
 
Chapter 7: Robustness in bacterial chemotaxis 30/4/18-TSB 

7.1 Introduction 
We saw how bifunctional proteins can make the input-output relation of a signaling circuit precise 
despite variation in protein levels. But not all signaling circuits need to simply transduce the signal 
level. Some circuits are built to make more sophisticated computations, and to do so robustly. To see 
this, we will now consider the robustness of a remarkable protein circuit called the bacterial 
chemotaxis circuit, that allows bacteria to navigate. Bacterial chemotaxis is so well-characterized on the 
level of both molecules and behavior that it is a testing ground for important ideas in systems biology, including 
robustness. We will describe the biology of bacterial chemotaxis, and models and experiments that 
demonstrate how the computation performed by this protein circuit is made robust to changes in 
protein levels. We will see that the principle of robustness can help us to rule out many plausible 
mechanisms and to home in on the correct design. 

 
7.2 Bacterial chemotaxis, or how bacteria think 
 
7.2.1 Chemotaxis behavior 

When a pipette containing nutrients is placed in a 
plate of swimming Escherichia coli bacteria, the 
bacteria are attracted to the mouth of the pipette and 
form a cloud (Figure 7.1). When a pipette with 
noxious chemicals is placed in the dish, the bacteria 
swim away from the pipette. This process, in which 
bacteria sense and move along gradients of specific 
chemicals, is called bacterial chemotaxis.  

Chemicals that attract bacteria are called 
attractants. Chemicals that drive the bacteria away 
are called repellents. E. coli can sense a variety of 
attractants, such as sugars and the amino acids 
serine and aspartate, and repellents, such as metal ions and the amino acid leucine. Most bacterial 
species show chemotaxis, and some can sense and move toward stimuli such as light (phototaxis) 
and even magnetic fields (magnetotaxis). 

Bacterial chemotaxis achieves remarkable performance despi te  the gr eat  physical 
limitations faced by the bacteria. Bacteria can detect concentration gradients as small as a change 
of one molecule per cell volume per micron and function in background concentrations 
spanning over five orders of magnitude. All this is done while being buffeted by Brownian noise, 
such that if the cell tries to swim straight for 10 sec, its orientation is randomized by 90° on average. 
How does E. coli manage to move up gradients of attractants despite these physical challenges? 
It is evidently too small to sense the gradient along the length of its own body.1 The answer was 
discovered by Howard Berg in the early 1970s: E. coli uses temporal gradients to guide its motion. 
It uses a biased-random-walk strategy to sample space and convert spatial gradients to temporal 

                                                             
1 Noise prohibits a detection system based on differences between two antennae at the two cell ends. To see this, note that E. 
coli, whose length is about 1 micron, can sense gradients as small as 1 molecule per micron in a background of 1000 molecules 
per cell volume. The Poisson fluctuations of the background signal, √1000~	30	, mask this tiny gradient, unless integrated over 
prohibitively long times. Larger eukaryotic cells, whose size is on the order of 10 µm and whose responses are on the order of 
minutes, appear to sense spatial gradients directly. 
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ones. In liquid environments, E. coli swims in a 
pattern that resembles a random walk. The motion 
is composed of runs, in which the cell keeps a rather 
constant direction, and tumbles, in which the 
bacterium stops and randomly changes direction 
(Figure 7.2). The runs last about 1 sec on average 
and the tumbles about 0.1 sec.  

To sense gradients, E. coli compares the current 
attractant concentration to the concentration in the 
past. When E. coli moves up a gradient of attractant, 
it detects a net positive change in attractant 
concentration.  As a result, it reduces the probability 
of a tumble (it reduces its tumbling frequency) and tends to continue going up the gradient. The 
reverse is true for repellents: if it detects that the concentration of repellent increases with time, the 
cell increases its tumbling frequency, and thus tends to change direction and avoid swimming 
toward repellents. Thus, chemotaxis senses the 
temporal derivative of the concentration of 
attractants and repellents. It follows a simple 
strategy: If life is getting better, keep going, and 
if life is getting worse, change direction. 

