
Systems Medicine Lecture notes 
 Uri Alon (Spring 2020) 

 
Lecture 1 - Epidemiology of COVID-19 

 
Welcome to Systems Medicine! We will explore the amazing world of the human body, how its 
circuitry works, and how it fails during aging and diseases. We will see how mathematics can help 
us make sense of the basic principles of human physiology and medicine. 
 
Let's start right away with our first feedback loop. We can be in a relaxed 
state. The relaxed state is good for this course, because it has better 
listening, learning and memory than a stressed state. In the relaxed state our 
nervous system and hormones ensure a specific body response. For 
example, our breathing is deep and slow, with long outbreaths.  
Now, as human beings, we have the ability to take deep breaths at any 
moment we choose. Doing this increases the probability of entering the 
relaxed state. That's why in this course I’ll invite you to take deep sighs of 
relief once in a while- to improve learning. Of course, you don't have to. But 
if you do, I promise it will feel good.  
 
So, let's all together take a nice deep sigh of relief :) 
 
We will have 12 lectures on Tuesdays 14:15-16:00 Israel time (GMT+3) that will be recorded and 
posted online. Note that Tuesday April 28 is a Memorial Day and we will not have a lecture. We 
will have exercises every two weeks. I admit that I'm right now very involved in understanding the 
coronavirus epidemic (COVID19) and so I'll start with that in the first lecture, just to get it out of 
my system. This will also demonstrate our simple mathematical approach, which we will use in 
the next lectures too. 
Starting from lecture 2, the course outline will lead us on a journey across the body, across the 
lifespan from childhood to old age, and across many types of diseases and their possible 
remedies. We will end with a grand summary, a periodic table of diseases. 
 
Course outline 
Lecture 1. COVID-19 and epidemics 
Part 1: Hormone circuits 
Lectures 2-3: the circuit that controls blood glucose (diabetes) 
Lectures 4-5: The human stress response (addiction, bipolar disorder) 
Part 2: Defenses 
Lecture 6: The origin of autoimmune diseases (type 1- diabetes, thyroiditis) 
Lecture 7: Inflammation and fibrosis as a bistable system  
Lecture 8: Cancer and evolutionary trade-offs 
Part 3: Aging 
Lecture 9-11: Why and how we age, and the origin of age-related diseases 
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Lecture 12: Periodic table of diseases 
 
You, the students, differ from one another in what you studied, and in your level of biology and 
math. I dont assume any biology and assume basic math skills. 
For example, for some of you this sentence is easy, for others it is mysterious: 

 
“The viral genome is a 30Kbp single-stranded RNA which is translated to  
make an RNA-replicase.” 
 

It means something like: the genetic material - or genome- of the virus is a long string of 30,000 
letters which encodes a machine that can make new copies of the genome. 
 
On the other hand, for some of you the following equation is easy, while others need a refresher: 

 𝑑𝑥/𝑑𝑡 = 𝛼	𝑥  
whose solution is 𝑥(𝑡) = 𝑥(0)	𝑒𝑥𝑝(𝛼	𝑡) 

 
In fact, this is the main equation we will use in this 
lecture: the rate of change of x(t) is equal to x(t) times 
a number, 𝛼. If 𝛼	is greater than zero, 𝛼>0, we have 
explosive exponential growth. More x means that x 
grows faster, which makes even more x, and so on. 
In contrast, if 𝛼 is negative, we have exponential 
decline with time. The system thus lives on a knife's 
edge - changes in 𝛼 can make it either explode or die 
off. 
 
Heterogeneity in a class is usually thought to be an obstacle to teaching. I believe that it can be 
a resource. We will use your different skills as an asset. How? At certain moments, you will teach 
each other! Like right now as we go into breakout rooms. Please find out each other's name, what 
is your bachelor degree, what is your math and biology level, what do you expect from this course. 
 
