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Lecture 2 - Beta-cell tissue size control has fragilities 
that lead to type-2 diabetes:  

Dynamical compensation and  
mutant resistance in tissues 

 
 
We continue to use the glucose-insulin system as a model to understand fundamental 
principles of tissues. Tissues are made of cells that signal to each other. Distant tissues 
communicate via hormones that flow in the blood stream. We will see that at the tissue 
level there are universal challenges. Tissues must:  

(i) Maintain a proper size, despite the fact that cells tend to grow exponentially 
(ii) Signal precisely to distant tissues whose parameters are unknown. 
(iii) Avoid mutant cells that can grow and take over the tissue. 

We will see that principles arise to allow organs to work robustly, keep the right 
functional size and resist mutants. In fact, a unifying circuit design can address all three 
problems at once. 
 
The minimal model cannot explain the robustness of glucose levels to variations in 
insulin sensitivity.  
We saw in the last lecture that the insulin-
glucose feedback loop on its own can 
provide rapid responses to a meal on the 
timescale of hours. However, it is 
sensitive to changes in physiological 
parameters like insulin sensitivity s. The 
minimal model predicts that baseline 
glucose and its dynamics depend on s: 
insulin resistance (low s) means a rise 
form 5mM glucose baseline, and longer 
response times. This is in contrast to the 
observation that most people with insulin 
resistance have normal glucose. The 
minimal model is not robust to 
parameters like s. 
Therefore, robustness must involve additional processes beyond the minimal model’s 
glucose-insulin loop. Indeed, the way that the body compensates for decreased insulin 
sensitivity s is by increasing the number of beta cells. More beta cells means more 
insulin, and this exactly matches the decrease in 𝑠. For example, people with obesity 
that are insulin resistant have more and larger beta cells than lean individuals (beta cell 
hyperplasia and hypertrophy). They thus secrete more insulin, compensating for insulin 
resistance.  
This compensation is seen in a hyperbolic relation that exists between healthy people: 
an inverse relationship between s and steady-state insulin that keeps the product of the 
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two constant: 𝑠𝐼#$ = 𝑐𝑜𝑛𝑠𝑡  ((Kahn et al., 1993)). People thus compensate for low 
insulin sensitivity with more insulin (Fig 2.1) People with diabetes have values that lie 
below this hyperbola. The origin of this hyperbolic relationship has long been 
mysterious, but we will soon understand it.  
2.3 A slow feedback loop on beta-cell numbers provides compensation  
To explain how such compensation can come 
about, we need to expand the minimal model. 
We need to add equations for the way that beta-
cell numbers, 𝐵, can change.  
Here we enter the realm of the dynamics of cell 
populations. Cell dynamics are quite unlike the 
dynamics for the concentrations of proteins 
inside cells or form molecules in the blood. For 
example, for glucose we used equations that, at 
their core, have production and removal terms, 
𝑑𝐺/𝑑𝑡 = 𝑚 − 𝛼𝐺, and safely converge to a 
stable fixed point, 𝐺#$ = 𝑚/𝛼 (Fig 2.2).  
Cells, however, live on a knife’s edge. Their 
basic biology contain an inherent instability, due 
to exponential growth. Cells divide (proliferate) 
at rate p, and are removed at rate d (Fig 2.3), 
which we will call death. Death rate includes 
active cell death (apoptosis), and also other 
processes that take the cells out of the game like 
exhaustion, de-differentiation and senescence. 
Since all cells are made by cells, proliferation is 
intrinsically autocatalytic, a rate constant times 
the concentration of cells: proliferation=p B. 
This is unlike the glucose equation above, in 
which the production term m is not multiplied 
by G. Removal as usual is the number of cells 
times the rate at which cells are remover, d: 
removal= d B. As a result the balance between 
proliferation rate 𝑝𝐵	and death rate 𝑑𝐵	 
(2.3)   34