The runs and tumbles are generated by 
different states of the motors that rotate the 
bacterial flagella. Each cell has several flagella 
motors (Figure 7.3; see also Section 5.5XX) that 
can rotate either clockwise (CW) or 
counterclockwise (CCW). When the motors turn 
CCW, the flagella rotate together in a bundle 
and push the cell forward. When one of the 
motors turns CW, its flagellum breaks from the 
bundle and causes the cell to tumble about and 
randomize its orientation. When the motor turns 
CCW, the bundle is reformed and the cell swims in a new direction (Figure 7.4).  
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7.2.2 Response and exact adaptation 
The basic features of the chemotaxis response can be described by a simple experiment. In this 
experiment, bacteria are observed under a microscope swimming in a liquid with no gradients. The 
cells display runs and tumbles, with an average steady-state tumbling frequency f, on the order of f 
~ 1 sec–1. 

We now add an attractant such as aspartate to the 
liquid, uniformly in space. The attractant concentration 
thus increases at once, but no spatial gradients are 
formed. The cells sense an increase in attractant levels, no 
matter which direction they are swimming. They think 
that things are getting better and suppress tumbles: the 
tumbling frequency of the cells plummets within about 
0.1 sec (Figure 7.5). 

After a while, however, the cells realize they have been 
fooled. The tumbling frequency of the cells begins to 
increase, even though attractant is still present (Figure 
7.5). This process, called sensory adaptation, is common 
to many biological sensory systems. For example, when 
we move from light to dark, our eyes at first cannot see well, 
but they soon adapt to sense small changes in contrast. 
Adaptation in bacterial chemotaxis takes several seconds to several minutes, depending on the size 
of the attractant step.2  

Bacterial chemotaxis shows exact adaptation: the tumbling frequency in the presence of attractant 
returns to the same level as before attractant was added. In other words, the steady-state tumbling 
frequency is independent of attractant levels. If more attractant is now added, the cells again show 
a decrease in tumbling frequency, followed by exact adaptation. Changes in attractant 
concentration can be sensed as long as attractant levels do not saturate the receptors that detect the 
attractant. 

Exact adaptation poises the sensory system at an activity level where it can respond to 
multiple steps of the same attractant, as well as to changes in the concentration of other attractants 
and repellents that can occur at the same time. It prevents the system from straying away from a 
favorable steady-state tumbling frequency that is required to efficiently scan space by random walk. 

7.3 The chemotaxis protein circuit  
We now look inside the E. coli cell and 

describe the protein circuit that performs the 
response and adaptation computations. The input to 
this circuit is the attractant concentration, and its 
output is the probability that motors turn CW, which 
determines the cells’ tumbling frequency (Figure 
7.6). The chemotaxis circuit was worked out using 
genetics, physiology, and biochemistry, starting with 
J. Adler in the late 1960s, followed by several labs, 
including those of D. Koshland, S. Parkinson, M. 

                                                             
2 Each individual cell has a fluctuating tumbling frequency signal, so that the tumbling frequency varies from cell to cell and 
also varies along time for any given cell (Ishihara et al., 1983; Korobkova et al., 2004). The behavior of each cell shows the 
response and adaptation characteristics within this noise 
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Simon, J. Stock, and others. The broad biochemical mechanisms of this circuit are shared with 
many signaling pathways in all types of cells. 
Attractant and repellent molecules are sensed by specialized detector proteins called receptors. 
Each receptor protein passes through the cell’s inner membrane, and has one part outside of the 
cell membrane and one part inside the cell. It can thus pass information from the outside to the 
inside of the cell. The attractant and repellent molecules bound by a receptor are called its ligands. 

E. coli has five types of receptors, each of which can sense several ligands. There are a total 
of several thousand receptor proteins in each cell. They are localized in a cluster on the inner 
membrane, such that ligand binding to one receptor appears to affect the state of neighboring 
receptors. Thus, a single ligand binding event is amplified, because it can affect more than one receptor 
(Bray, 2002), increasing the sensitivity of this molecular detection device (Segall et al., 1986; Jasuja et 
al., 1999; Sourjik and Berg, 2004). 
 Inside the cell, each receptor is bound to a protein kinase called CheA.3 We will consider the 
receptor and the kinase as a single entity, called X. X transits rapidly between two states, active 
(denoted X*) and inactive, on a timescale of microseconds. When X is active, X*, it causes a 
modification to a response-regulator protein, CheY which we will denote Y, which diffuses in the cell. 
This modification is the addition of a phosphoryl group (PO4) to Y to form Yp. This type of 
modification, called phosphorylation, is used by most types of cells to pass bits of information 
among signaling proteins, as we saw in Chapter 6. Yp can bind the flagella motor and increase the 
probability that it switches from CCW to CW rotation. Thus, the higher the concentration of Yp, 
the higher the tumbling frequency (Cluzel et al., 2000). The phosphorylation of Yp is removed by 
the phosphatase CheZ, denoted Z. At steady-state, the opposing actions of X* and Z lead to a steady-
state Yp level and a steady-state tumbling frequency.  Thus, the main pathway in the 
circuit is phosphorylation of Y by X*, leading to tumbles (Fig 7.6). We now turn to the mechanism 
by which attractant and repellent ligands can affect the tumbling frequency. 