*Pair and share, breakout rooms* 
 
More course facts: we have a gifted teaching associate Dr. Avi Mayo. We have been working 
together for years. Feel free to email him with questions: avi.mayo@weizmann.ac.il. These lecture 
notes will be posted on my website, as well as the course videos and exercises. 
 
 
 
Biology of COVID-19 
And now let's start with the biology of coronavirus, and then go to the dynamics of the epidemic 
and what we can do about it. Right now, it looks like a peak in cases, after a couple of months of 
exponential rise and a lot of physical distancing and lockdown here in Israel and in many other 
countries (I’m looking forward to rereading this when the epidemic is just a memory). 
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This coronavirus, called SARS-CoV-2, has spread across the globe. Let's compare it to other 
epidemics caused by viruses. We will compare how lethal the virus is, namely the fraction of 
infected people that die. We will also compare how fast it spreads. An important number is called 
the basic replication number, Ro. It is the number of people infected by an infected individual, 
assuming that the population is completely susceptible. Imagine the early days of an epidemic, a 
carrier arrives and infects Ro people on average, each of which infects Ro others and so on. If 
Ro>1, we have exponential spreading - an epidemic. 
Let's take a look at famous viruses. Measles spreads fast with Ro~15, but isn't very lethal. Ebola 
spreads more slowly but is much more lethal.  In fact, it is so lethal that people get sick very soon 
and don't get out of bed to infect others. The seasonal flu spreads slowly with Ro=1.3, and kills 
‘only’ 0.1%. Our virus, CoV2, spreads faster than the flu, with Ro=2-3, and is also more deadly, 
killing about 1%.  
There seems to be an approximate tradeoff- the more you spread the less deadly. We will discuss 
such evolutionary trade-offs in depth in one of the lectures in this course. Usually, viruses become 
less and less lethal as they evolve, until they reach an equilibrium and become endemic- 
widespread but less lethal (like the common cold). However, such evolution can take years. 
Viruses like the flu mutate rapidly and thus are different every season (requiring new vaccines). 
In contrast, Cov2 seems so far to mutate more slowly and I hope it stays that way. 
The spreading rate Ro can be affected by weather - for example, flu spreads faster in winter-
spring, making it seasonal. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
                                                    
 
The basic replication number Ro is the number of people infected by an infectious person, 
in a world where everyone is susceptible (early phase of the epidemic). 
 
Deep sigh of relief. 
 

Basic replication number Ro 
Figure 1.3 Source: https://www.nytimes.com/interactive/2020/world/asia/china-coronavirus-contain.html 

 



CoV2 coronavirus biology  
The virus is a replication machine. It uses our cells to make new copies of itself. Cov2 enters host 
cells - in the airway and lung. It enters a cell  in 10 min, hijacks its biosynthesis machinery, and 
makes about 1000 new copies of itself (virions) in about 10 hours. These new viruses exit the cell 
and go on to infect new cells. Some of these virions are defective, since virus production is 
typically error prone. However, many are able to infect new cells.  The virus count in the body 

therefore rises exponentially. After about three days (the latent period), the virus counts rise so 
high that a person begins to infect others, because the virus is carried outside in exhaled droplets. 
 
When virus counts in the body become high, the immune system reacts, using for example 
antibodies to inactivate the virus. Other immune cells attempt to kill infected cells before they 
release the virions. We will discuss the immune system in part 2 of the course in more depth. In 
COVID19, some think that some of the major symptoms are due to overreaction of the immune 
system, in addition to the damaged lung cells. Immune reactions cause fluid to fill the lungs, 
causing acute respiratory distress and death in about 1% of infected people.  
The antibody response is the way vaccines work: introducing a weak version of the virus to cause 
an immune response and immune memory- that if the real virus is encountered, antibodies are 
made rapidly and effectively, blocking the illness. 

