp by the receptor, Jout=vp(s) X Yp, which releases the 

phosphoryl groups back into the cytoplasm as inorganic phosphate, Pi. At steady-state, 

influx and outflux must balance, Jin=Jout, otherwise the black box would fill up with 

phosphoryl groups. This means that  
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va(s) X = vp(s) X Yp     (6.2) 

Notice how X can be elegantly cancelled out from both sides of the equation (as long as 

X =/=0). We obtain a robust input-output curve that depends only on kinetic rate 

constants: 

Yp= va(s)/vp(s)    (6.3) 

Importantly, the output Y P does not depend on the level of any of the proteins in the 

system. The output is responsive to the input signal via the rate constants v a(s) and 

v_p(s). The mechanism thus shows a robust input–output relation (Fig. 2 c). QED 

Input-output robustness is achieved by the coordinated effect of the biochemical details of 

this system. If the receptor was not bifunctional, and instead dephosphorylation was carried 

out by a separate phosphatase protein Z, the balance of phosphoryl influx and outflux 

would require that X ∼ ZYP . No cancellation of X is possible. This would result in a steady-

state level YP ∼ X/Z that depends on the intracellular levels of both X and Z. Robustness 

would be lost.  

Similarly, the two-step nature of the kinase is also essential for robustness. If the receptor 

directly transferred a phosphoryl group from ATP to Yo without first phosphorylating 

itself, the influx would depend on the concentration of the complex X·Yo. Balancing influx 

and outflux gives XYo~XYp. As a result, the output YP would be proportional to Yo and 

would thus depend on the total level of Y, YT , abolishing robustness.  

In summary, robustness in the present mechanism seems to require the combined effects 

of multiple biochemical features. These features occur in the vast majority of the thousands 

of known two-component systems that respond to stress and environmental signals in 

diverse bacterial species (Goldberg et al., 2010; Capra and Laub, 2012). For example, E 

coli has about 30 different two-component systems and all but one have this bifunctional 

design. We will discuss the exceptional circuit, bacterial chemotaxis, in the next chapter. 

 

For years, I thought that input-output robustness is impossible due to considerations of 

units. The output Yp has units of concentration. Units of concentration, in any 



mechanism that I could imagine, come from the concentrations of the proteins in the 

circuit (as in the simple signal transduction circuit of Fig 6.2). So where do the units of 

concentration come from in the bifunctional mechanism? The answer is the intrinsic 

molecular rate constants. The bifunctional mechanism gives units of concentration by the 

ratio of a first order and a second order rate constant, va/vp (va has units of 1/time, and 

vp of 1/time/concentration). These intrinsic molecular rate constants are determined by 

the receptor structure, which is the same in all cells. These rate constants are therefore 

much more hard-wired (much less variable from cell to cell) than protein concentrations. 

In fact, these intrinsic rate constants make the input-output curve even more elegant when 

the receptor does its two opposite functions according to Michaelis-Menten binding of 

the signal s. If the kinase rate va rises with binding (va~s/(k+s) ) and the phosphatase rate 

vp decreases with binding (vp~k/k+s), the output Yp becomes linear in signal, 

Yp=va/vp~s/k. It’s nice to have a linear undistorted readout of the input information. 

But robustness always has its limits. In this 

system, robustness is lost if the total level of 

protein Y, denoted Y T, falls below the 

expected Y P level for a given input signal (Fig 

6.6).  

 

In this case, there is not enough Y protein to 

reach the Y P value given by the input-output 

curve Eq. 6.3. When this happens, analysis of 

the model (see exercise 6.5) shows that all of 

the Y molecules are phosphorylated, 

and Y P = Y T. All of X is also phosphorylated Xp=Xt. Hence, the system is maxed out 

and no longer responds to the input signal (mathematically speaking, unphosphorylated X 

is zero and cannot be canceled out in the black box equation). We conclude that both 

robustness and responsiveness to the signal require that total Y levels  Y T exceeds a 

certain threshold, given by the maximal desired output level Y P in the expected 

physiological conditions (exercise autoregulation XX). 

Input   va(s)/vp(s)

YT
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There is also call for caution. When studying models such as this, we need some healthy skepticism. 