7.3.1 Attractants lower the activity of X 
When a ligand S binds receptor X, it changes the probability4 that X will assume its active state X*. 
The concentration of X in its active state is called the activity of X. Binding of an attractant lowers 
the activity of X. Therefore, attractants reduce the rate v (S )  at which X phosphorylates Y, and 
levels of Yp drop, resulting in fewer tumbles. These responses occur within less than 0.1 sec. The 
response time is mainly limited by the time it takes Yp to diffuse over the length of the cells to the 
motors that are distributed all around the cell membrane. 

                                                             
3 The chemotaxis genes and proteins are named with the three-letter prefix che, signifying that mutants in these genes are 
unable to perform chemotaxis. 
4 Note the strong separation of timescales. The conformation transitions between X and X* are on a microsecond timescale. 
Ligands remain bound to the receptor for about 1 msec. Therefore, many transitions occur within a single-ligand binding event. 
The activity X* is obtained by averaging over many transitions (Asakura and Honda, 1984; Mello et al., 2004; Keymer et al., 
2006). Phosphorylation–dephosphorylation reactions equilibrate on the 0.1-sec timescale, and methylations occur on the sec-
minute timescale. 



The pathway from X to Y to the motor explains the initial response in Figure 7.5, in which 
attractant leads to reduction in tumbling. The reduction in activity X* due to the binding of 
attractant S is well described by a Hill function (Fig 7.7)  

𝑋∗ =
𝑋*+,

1 + .𝑆𝐾1
2 

Where Xmax is the maximal activity 
(this equation is ineact near S=0, see appendix 
XX). The halfway-point for reduction in 
activity is K, the binding constant of the 
attractant to the receptor. The Hill coefficient n 
is due to clusters of n receptors that show 
cooperativity: binding of ligand to one receptor 
in the cluster changes the conformation of the 
other receptors in the cluster and raises the 
affinity of ligand to the other receptors. 
  

If this was all, ligand S would cause activity X^* and hence tumbling frequency to 
drop and stay low. What causes adaptation? 

7.3.2 Adaptation is due to slow modification of X that increases its activity 
The chemotaxis circuit has a second pathway devoted to adaptation. As we saw, binding of ligand 
reduces the activity of the receptor X. However, each 
receptor has several biochemical “buttons” that can 
be pressed to increase its activity and compensate for 
the effect of the attractant (Fig 7.8). These buttons 
are methylation modifications, in which a methyl 
group (CH3) is added to four or five locations on the 
receptor. Each receptor can thus have between zero 
and five methyl modifications. The more methyl 
groups that are added, the higher the activity of the 
receptor.  
 The methylation buttons work by changing the 
binding constant K of the receptor to attractants5. The 
more methylated the receptor the higher is K (lower 
chemical affinity to the attractant), (Fig 7.9). Therefore, the less attractant it binds, so that there is less inhibition 
of X activity, X*. In this way, methylation increases receptor activity.  
Mathematically, we can describe the effect of 
methylation on K using the concept of free energy Δ𝐺. 
The binding constant K is given by the exponential of the 
free energy of binding the ligand  𝐾 = 𝑒67  (the 
Boltzmann constant k9𝑇 is included in Δ𝐺 ) . Each 
methylation adds some free energy 𝛾 to the bound state 
of the receptor, making it less favorable, so that Δ𝐺 =
Δ𝐺< + 𝛾𝑚, where m is the number of methylations. As a 
result, K increases with methylation, ~𝑒>*	 , raising the 
half-way-point ligand level needed for inhibition of 
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activity, Figure 7.9. The higher the methylation, the higher the half-way point for binding K, and more ligand 
is needed to reduce the activity X*. 
 