Figure 1.4 Source: https://www.sinobiological.com/research/virus/coronavirus-replication 



Another hope is drugs that stop the virus. To see how they might work, we can look at the 
mechanism of viral replication. The virus inserts its genome into the cell. Only a single protein is 
made at first- a replicase that can copy this genome (unlike our DNA genome, this virus has an 
RNA genome). All other viral proteins, about 20 of them, are produced from the replicated 
genomes (technically the complementary strand to the original RNA genome). These proteins 
include the spike protein that forms the “crown” around the virus and allows it to attach to cells, 
and the N protein that wraps up the viral genome for packaging. The virus takes over a piece of 
membrane in the cell and uses it to make a sphere that encloses a copy of its genome to make 
new virions. These are then exported out of the cell (exocytosed).  
To make a drug, we need a small molecule that gets into the cell and interferes with one of the 
viral proteins. It is important that this molecule does not interact strongly with any of our normal 
human proteins. If it did, we might have side-effects. Luckily, the virus makes some proteins that 
are not found in any of our cells- like the replicase that duplicates the RNA genome. Indeed, the 
replicase is targeted by drugs developed against Ebola 
(another RNA-virus) that are now being tested for COVID19. 
 
The age distribution of deaths from COVID-19 is not 
uniform. Older people, and those with chronic illness, are 
more susceptible than the young. We will discuss why 
incidence of many diseases rises with age in part 3 of this 
course. Still, a considerable fraction of deaths is below age 
60. Men seem more at risk than women.  
Interestingly, many other viral epidemics have different age 
distributions. Seasonal flu is lethal for young children as well 
as for the old. The 1918 flu pandemic had three groups that 
were at high risk: the very young, the very old, and those 
between age 20-40. In the figure below, the death rate per 
age group for the 1918 flu (full line) is compared to 
pneumonia (dashed line). The 1918 flu has a W-shape 
curve, and pneumonia has a more typical U-shaped curve. 
One hypothesis is that the 1918 flu killed by an immune 
overreaction (cytokine storm), and that this overreaction 
was strongest in those with the strongest immune system- 
the young adults. 
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Figure 1.6 (sources:Figure 1: (a) Schematic 
diagram showing the W-shaped mortality-age..., 
https://www.bbc.com/news/health-52197594) 



Epidemic curves 
Many of us have been staring at the curves of 
new cases rising as a function of the days and 
weeks since the epidemic started. 
Understanding such dynamics has a long 
history. A big step was taken in the early 20th 
century, based on mathematical models. These 
models helped to make breakthroughs in 
control of diseases like malaria.  
A modern version of the same models was 
influential in convincing many governments to 
take strong measures against COVID19. An 
important simulation study by Imperial college 
(2020) for example, predicted that if 
governments take no action, the number of 
cases would rise exponentially, peak in about 
three months, and then drop. With a death rate 
of about 1%, it predicted millions of deaths in the 
US. Hospitals would be flooded at far above their 
capacity, causing a serious health crisis. 
 
The model also suggested that interventions like 
closing schools, banning large events, testing, 
isolation of cases can help. The objective was to 
flatten the curve: make the peak go below the 
capacity of hospitals.  
Indeed strong measures were taken in many 
countries, with substantial damage to society and 
the economy. Lockdown causes massive 
unemployment, which affects physical and 
mental health. Non-COVID-related health 
problems are not attended to sufficiently, leading 
to massive health problems. Today, many 
governments are in a dilemma - to stop lockdown 
means easing up on the economy and society… 
but has the risk of resurgence, with a new wave 
of infections. This is demonstrated in the 
simulation showing how lockdown needs to 
restart with every resurgence. 
 
So let’s understand these models, and what they tell us about epidemics. These models can also 
help us figure out creative ways to address the COVID19 epidemic. I hope they will have you 
students prepared for the next pandemic. It might be even worse - spreads like measles and kills 
like Ebola? Kills young as well as old? Let’s be prepared. 