We need to watch out for additional reactions in the cell, perhaps too weak to be experimentally 

detected, that can potentially ruin robustness. To explore this possibility, we can add to the model every 

possible reaction arrow and assign to it a small rate 𝜖. For example, we can add spontaneous 

dephosphorylation of YP (YpàYo +Pi without help from X). This spontaneous reaction is known to 

occur in the EnvZ/OmpR system on a timescale of minutes which is much slower that the other reactions 

which take seconds or less (thus 𝜖 is ~seconds/minutes~0.01). We can also add spontaneous de-

phosphorylation of XP, reverse phosphotransfer in which Xp goes back to Xo, effects of ATP and ADP 

as cofactors, and so on. Some of these possibilities are explored in exercises 6.7 and 6.8 The upshot is 

that the effect on robustness of these additional reactions is either nonexistent, or is small (in the sense 

that the relative shift in the input-output curve due to protein fluctuations is of order 𝜖).  

 

Remarks on the Black Box Approach. 
 To analyze the robustness mechanism, we considered the system as a black box that breaks down ATP. 

The black box approach can be used more generally, to suggest a wider class of systems that can show 

ro 

The black box argument depends only on balancing two 

reactions, the entry of phosphoryl and the exit of 

phosphoryl from the box. This leaves us with freedom to 

add any number of reactions inside the box (as long as a 

stable steady-state is reached and no new entry or exit 

points are added). For example, we can introduce a 

cascade of phosphotransfer events (as occurs in many 

bacterial signaling systems), Fig 6.7, and robustness of 

Yp is still maintained.  

The black box also points to system characteristics that 

rule out such robustness. The black box suggests that 

robustness of the present type cannot generally occur if there is more than one reaction that introduces 

(or removes) phosphoryl groups into the system. If two different influxes J i and J′i exist, they generally 

cannot be canceled out with J o (in the sense of Eq 6.2 above), leading to a loss of robustness. Of course 

if such secondary leaks or inputs are small, of order 𝜖, robustness is only lost to order 𝜖.  

Not all bacterial signaling systems show the hallmarks of the present mechanism. Important examples 

include bacterial chemotaxis, which we will study in the next chapter, and sporulation. Apparently, these 
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signaling systems do not need robust input–output relations, but instead rely on cell–cell variation in 

their output in order to provide a wider range of solutions to a given situation. A robust input-output 

mechanism should perhaps be expected only in signaling systems in which there is a sufficiently heavy 

fitness penalty if the input–output relation is not precise. 

 

Bifunctional components provide robustness to diverse circuits 

The principle of robustness by bifunctional enzymes that catalyze opposite reactions (also called 

paradoxical enzymes) applies to other systems and organisms( Hart review). In each case, a paradoxical 

enzyme is at the core of the mechanism, and additional biochemical features combine to allow robustness. 

Examples include nitrogen regulation in E coli, explored in exercise 6.12, in which an enzyme modifies and 

de-modifies a key metabolic enzyme in nitrogen control. A paradoxical enzyme in human cells makes and 

breaks an allosteric regulator of the main nutritional pathway, glycolysis. Paradoxical enzymes also operate 

in tissue-level circuits. For example, a paradoxical enzyme called Piezzo1 makes epithelial cells proliferate 

and also die according to pressure signals that indicate if there are too few or too many cells in the tissue 

(Gudipaty nature 2017  doi: 10.1038/nature21407). In the immune system, T-cells secrete a signal ml]olecule 

called IL-2 that makes them both proliferate and die, helping to maintain a desired concentration of T-cells 

(Hart Cell 2014). Theoretical analysis of antagonistically bifunctional enzymes led to a mathematical 

theorem that can predict which components of a complicated biochemical reaction system might be robust 

(Shinar and Feinberg, 2010; Karp et al., 2012). 

It is possible that many more paradoxical enzymes exist than are currently known. The same effects can be 

produced by two mono-functional enzymes that carry out opposite reactions, by having the two enzymes 

work together only when they form a complex, or are held together by a scaffold protein.  

In summary, robustness is a major concern for the precision of biological circuits. It is also a central 

issue in engineering, where circuits need to work precisely despite variations in components due to 

imprecise fabrication of, for example, resistors and transistors. In biological signaling circuits, 

bifunctional components can provide robust input-output curves despite unavoidable fluctuations in the 

levels of the proteins that make up the circuit. The robustness is due to a combination of specific 

biochemical details, and thus provides a systems-level meaning to biochemical details that may 

otherwise appear arbitrarily complicated.  