Methylation of the receptors is catalyzed by a 
protein called CheR and is removed by an a 
protein called CheB, denoted R and B. Methyl 
groups are continually added and removed by 
these two antagonistic proteins, regardless of 
whether the bacterium senses any ligands (Fig 
7.10). This seemingly wasteful cycle has an 
important function: it allows cells to adapt. 

Adaptation is carried out by a negative 
feedback loop through B. This protein removes 
methyl groups only from receptors in their active 
conformation, X*. Thus, reduced X activity means 
that B is less active, causing a reduction in the 
rate at which methyl groups are removed by B. 
Methyl groups are still added, though, by R at an 
unchanged rate. Therefore, methylation increases. 
Methylation makes the receptor more active, the 
tumbling frequency increases. Thus, the receptors X first become less active due to attractant 
binding, and then methylation level gradually 
increases, restoring X activity. This is a 
negative feedback loop with a slow arm in 
which X* reduces methylation, and a fast arm in 
which methylation raises X* (Fig 7.11).  

Methylation reactions are indeed much 
slower than the reactions in the main pathway 
from X to Yp to the motor (the former are on the 
timescale of seconds to minutes, and the latter on a 
sub-second timescale). The protein R is present at low amounts in the cell, about 100 copies, and 
appears to act at saturation (zero-order kinetics). The slow rate of the methylation reactions explains 
why the recovery phase of the tumbling frequency during adaptation is much slower than the initial 
response. 

The feedback circuit is designed so that exact adaptation is achieved. That is, the increased 
methylation of X precisely balances the reduction in activity caused by the attractant. How is this 
precise balance achieved? Understanding exact adaptation is the goal of the model that we will next 
describe. 

 
7.4 The Barkai-Leibler model of exact adaptation 
Early models of chemotaxis used equations to describe the reactions just described, and  showed 

response to attractant and exact adaptation. However, in these models, exact adaptation depended on 
setting specific values for parameters such as the numbers of R and B proteins per cell. These 
parameters had to be tuned so that methylation could exactly compensate for the reduction in activity 
caused by attractant. Changing the protein level parameters ruined exact adaptation (Fig 7.12). After 
adding attractant, the cells responded, but then returned to a different basal activity than before the 
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attractant step. We say that exact adaptation in these models is fine tuned. A fine-tuned model is 
described in solved exercise X.X.  

 
 

A 

robust mechanism for exact adaptation was proposed by Naama Barkai and Stan Leibler. In this 
mechanism, changing parameters such as R and B protein levels changes the steady-state activity. 
But changing parameters does not ruin exact adaptation: after a step of attractant, activity first drops 
but then returns to the pre-step level (Fig 7.13). 

 
The full model includes several methylation sites and other details, and reproduces many 

observations on the dynamical behavior of the chemotaxis system (a two-methylation-site version 
is solved in exercise 7.X). Here we will analyze a simplified version of the Barkai–Leibler model, 
aiming to understand how a biochemical circuit can robustly adapt. 

The Barkai-Leibler mechanism depends on two molecular features. First, R works at a constant 
rate independent of its substrate, un-methylated receptors. This constant rate occurs because R is 
found at such low numbers and works so slowly that it always has a methylated receptor to add a 
methyl group to. R thus works at saturation- it adds methyl groups at a rate Vr R, where R is the 
number of R proteins and Vr is the rate. Second, the enzyme B works only on active receptors, X*. 
Its rate of removing methyl groups is thus Vb B X*, where B is the number of B proteins in the cell, 
Vb is their rate and X* is the activity.  

The rate of change of the total number of methyl groups bound to the receptors, m, is given by the 
difference between the rates of adding methyl by R and removing them by B: 
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dm/dt=Vr R- Vb B X* 
The steady state solution (dm/dt=0) occurs at  
X*st=VrR/VbB.  
Importantly, 𝑋∗?@does not depend on attractant concentration. This means that our system always 
returns to the same activity level regardless of input signal: we have exact adaptation. 
A rate plot of this equation, Fig 7.14, shows that if 
X* is smaller than X*st, then methylation exceed 
removal, as a result X* rises, stopping when 
X*=X*st. Likewise, when X* exceeds X*st, 
removal exceeds methylation, and activity X* 
drops until it = goes back down to X*st. The 
important point is that X*st does not depend on 
attractant or repellant levels. Changing parameters 
like R and B changes X*st. But for given R and B, 
activity X*st always returns to its baseline level 
X*st. Exact adaptation is robust. Figure 7.13 shows 
the dynamics of this model for two sets of 
parameters, in which R levels are varied by a factor 
of 2. It is seen that the steady-state activity 
changes, but adaptation remains exact. 
 