Figure 1.7 
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Figure 1.9 Source:https://www.imperial.ac.uk/media/imperial-
college/medicine/sph/ide/gida-fellowships/Imperial-College-
COVID19-NPI-modelling-16-03-2020.pdf  



 
*Deep sigh of relief. * 
*Song: we shall overcome* 
 
Math models- SIr (Kermac and Mckendric , 1927) 
This classic model divides the population into three compartments. 
S(t)=susceptible fraction which means those vulnerable to be 
infected, I(t)=infected fraction, r(t)=removed fraction (recovered, 
dead, isolated- no longer can infect others). It is customary to name 
the ‘removed’ compartment capital “R(t)”, but I’ll use lower case 
“r(t)” to avoid confusion with the replication number Ro.  
These S, I and r denote fractions of the total population, each 
between zero and one. Note that these compartments sum up to 
one, the total population:  

 S(t)+I(t)+r(t)=1. 
The basic process of spread in the SIr model is interactions between susceptible and infected 
people. The rate of infections is modeled just like molecules colliding in a well-mixed chemical 
reaction. This is a limitation of compartment models- in reality there is a social network of 
interactions (social structure), which usually makes the epidemic go slower. But the model is still 
qualitatively useful.  
So just like molecules, the probability of interaction is the product of S and I, and thus infection 
rate is  

rate of infection=𝛽𝑆	𝐼.  
This is the rate at which susceptible people become infected. The transmission parameter is 𝛽, 
whose units are 1/time. Note that if there are no susceptible people, S=0, there are no infections. 
The same is true if there are no infected people, I=0.  
As a result, the rate of change of S with time, dS/dt, is just -𝛽𝑆	𝐼, with the minus sign signifying 
reduction: 

 (1)				𝑑𝑆/𝑑𝑡 = −𝛽𝑆	𝐼 
The production of new infected people is 𝛽𝑆	𝐼.  Infected people are removed, that is they recover 
or die, at rate 𝛾𝐼 . The removal parameter 𝛾 has units of 1/time. The typical time that an infected 
person takes to recover is 1/𝛾. Thus, the rate of change of I(t) is the production minus the removal 
rates:  

(2)				𝑑𝐼/𝑑𝑡 = 𝛽𝑆	𝐼	 − 𝛾𝐼 
Finally, the accumulation rate of removed people is just 𝛾𝐼 

(3)				𝑑𝑟/𝑑𝑡 = 𝛾𝐼 
In this model, the basic replication number Ro is the rate of transmission 𝛽 times the typical time 
a person is infected 1/𝛾, giving: 

(4)					𝑅8 = 𝛽/𝛾  
For CoV2, we can estimate roughly that 1/𝛾~ 7d. This parameter comes from the following 
observations: the majority of cases recover and stop being infectious within about a week, with 
the vast majority in less than 2 weeks. The rare severe cases may take a month or more to 
recover. If Ro=2, we get from Equation 4 a transmission parameter of 𝛽~0.3/day. If we interact 
with, say, 10 people a day on average, the probability per per day to infect a given person is not 
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that large, 𝛽/10 ≈ 0.03/𝑑𝑎𝑦	. That's why household members are not always infected by a sick 
person. 
 
To simplify things, let's use the replication number 𝑅8 = 𝛽/𝛾 to rewrite the main equation 2. We 
take gamma I out of the parenthesis: 

𝑑𝐼/𝑑𝑡 = 𝛽𝑆	𝐼	 − 𝛾𝐼 = 𝐼(𝛽𝑆 − 𝛾) = 𝛾𝐼(𝛽𝑆/𝛾 − 1) 
And finally: 

𝑑𝐼/𝑑𝑡 = 𝛾(𝑅8	𝑆 − 1)𝐼 
Let's begin our analysis with the early days of the epidemic. In the beginning, almost everyone is 
susceptible (true today April 20 in most countries). Thus S~1. We then can write, to an excellent 
approximation, S=1 and have  