 

Further reading: 
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Exercises: 

6.1 Mass action for the non-robust circuit: Solve the mass-action kinetics of the three 

protein signaling circuit of Fig 6.2, taking into account the complexes of the reactants. 

Show that the input-output curve is not robust. 

Solution: Let’s assume that ATP binds X very strongly, a realistic assumption for most 

signaling systems, so that free X is always bound to ATP. The reactions are 

[XATP]+[Yo]ßkoff1,kon1à[ XATP Yo]-v(s)à [X]+[Yp] +[ADP] and 

[Z]+[Yp]ßkon2,koff2à[ZYp]-vzà[Z]+[Yo]+[Pi]. Thus the rate of change of the 

complex [ XATP Yo] is a balance of binding, unbinding and catalysis 

d[XATP Yo]/dt=[XATP][Yo] kon1 - [XATP Yo](v(s)+koff1).  

At steady state, d/dt=0, and [XATP Yo]=[XATP][Yo](kon1/(va(s)+koff1). Typically for 

enzymes koff1>>va(s), and so [XATPYo]=[XATP][Yo]/K1 where K1=kon1/koff1. 

Hence phosphorylation rate is va(s) [XATP Yo]=[XATP][Yo]va(s)/K1. 

Dephosphorylation rate, from an analogous calculation, is [Z][Yp] vz/K2 where K2= 

kon2/koff2. Balancing the two, and using [Yo]+[Yp]=[Yt], we obtain [Yp]=[XATP][Yt] 

va(s)/K1 /(va(s) [XATP] [Yt]/K1 +vz [Z]/K2). This input-output curve is non-robust 

because it depends on the concentrations of the proteins in the system. 



6.2 Correlated expression can increase robustness: One way to partially address the 

non-robustness for the simple three protein signaling circuit of Fig 6.2 is to make 

fluctuations in protein levels correlated, by putting Y and Z on the same operon. Discuss 

why this can improve robustness, but not make the circuit absolutely robust. 

Two-component mechanism 

6.3 The seven mass-action equations for the two-component circuit: A detailed two-

component mechanism includes ATP and ADP and the complexes of the reactants. The 

reactions are: 

Xo+T<-k1’,k1->A-va(s)->Xp+D 

Xp+Yo<-k2’,k2->B-vt->Yp+Xo 

A+Yp<-k3’,k3->C-vp->Yo+A+Pi 

Where T ad D are ATP and ADP, A is the complex [X T], B is [XpYo] and C is [A Yp], 

and Pi is inorganic phosphate.  

a) Write down the mass action kinetic equations and conservation laws. 

b) Solve for the steady states. 

c) Show that one steady-state describes the case where there is enough Y protein for 

the desired output, and the other applies when there is not enough Y.  

Solution:  

a) There are two conservation laws, for total X Xt=X+Xp+A+B+C,  

and total Y  

 Yt=Yp+Yo+B+C.  

The seven mass action equations are 



dXo/dt=-k1 Xo T +k1’ A+vt B 

dXp/dt=-k2 Xp Yo+va(s) A+k2’B 

dYo/dt=k2’B +vp C –k2 Yo Xp 

dYp/dt=-k3 A Yp +k3’ C +vt B 

dA/dt=Xo T k1 – (va(s) +k1’) A 

dB/dt=Xp Yo k2-(vt+k2’) B 

dC/dt=A Yp k3- (vp+k3’) C 

b)Solving these at steady-state shows two solutions. In one solution, solution 1, Xp=Xt, 

Yp=Yt and all other concentrations are equal to zero. In the other solution, solution 2, 

Yp*=(va(s)/vp) (k3’+vp)/k3, which is robust because no protein concentrations appear in 

it. 

c)Stability analysis shows that solution 2 is the only stable solution when Yp*<Yt. If 

Yp*>Yt, solution 1 is the only stable solution.  

6.4 A more precise black box calculation: The calculation in the main text did not take 

into account complexes of the proteins. Repeat the black box calculation taking into 

account the complexes. 