Let’s review how this mechanism works. Initially the system is at steady state X*st (7.15 
timepoint a). When attractant S is added, it binds the receptors and reduces their activity (Fig 7.15, 
tiempoint b) . Activity X* drops below X*_st within 0.1 sec. This causes the abrupt initial drop in 
tumbling frequency that is observed in the experiments (Figure 7.10). After this sharp initial 
response, adaptation occurs b e c a u s e  B only works on the active receptors. The rate of 
demethylation by CheB is reduced because of the decrease in active receptors caused by the 
attractant. R, on the other hand, continues to methylate receptors at a constant rate. Therefore, 
methylation m gradually increases (Fig 7.15 timeplont c). Methylation increases the 
probability of receptors to be in their active state. Steady-state is reached when the number of 
active receptors reaches a level that balances the effects of R and B, returning to the steady-state 
activity level 𝑋∗ = 𝑋?@∗ . (Fig 7.15 timepoint d). The activity is equal to the pre-attractant activity, despite 
the presence of attractant. We have exact adaptation. 
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Exact adaptation occurs for a wide range of variations in any of the parameters of the model, such 
as VR, VB, R, and B. In contrast, the value of the steady-state activity to which the cells adapt depends 
on these parameters. In other words, steady-state activity is a fine-tuned feature of this model (Figure 
7.10). Exact adaptation, in which the steady-state does not depend on ligand levels, is a robust feature 
of the model and does not depend on the precise values of the biochemical parameters. 
There are limits to robustness. For example, if receptors become fully methylated, they can no longer 
compensate for attractants. Indeed, exact adaptation is broken in the case of some attractants such as serine: 
the serine receptor (Tsr) even when fully methylated cannot compensate for high concentrations of serine, 
and there n o  e x a c t  a d ap t a t i o n  a t  h i g h  c o n c en t r a t i o n s  o f  s e r i n e .  
Robustness of exact adaptation in this model depends on the assumption that B works only on 
active receptors, and does not demethylate receptors that are in their inactive state. This is a 
specific biochemical detail that is essential for robust adaptation. The assumption that CheB works 
only on active receptors is not unrealistic, because proteins can be exquisitely specific in 
discriminating between molecular states. Relaxing this assumption by allowing a small relative 
rate ε for B action on inactive receptors entails a loss of exact adaptation by a factor on the order of 
ε. 

 
Robust adaptation and Integral feedback 
At the heart of this mechanism is a feedback loop called integral feedback (Yi et al 2000), which is 
a central principle in engineering. In integral feedback, there is a slow component (methylation in 
our case) which integrates an ‘error’ over time, and acts to decrease the error. In chemotaxis, the 
error is the distance between the activity and the steady-state activity	𝑒𝑟𝑟𝑜𝑟 = 𝑋?@∗ − 𝑋∗	. The 
power of integral feedback is that as long as the error is not zero, the integrator keeps 
accumulating, and the feedback grows until it forces the error to go to zero. There is no choice for 
the system but to return to 𝑋?@∗ . 
The mapping of the Barkai-Leibler model and integral feedback is easiest to by rewriting the 
equation for the dynamcis of methylation:  

𝑑𝑚
𝑑𝑡

= 𝑉𝑏𝐵(𝑋?@∗ − 𝑋∗) 
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Solving this equation by taking an integral over time on both sides shows that methylation 
integrates over the error : 
 𝑚(𝑡)~ ∫ (𝑋?@∗ − 𝑋∗(𝑡))	𝑑𝑡