3$
= 𝑝𝐵 − 𝑑𝐵 = (𝑝 − 𝑑)𝐵 = 𝜇𝐵. 

leads to a growth rate of cells 𝜇 = 𝑝 − 𝑑 equal 
to the difference between proliferation and 
death .	If proliferation exceeds death, growth rate 𝜇 is positive and cell numbers rise 
exponentially, B~𝑒:$ (Fig 2.4). If death exceeds proliferation, 𝜇 is negative, and cell 
numbers exponentially decay to zero. Such an explosion in cells numbers occurs in 
cancer, and a decay in cell numbers occurs in degenerative diseases. This is the problem 
of tissue size control. 
Tissue size control is an amazing problem: our body is constantly in turnover as about 
a million cells are made and removed every second. We make and remove about 100g 
of tissue every day. If the production and removal rates were not precisely equal, we 
would exponentially explode or collapse.  
To keep cell numbers constant, we need additional feedback control, because we need 
to balance proliferation and death in order to reach zero growth rate, 𝜇 = 0. Moreover, 
the feedback loop must keep the tissue at a good functional size. Hence, the feedback 
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mechanism must somehow register the biological activity of the cells and accordingly 
control their growth rate. 
Such feedback control occurs for beta cells, as 
pointed out by Brian Topp and Dianne 
Finegood ((Topp et al., 2000)). The feedback 
signal is blood glucose: glucose controls the 
cells proliferation and death rates, so that 𝜇 =
𝜇(𝐺). The death rate of beta cells is high at 
low glucose, and falls sharply around 5mM 
glucose (Fig 2.5). Death rate rises again at 
high glucose, a phenomenon called 
glucotoxicity, which we will return to soon. 
For now, let’s focus on the region around 5mM. Proliferation rises with glucose, so that 

the curves describing the rates for proliferation and death cross near 𝐺< = 5𝑚𝑀	(Fig 
2.6). Therefore, 𝐺< = 5𝑚𝑀 is the fixed point that we seek with zero growth rate, 
𝜇(𝐺<) = 0 (Fig 2.7).  
Our revised model, the BIG model (Beta-cell-Insulin-Glucose model, Fig 2.8), includes 
a new equation for the beta cells B 

2.4  3?
3$
= 𝑚 − 𝑠	𝐼	𝐺	 

2.5  3@
3$
= 𝑞𝑋𝑓(𝐺) − 𝛾𝐼	 

      2.6  34
3$
= 𝐵	𝜇(𝐺)															𝜇(𝐺<) = 0   

 
 
The point 𝐺< = 5𝑚𝑀	is a stable fixed-point for both beta-cells and blood glucose. If 
glucose is above 5mM, beta cells have proliferation>death, they increase in number, 
leading to more insulin, pushing glucose back down towards 5mM. If glucose is too 
low, beta cells die more than they divide, leading to less insulin, pushing glucose levels 
back up.  
This feedback loop operates on the timescale of weeks, which is the proliferation rate 
of beta cells. It is much slower than the insulin-glucose feedback that operates over 
minutes to hours. This slow feedback loop keeps beta cells at a proper functional 
steady-state number and keeps glucose, averaged over weeks, at 5mM. The only way 
to reach steady-state in Eq. 2.6 is when 𝐺 = 𝐺<. 
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This principle is, in essence, the same as integral feedback in bacterial chemotaxis 
(which we studied in the course Systems Biology, if you want to know more, see the 
2018 videos on my website or the book Alon 2006):  
The steep drop of the death curve at 𝐺<	is important for the precision of the fixed-point. 
Due to the steepness of the death curve, variations in proliferation rate do not shift the 
5mM fixed point by much (Fig 2.6). The steep death curve can be generated by the 
cooperativity of key enzymes that sense glucose inside beta cells ((Karin et al., 2016)). 
 