𝑑𝐼/𝑑𝑡 = 𝛾(𝑅8 − 1)𝐼 
This equation has the familiar form of our exponential growth equation: rate of change of I(t) is I(t) 
times a number, 𝛾(𝑅8	 − 1). Solution: an exponential growth of infectious people in the early days 
of an epidemic, 

𝐼(𝑡) = 𝐼(0)𝑒𝑥𝑝(𝛼𝑡)			𝑤𝑖𝑡ℎ	𝛼 = 𝛾(𝑅8	 − 1) 
 
If cases triple every week, we have 𝛼~1/7d, which means Ro~2.  
 
We see that we have an epidemic - defined by a growing 
number of cases with time - when replication number 
exceeds one, Ro>1 
We have an exponential decline of cases if Ro<1. 
 
SO, TO CONTROL THE EPIDEMIC, WE JUST NEED 
Ro<1! Not to push replication all the way down to zero, 
but just to nudge it below one. This is a hopeful 
message that has helped to control many epidemics in 
the past. 
 

*Deep sigh of relief. * 
 
We can discuss how some of the epidemiological measures against COVID work. We want to 
push down Ro, and thus to reduce transmission 𝛽 or increase removal 𝛾. Reducing transmission 
is aided by hygiene like hand washing. Similarly, physical distancing to 2m and masks reduce 
transmission. Measures such as lockdown and quarantine prevent meeting many people, pushing 
𝛽down.  
We can also think of how to raise the removal parameter 𝛾 in order to reduce Ro, since Ro=𝛽/𝛾. 
For example, by rapid testing and isolation of infected people and their contacts, we can quicken 
the time that an infected person is ‘removed’- namely isolated. If we include such isolated people 
in the removed compartment, reasoning they can’t infect others, isolation raises 𝛾. This strategy 
works well in South Korea for example, especially when the number of cases is low.  Similarly, 
once we have good treatments that reduce infectiousness we can raise 𝛾. 
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Pair and Share! 
 
What happens after exponential growth - how does the epidemic go away? 
If we don't manage to get Ro<1, the epidemic will reach herd 
immunity - so many people will be infected, and recover, that 
the rate of new infections will slow down. There just won't be 
enough susceptible people around for rapid transmission. 
Here is a typical simulation, showing how I(t) rises 
exponentially, causing a drop in susceptible fraction S. This 
makes I(t) reach a peak and then drop. Throughout the 
process, the removed fraction r(t) keeps accumulating.  
Let’s understand this mathematically. The equation is 

𝑑𝐼/𝑑𝑡 = 𝛾(𝑅8	𝑆 − 1)𝐼  
So, the peak of infectious people, I(t) occurs at a time when 
dI/dt=0. After all, that is how we find the maximum of a function, 
its derivative is zero. This means that Ro S-1=0, which means 
the peak occurs when S(t)=1/Ro. That is, for Ro=2 , when 50% 
have already been infected. This is a very large number of 
people, and given the fatality rate of the disease, explains why 
herd immunity was not an option for many governments. 
 
Let's talk now about the end of the natural course of the 
epidemic: Does every susceptible person become infected 
at the end?  
Some lucky people will have genetics that make them not-susceptible to the disease in the first 
place. But let's leave these out of the discussion. Among those susceptible, what happens at the 
end? 
I originally guessed that the intuitive answer is yes… everyone will be infected.  But here the math 
teaches us differently, and represents what happens in real epidemics. To see this, we will derive 
an equation for the number of susceptible people left at time equal infinity, 𝑆@ 
To do so, divide Eq. 1 by Eq. 3. As a result, and this is a bit tricky to understand at first, we have 
an equation for S as a function of r, written S(r), instead of as a function of time S(t): 

𝑑𝑆/𝑑𝑟 = −𝑅8	𝑆 
Thus, the solution is an exponential of r: 

(4)					𝑆(𝑟) = 𝑒ABC	D 
At the end of the infection, no one is infectious anymore, 
I=0, thus everyone is either removed or susceptible: 
𝑟@ = 1 − 𝑆@ 
Plugining this into Eq 4, we find 

𝑆@ = 𝑒ABC	(EAFG) 
For Ro=2, we have, 𝑆@~20%. Not every susceptible 
person gets infected. 
 