@
NO ~∫ 𝑒𝑟𝑟𝑜𝑟(𝑡)𝑑𝑡	 

 Because of this integrator effect, the feedback does not stop until the error is zero (until 𝑋∗ =
𝑋?@∗ 	). Even a small error keeps being integrated over time to lead to a large feedback signal. 
Linearity is not crucial here: It is enough that dm/dt=g(X*) , with g(X*) a decreasing function of a 
that crosses zero at X*_st, f(X*_st)=0, to show integral feedback and exact adaptation. 
Engineers use integral feedback to achieve exact adaptation in many familiar situations. For 
example, integral feedback ensures that a heater can keep the temperature T of a room at a 
desired set-point T_st. This integral feedback controller, in which the power to the heater is 
governed by the integrated error (T-Tst), is shown in solved exercise XX. The heater power changes 
slowly and is analogous to methylation. 
 To summarize, we put together the equations for ligand binding and methylation, to arrive at a 
model for bacterial chemotaxis that captures many experiments on the dynamic response to 
changing ligands. We will use this model, which is a simplified version of a model presented by Tu 
Shimizu and Berg, in the next chapter. The model becomes simpler when we use the receptor 
binding constant K as a variable instead of m. To do so, we use the relation 𝐾~𝑒>*	 and hence 
PQ
P@
~𝐾𝑑𝑚/𝑑𝑡. We also use as the output the receptor activity normalized by its maximal value  

a=X*/X_max:  
(1)𝑑𝐾/𝑑𝑡 = 𝑐𝐾(𝑎?@ − 𝑎)   
(2)𝑎 = 1/(1 + (S/𝐾)2)  
 
Parameters that match experimental data are ast=0.3, c=1 min^-1 and n=6. Fig 7.XX shows how 
the activity a drops after step additions of attractant, and shows a pronounced pulse when 
attractant is removed. Exact adaptation occurs in all cases, as the binding constant K slowly adjusts 
to the changes in input. K acts like an internal representation of the external signal S. 
When attractant S is added, activity a(t) drops thanks to equation 2. As a result the receptor 
halfway-point K(t) rises slowly thanks to equation 1. Its as if the receptor adjusts its half-way point 
K to be sensitive near the new level of attractant. This is like gain-control in a camera, which 
adjusts its sensitivity to the ambient level of light. Thanks to the integral feedback equation, the 
adjusting process of K stops precisely when activity reaches its set point a_st. Without exact 
adaptation, the receptors could not be sensitive over many orders of magnitude of attractant 
levels, any more than a camera without gain control could work across orders of magnitude of 
light. 
 
7.4.4 Experiments show that exact adaptation is robust, whereas steady-state activity and 
adaptation times are fine tuned 



An experimental test 
of robustness 
employed genetically 
engineered E. coli 
strains, which 
allowed controlled 
changes in the 
concentration of each 
of the chemotaxis 
proteins (Alon et al., 
1999). This control 
was achieved by first 
deleting the gene for 
one chemotaxis 
protein (for example, 
R) from the 
chromosome, and 
then introducing into 
the cell a copy of the 
gene under control of 
an inducible 
promoter (the lac 
promoter). Thus, 
expression of the 
protein was 
controlled by means of 
an externally added chemical inducer (IPTG). The more inducer added, the higher the R 
concentration in the cells. In this way, R levels were varied from about 0.5 to 50 times their wild-
type levels. The population response of these cells to a saturating step of attractant was monitored 
using video microscopy on swimming cells. The experiment was carried out with changes in the 
expression levels of different chemotaxis proteins. 
It was found that the steady-state tumbling frequency and the adaptation time varied with the 
levels of the proteins that make up the chemotaxis network (Figure 7.16). For example, steady-
state tumbling frequency increased with increasing CheR levels, whereas adaptation time 
decreased. Despite these variations, exact adaptation remained robust to within experimental 
error. These results support the robust model for exact adaptation.  
This experiment, which took three years, was the way that I transitioned from theoretical physics to 
experimental biology in my postdoc with Stanislas Leibler at Princeton. I got a lot of help from Mike Surrette 
who was a postdoc working on bacterial chemotaxis in the Stock lab next door. My fascination with the robust 
model was powerful enough to help me make the transformation from theorist to experimentalist. 
 