2.4 Dynamic compensation allows the circuit to buffer parameter variations 
The slow feedback on beta cells can thus maintain a 5mM glucose steady-state despite 
variations in insulin sensitivity, s. Remarkably, this feedback model can also resolve 
the mystery of how glucose dynamics on the scale of hours are invariant to changes in 
insulin sensitivity. I mean that the BIG model shows how, in the glucose tolerance test, 
the response to an input 𝑚	of 75g glucose yields the same output G(t), including the 
same amplitude and response time, for widely different values of the insulin sensitivity 
parameter s. This independence of the entire dynamic curve on a parameter such as s is 
very unusual, because changing a key parameter in most models changes their 
dynamics.  
Lets start simple, with calculating the steady state of the BIG model. The glucose steady 
state is G_0=5Mm thanks to Eq 2.6- the place where cell proliferation balances 
removal. Therefore, from Eq 2.4, 𝐼#$ = 𝑚</𝑠𝐺<. The lower s, the higher insulin. In fact, 
the product 𝑠𝐼#$ =

EFG
?H

= 𝑐𝑜𝑛𝑠𝑡, which explains the hyperbolic relation of Fig 2.1.  
finally, the beta cell steady state can be found form equation 2.5, by setting 𝑑𝐼/𝑑𝑡 = 0, 
to find that 𝐵#$ = 𝛾 @FG

I(?J)
= 𝛾 EH

#?HI(?J)
. The number of beta cells also rises when s is 

small. Thus, the tissue-size control feedback over weeks makes beta cells expand and 
contract in order to precisely buffer out the effects of parameters changes like insulin 
resistance. 
 
The feedback does something even more dramatic: it makes the entire response to a 
meal invariant to parameters like s. This is advanced material I did not discuss in class, 
but it is important to know: This ability of a model to compensate for variation in a 
parameter was defined by Omer Karin et al ((Karin et al., 2016)) as dynamic 
compensation (DC): Starting from steady-state, the output dynamics in response to an 
input is invariant with respect to the value of a parameter. To avoid trivial cases, the 
parameter must matter to the dynamics, for example, when you start away from steady-
state. To establish DC in our model requires rescaling of the variables in the equations, 
as done in the next solved example. 
---------------------------------- 
Solved Example2: 
Show that the BIG model has dynamic compensation (DC). 
To establish DC, we need to show that starting at steady-state, glucose output 𝐺(𝑡) in 
response to a given meal input 𝑚(𝑡) is the same regardless of the value of 𝑠. To do so, 
we will derive scaled equations that do not depend on s. To get rid of s in the equations, 
we rescale insulin to 𝐼K = 𝑠𝐼, and beta cells to 𝐵L = 𝑠𝐵	. Hence 𝑠 vanishes from the 
glucose equation 

(2.7)	
𝑑𝐺
𝑑𝑡 = 𝑚 − 𝐼K𝐺 

Multiplying the insulin and beta-cell equations (Eq 2.5, 2.6) by 𝑠 leads to scaled 
equations with no 𝑠 



(2.8) 3@
K

3$
= 𝑞	𝐵L𝑓(𝐺) − 𝛾𝐼K 

(2.9) 34
L

3$
= 𝐵L𝜇(𝐺)		with	𝜇(𝐺S) = 0 

Now that none of the equations depends on s, we only need to show that the initial 
conditions of these scaled equations do not depend on 𝑠.	If both the equations and initial 
conditions are independent on s, so is the entire dynamics. There are three initial 
condition values that we need to check, for G, 𝐼K	and	𝐵T . First, 𝐺(𝑡 = 0) = 𝐺#$ is 
independent on s because 𝐺#$ = 𝐺< is the only way for 𝐵L  to be at steady-state in Eq 2.9. 
Therefore, from Eq 2.6, 𝐼K#$ = 𝑚</𝐺< is independent of 𝑠, which we can use in Eq 2.7 
to find that 𝐵#$ = 𝛾	𝐼K#$/𝑓(𝐺S) is also independent of s. Because the dynamic equations 
and initial conditions do not depend on s, the output G(t) for any input m(t) is invariant 
to 𝑠, and we have DC.  
Although G(t) is independent on s, insulin and beta cells do depend on it, as we can see 
by returning to original variables 𝐵 = 𝐵L/𝑠 and 𝐼 = 𝐼K/𝑠. The lower s, the higher the 
steady-state insulin. In fact, the product 𝑠𝐼#$ =