Figure 1.10 
Source:https://www.researchgate.net/fig
ure/SIR-model-Schematic-
representation-differential-equations-
and-plot-for-the-basic-
SIR_fig2_47676805 
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One can use these models to suggest creative ideas for exiting lockdown without risk of 
resurgence. For example, consider a cycle of 4 days of work followed by 10 days of lockdown. 
Such a 2-week cycle provides 40% employment. It reduces the average Ro by two effects. First 
it restricts the time people are at work (outside the 
house) down to 4/14=30%, and so there is much 
less chance to infect many others. Secondly, it uses 
the timescale of the virus against itself. An infected 
person is not infectious for the first three days - the 
latent period. The 4-10 cycle is chosen so that 
those infected at work are latent while at work, and 
only reach full infectiousness at home. This reduces 
the number of infections outside, and thus reduces 
the average replication number. In the right 
conditions, this causes Ro<1, and thus the 
epidemic declines without risk of resurgence. To 
model this last effect requires a model with a latent 
period, see here for details 
 
*Deep sigh of relief. * 
See you in the next lecture, where we begin our journey into the hormone circuity in the body. 
 
Appendix: Ron milo and his lab have compiled a great collection of CoV2 numbers and facts: 
Source: https://www.researchgate.net/publication/340322763_SARS-CoV-2_COVID-19_by_the_numbers 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.12 https://medium.com/@urialonw/adaptive-
cyclic-exit-strategies-from-lockdown-to-suppress-
covid-19-and-allow-economic-activity-4900a86b37c7.  



Exercises (with student feedback) 
 

Systems Medicine 
 Uri Alon (Spring 2020) 

Exercise 1 
 

1) In the SIr model, show using equations (1)-(3) that S(t)+I(t)+r(t)=1 at all times. Hint: use 
the initial conditions in which this sum equals one at time t=0. 
 

2) Choose a non-corona virus whose name starts with the first letter of your last name (if 
there is none, the first letter of your given name). Read about its mechanism of entry into 
the cell and replication inside the cell, and summarize in 100 words. 
A list of Human viruses and associated pathologies can be found here: 
https://viralzone.expasy.org/678, Further data can be also found here 
https://talk.ictvonline.org/. 
 

3) Simulation: 
a. Plot the infection curve as a function of time for I(0)=0.01, S(0)=0.99, and Ro=2. 

Assume β=0.3 /day, and 𝞬=1/7day. 
b. What is the value of I(t) at its maximum?  
c. Plot also S(t) and r(t). Check whether the maximum infection is reached at the 

point mentioned in the lecture, and whether the susceptible fraction at long times 
matches the lecture prediction.  

d. Assuming a death rate of 1%, and a population of 1 million, approximately how 
many fatalities are expected at the end of the epidemic based on this simulation? 
Hint: r(t) is defined as the fraction recovered or dead. At long times when the 
epidemic is over, everyone that has been infected has either recovered or died 
from the disease.  

e. Plot the infection curve for a small value of Ro (choose a value of β that makes 
Ro slightly larger than 1) and a large value of Ro. What do you observe about the 
curves? (100 words). 

f. Plot the infection curve as in a., but now Ro drops to Ro=0.9 at t=5 days due to a 
lockdown. What do you observe (50 words)?  

 
Resources: Tutorials and sample computer code provided in Mathematica, Python, Matlab and 
R in the AlonLab website https://www.weizmann.ac.il/mcb/UriAlon/systems-medicine-course-
2020 
 
 