7.5 Individuality and robustness in bacterial chemotaxis 
Spudich and Koshland (1976) observed that genetically identical bacterial cells appear to have an 
individual character as they perform chemotaxis. Some cells are “nervous” and tumble more 
frequently than others, whereas other cells are “relaxed” and swim with fewer tumbles than the norm. 
These individual characteristics of each cell last for tens of minutes. The adaptation time to an 
attractant stimulus also varies from cell to cell. Interestingly, these two features are correlated: the 

Figure 7.16 



steady-state tumbling frequency f in a given cell is inversely correlated with its adaptation time, τ, 
that is, f ~ 1/τ. 
The robust model for bacterial chemotaxis can supply an explanation for the varying chemotaxis 
personalities of E. coli cells. This is based on the cell–cell variation in chemotaxis protein levels, and 
particularly in the least abundant protein in the system, tions in R affect the tumbling frequency f 
and the adaptation time τ in opposite directions. The Barkai–Leibler model with multiple 
methylation sites suggests that f ~ R and τ ~ 1/R. Thus, the model predicts that f ~ 1/τ, explaining 
the observed correlation in these two features (see solved exercise 7.X). 6 

Despite the cell–cell variability in tumbling frequency, the vast majority of the cells in a population 
perform chemotaxis and climb gradients of attractants. On the other hand, mutant cells that have 
wild-type tumbling frequency but cannot adapt precisely (such as certain mutants in both CheR 
and CheB) are severely defective in chemotaxis ability. Evidently, tumbling frequency need not be 
precisely tuned for successful chemotaxis, whereas exact adaptation is important for most ligands.1 

 
In fact, there is an advantage in 
having a range of tumbling 
frequencies in a population of 
bacteria. This is because bacteria 
cannot know in advance which type 
of medium they will be moving 
through. In a free liquid, it is 
optimal to have long runs to sample 
space widely (Fig 7.17). But in a 
liquid dense with obstacles, as 
occurs in the crowded 
environments of the soil or the 
lower intestine, it is optimal to have 
shorter runs to avoid being stuck 
against an obstacle for long times. Thus, variation in protein levels can generate a bet hedging 
strategy in which different individuals are suited for different possible future environment. Not all 
of the eggs are in one basket. Thanks to robustness, no matter what the steady-state tumbling 
frequency is, every individual will have exact adaptation, and hence be able to work across many 
orders of magnitude of signal. 
In summary, the bacterial chemotaxis circuit has a design such that a key feature (exact adaptation) 
is robust with respect to variations in protein levels. Other features, such as steady-state activity 
and adaptation times, are fine-tuned. These latter features show variations within a population due 
to intrinsic cell–cell variations in protein levels. Because of the robust design, the intrinsic variability 
in the cell’s protein levels does not abolish exact adaptation. 
 
As a theorist, one can usually write many different models to describe a given biological system, 
especially if some of the biochemical interactions are not fully characterized. Of these models, 
only very few will typically be robust with respect to variations in the components. Thus, the 
robustness principle can help narrow down the range of models that work on paper to the few that 
can work in the cell. Robust design is an important factor in determining the specific types of 

                                                             
6 Detailed stochastic simulations of this protein circuit were pioneered by D. Bray and colleagues (Shimizu 
et al., 2003). 
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circuits that appear in cells. In the next chapter, we will study how robustness constraints can 
shape the circuits that guide pattern formation in embryonic development. 
 
Further reading 
Alon, U., Surette, M.G., Barkai, N., and Leibler, S. (1999). Robustness in bacterial chemotaxis. 
Nature, 397: 168–171. 
Barkai, N. and  Leibler, S. (1997). Robustness in  simple biochemical networks.  Nature, 387: 
913–917. 
Berg, H.C. (2003). E. coli in Motion. Springer. 

Berg, H.C. and Brown, D.A. (1972). Chemotaxis in Escherichia coli analyzed by three-dimensional tracking. Nature, 
239: 500–504. 
Berg, H.C. and Purcell, E.M. (1977). Physics of chemoreception. Biophys. J., 20: 193–219. 

Knox, B.E., Devreotes, P.N., Goldbeter, A., and Segel, L.A. (1986). A molecular mechanism for sensory adaptation 
based on ligand-induced receptor modification. Proc. Natl. Acad. Sci. U.S.A., 83: 2345–2349. 

Kollmann, M., Lovdok, L., Bartholome, K., Timmer, J., and Sourjik, V., (2005). Design principles of a bacterial 
signalling network. Nature, 438: 504–507. 
Spudich, J.L. and Koshland, D.E., Jr. (1976). Non-genetic individuality: chance in the single cell. 
Nature, 262: 467–471. 
Yi, T.M., Huang, Y., Simon, M.I., and Doyle, J. (2000). Robust perfect adaptation in bacterial chemotaxis 
through integral feedback control. Proc. Natl. Acad. Sci. U.S.A., 97: 4649–4653. 
 
Tu Shimizu Berg (2008) 
 
 