EFG
?H
= 𝑐𝑜𝑛𝑠𝑡, which explains the 

hyperbolic relation of Fig 2.1. Also, 𝑠𝐵#$ = 𝑐𝑜𝑛𝑠𝑡, as beta cells rise to precisely 
compensate decreases in s. 
Similar considerations show that the model has DC with respect to the parameter 𝑞, the 
rate of insulin secretion per beta cell, and also to the total blood volume (exercises 2.5). 
There is no DC, however to the insulin removal rate parameter, γ. 
=========================  
Let’s see how dynamic compensation 
works. Suppose that insulin sensitivity 
drops by a factor of two, representing 
insulin resistance (Fig 2.9). As a result, 
insulin is less effective and glucose 
levels rise. Due to the death curve, beta 
cells die less, and their numbers rise 
over days to weeks (Fig 2.9 upper 
panels show the dynamics on the scale 
of weeks). More beta cells means that 
more insulin is secreted, and average 
glucose gradually returns to baseline. 
In the new steady-state, there is twice 
the number of beta cells and twice as 
much insulin. Glucose returns to its 
5mM baseline.  
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Let’s now zoom in to the timescale of hours (Fig 2.9, lower panel). The response of 
glucose to a meal long after the drop in 𝑠 (time-point 3) is exactly the same as before 
the change in 𝑠 (time-point 1). The insulin response, however, is two times higher. 
Glucose dynamics in response to a meal are abnormal only during the transient period 
of days to weeks in which beta-cell numbers have not yet reached their new, 
compensatory, steady-state (time-point 2).  
 
The DC model predicts that people with different 𝑠	should show the same glucose meal 
dynamics, but have insulin dynamics that scale with 𝑠. This is indeed seen in 
measurements that follow non-diabetic people with and without insulin resistance over 

a day with three meals (lower panels in Fig 2.10) ((Polonsky et al., 1988)). Insulin 
levels are higher in people with insulin-resistance, but when normalized by the fasting 
insulin baseline, there is almost no difference between the two groups (Fig 2.10). The 
model (upper panels in Fig 2.10) captures these observations. 
The DC property arises from the structure of the equations: 𝑠 cancels out due to the 
linearity of the dB/dt equation with B, which is a natural consequence of cells arising 
from cells. 𝑠	also cancels out due to the linearity in B of the of insulin secretion term q 
B f(G), a natural outcome of the fact that beta-cells secrete insulin.  
These basic features needed for 
DC exist in most hormone 
systems, in which glands 
secrete hormones that work on 
distant tissues. For example, 
free blood calcium 
concentration is regulated 
tightly around 1mM by a hormone called PTH, secreted by the parathyroid gland (Fig 
2.11). The circuit has a negative feedback loop similar to insulin-glucose, but with 
inverted signs: PTH causes increase of calcium, and calcium inhibits PTH secretion. 
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The slow feedback loop 
occurs because 
parathyroid cell 
proliferation is regulated 
by calcium.  
Other organ systems and 
even neuronal systems 
have similar circuits (Fig 
2.12), in which the size of 
the gland or organ expands 
and contracts to buffer 
variation in effectivity 
parameters. Moreover, as 
embryos and children 
grow, these slow feedback loops can help each gland grow precisely at a rate that keeps 
important variables such as glucose and calcium at their desired steady-state level.  
The feedback mechanism seems so robust. What about diseases such as diabetes? How 
and why do things break down? We will see that some forms of diabetes may be due to 
a dynamic instability that is built into the feedback loop.  
 