Solution: Jout=vp [X Yp]. Let’s compute the concentration of the complex [XYp]. The 

complex is formed by the binding of X to Yp, and lost when the constituents dissociate or 

when the de-phosphorylation reaction takes place: d[XYp]/dt= k3 X Yp – (k3’+vp)[X 

Yp]. Thus, at steady-state, the concentration of the complex is proportional to the product 

of its component concentrations:[X Yp]=k3/(k3’+vp)X Yp, which yields Jout=vp 

k3/(k3’+vp)X Yp . At steady-state, Jin=Jout, otherwise the black box would fill up with 

phosphoryl groups. This means that va(s) X = vp k3/(k3’+vp)X Yp. We therefore obtain 

a robust input-output curve that depends only on kinetic rate constants: 



[**] Yp=f(s)= (k3’+vp) va(s)/k3 vp 

Exercise 6.5: Loss of robustness when Yt is too low: 

(i) Do a black box calculation when when Yt falls below the value of Yp 

expected form the robust mechanism. Show that the system enters a saturated 

state in which all of Y and all of X are phosphorylated. Why is this state a 

non-signaling state? 

(ii) What happens when total levels of receptor X becomes very low? Does this 

place any limitations on signaling? 

 

6.6: Limits to linearity of the output curve: In the robust mechanism, when 

va(s)~s/(k+s) and vp(s)~k/(k+s) both depend on Michalis-Menten binding of the signal s, 

the output curve can be linear in s: Yp=va/vp~s/k. But every linearity must have its 

limits. Explain what processes might break linearity at very high signal levels.  

6.7: Reverse phosphotransfer from Yp does not affect robustness: Add a reverse 

phosphotransfer reaction to the two-component model, in which Yp+XoàXp+Yo. Use 

the black box approach to argue that this this additional does not affect robustness or the 

steady-state output. 

Exercise 6.8: Spontaneous dephosphorylation leads to small loss of robustness: In the 

EnvZ-OmpR circuit, Yp can be spontaneously dephosphorylated without the action of X. 

The half-life of Yp due to this reaction is ~90 minutes, compared to half-life of Yp of 

seconds due to dephosphorylation catalyzed by X. 

a) Write an equation for Yp dynamics assuming the two-component mechanism also 

has a reaction of spontaneous dephosphorylation at rate 𝜖. 

b) Use the black box approach to calculate the steady-state level of Yp. 

c) Explain why robustness is only lost to order 𝜖.   



Exercise 6.9: Energy consumption. The EnvZ-OmpR system continually uses up ATP, 

even for constant input signals.  

(a) Discuss why constant energy expenditure might be useful in this signaling circuit.  

(b) Suppose there are X molecules of X per cell that use 100 ATP/second. Estimate 

the fraction of the bacteria’s ATP consumption that goes to running this circuit. 

  

Exercise 6.10: Dynamics of the robust mechanism. Suppose the input signal rises in a 

step from level s1 to level s2.  

(a) Compute the dynamics of the robust mechanism, Yp(t). Assume low signals so that 

most of X and Y are unphosphorylated.  

Answer (partial) : Low signal means :  Yo~Yt, Xo~Xt. 

dYp/dt=vt XpYo-vp XoYp~vt Xp Yt-vp Xt Yp 

dXp/dt=Xo v(s)-vt XpYo~Xt v(s)-vt Xp Yt 

Adding these equation yields  

d(Xp+Yp)/dt= Xt v(s) –vp Xt Yp 

The dynamics are a sum of exponentials of time with eigenvalues lambda1= -vp Xt  and 

lambda2=-vt Yt.  

(b)What is the response time?  

Dynamics are dominated by the smaller eignevalue. Since Yt>Xt (Xt~100/cell, Yt~3500 

/cell) and vt>vp (phosphotransfer is much faster than dephosphorylation), 

lambda2>lambda1. The smaller eigenvalue is lamba 1~vp Xt. Hence the response time is 

ln(2)/vp Xt.   

(c) Is the response time robust to variations in X? in Y? 



Exercise XX: stability of the two fixed points in the robust mechanism- transcritical 

bifurcation. 

Exercise 6.11: Positive autoregulation and robust input-output relations: In many two 

component systems, the output transcription factor Yp is a transcriptional activator of its 

own gene and the gene for the receptor X (often both genes are on the same operon). If 

signaling output Yp is robust to total X and Y levels, what can be the role of positive 

autoregulation? (Hint: consider strong input signals, REF). 

Bifunctional enzymes and robustness in other systems 

The theme of robustness based on paradoxically bifunctional enzymes occurs in diverse 

systems. In each system, antagonistic bifunctionality provides a robust input-output 

relationship, but each system studied so far has also shown a different combination of 

features that generate this robustness.  

Exercise 6.12: Paradoxical control in E coli carbon/nitrogen balance: E coli bacteria 

must balance their uptake of carbon and nitrogen. The key enzyme that assimilates 

nitrogen (in ammonia) into biomass is the enzyme GlnA, made of 12 identical subunits 

(dodecamer), which produces the 

amino acid glutamine, Q. The 

dilemma is that Q is made at the 

expense of a carbon backbone that is a 

key metabolite in the tricarboxylic 

acid (TCA) cycle, alpha-ketoglutarate, 

denoted K. Making too much Q 

depletes K; therefore, the Q/K ratio is 

important and stays nearly constant in 

a wide range of conditions (Senior, 

1975; Brauer et al., 2006). The 
robustness of the Q/K ratio depends on a 

bifunctional enzyme AT/AR which both 

activates and deactivates GlnA by 
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removing and adding an adenylyl modification. The twist is that AT/AR can bind two GlnA 

subunits in the same dodecamer (Fig 6.8), and hence shows a strong avidity effect: if it binds one 

subunit, it is likely to bind both. Thus, a ternary complex T in which the bifunctional enzyme binds 

two substrates, one modified and the other unmodified, carries out most of the reactions (Fig 6.8). 
The rates of adenylation and de-adenylation are equal at steady state: v1(Q,K) T = v2(Q,K) T. 

Here, the specific rates of the two reactions carried out by the bifunctional enzyme are v1 and v2, 

and both depend on Q and K.  

(a) How can this design lead to a robust Q/K ratio? 
(b) Explain the results of an experiment in which GS levels are experimentally controlled by 

expressing it form a plasmid, and the Q/K ratio is measured in wild-type cells and in cells 

deleted for the gene for AT/AR? (Fig 6.8b) 
(c) Propose experiments to test the hypothesis that the bifunctionality of AT/AR is causal for 

robustness. Use the fact that the two reactions are carried out by different parts of the 

enzyme AT/AR, and that mutants are available that knock out one or the other function. 

(Hart et al., 2011a). 

 

Exercise 6.13: Coherent bifunctionality as a robust linear amplifier 

So far we discussed bifunctional enzymes that carry out two opposing reactions. What 

happens when a bifunctional enzyme carries out two reactions which go towards the 

same goal, such as increasing production and decreasing removal of a modification, and 

thus both acting to increase the level of the modification? Suppose enzyme X modifies 

protein Y with rate v+(s), and removes the modification with rate v-(s). Both rates are 

Michaelis-Menten, and are controlled by binding of a signal molecule s to the enzyme X. 

Production increases with s, so that v+(s)=a s/(k+s), whereas removal decreases with s, v-

(s)=b k/(k+s). Assume that most of Y is unmodified, Yp<<Yt. What is the output (level 

of Yp) as a function of s? 

Solution: dYp/dt=v+(s) X Yo+v-(s)X Yp, Yo=~Yt. At steady-state, the output is 

linear is signal: 

Yp=Yt v+(s)/v-(s)=Yt (s/k+s)/(k/k+s)=Yt (a/b) s/k 



(i) Explain why this can be called a robust linear amplifier?  

The output Yp is linear in the signal s, and does not depend on (is robust to) 

the level of the bifunctional enzyme X.  

(ii) What might be the limits of linearity for very high and very low levels of s? 

(iii) What happens of the rates v+ and v- are Hill functions of s with the same k 

and n? 

(iv) In the liver, the body stores glucose in a branched polymer called glycogen, an 

important part of the body’s nutrient reserve. A hormone signal for starvation 

leads to the coordinated phosphorylation of two enzymes that make and break 

glycogen into glucose and back. Read about the mammalian glycogen system 

and model it using the concept of coherent bifunctionality. 

 