11.5 Type-2 Diabetes is linked with instability due to a U-shaped death curve  
Type-2 diabetes occurs when production of insulin does not meet the demand, and 
glucose levels go too high. It is linked with the phenomenon of glucotoxicity that we 
mentioned briefly above: at very high glucose levels, beta-cell death rate rises (by death 
here we include all processes that remove beta cell function such as beta-cell 
exhaustion, de-differentiation and senescence) and eventually patients are not able to 
make enough insulin. 
Glucotoxicity is dangerous because 
it adds an unstable fixed point, the 
point at which proliferation rate 
crosses death rate a second time 
(white circles in Fig 2.13). As long 
as glucose fluctuations do not 
exceed the unstable point, glucose 
safely returns to the stable 5mM 
point. However, if glucose 
(averaged over weeks) crosses the 
unstable fixed point, death rate 
exceeds proliferation rate. Beta cells die, there is less insulin and hence glucose rises 
even more. This is a vicious cycle, in which glucose disables or kills the cells that 
control it. 
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This rate plot can explain several risk factors for type-2 diabetes. The first risk factor is 
a diet high in fat and sugars. Such a diet makes it more likely that glucose fluctuates to 
high levels, crossing into the unstable region. A lean diet can move the system back 
into the stable region.  
In fact, type-2 diabetes is largely 
curable if addressed at early 
stages, by changing diet and 
exercising. This can bring 
average G back into the stable 
region even if the unstable fixed 
point was crossed. G then flows 
back to normal 5Mm. The 
challenge is that it is difficult for 
many people to stick with such 
lifestyle changes. 
The second risk factor is ageing. 
With age, proliferation rate of 
cells drops in all tissues, 
including beta cells. This means 
that the unstable fixed point 
moves to lower levels of G (Fig 
2.14), making it more likely to 
cross into the unstable region. 
Note that the stable fixed point 
also creeps up to slightly higher 
levels. Indeed, with age the 
glucose set point mildly increases in healthy people. 
A final risk factor is genetics. It appears that the glucotoxicty curve is different between 
people. A shifted glucotoxicity curve can make the unstable fixed point come closer to 
5mM (Fig 2.15).  
Why does glucotoxicity occur? Much is known about how it occurs (which is different 
from why it occurs), because research has focused on this disease-related phenomenon. 
Glucotoxicity is caused by programmed cell death that is linked to the same processes 
that controls cell division and insulin secretion (calcium influx). A contributing factor 
is reactive oxygen species (ROS) generated by the accelerated glycolysis in beta cells 
presented with high glucose. ROS cause extensive cell damage, and beta-cell death. 
The sensitivity of beta cells to ROS does not seem to be an accidental mistake by 
evolution. Beta cells seem designed to die at high glucose- they are among the cells 
most sensitive to ROS, lacking protective mechanisms found in other cells types. Thus, 
it is intriguing to find a functional explanation for glucotoxicity.  
11.6 Tissue-level feedback loops are fragile to invasion by mutants that misread 
the signal  
Omer Karin et al ((Karin and Alon, 2017)) provide an explanation for glucotoxicity by 
considering a fundamental fragility of tissue-level feedback circuits. This fragility is to 
takeover by mutant cells that misread the input signal. Mutant cells arise when 
dividing cells make errors in DNA replication, leading to mutations. Rarely but surely, 
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given the huge number of cell divisions in a lifetime1, a mutation will arise that affects 
the way that the cell reads the input signal.  
Let’s examine such a mutation in beta cells. Beta cells sense glucose by breaking it 
down in a process called glycolysis, leading to ATP production, which activates insulin 
release through a cascade of events. The first step in glycolysis is phosphorylation of 
glucose by the enzyme glucokinase. Most cell types express a glucokinase variant with 
a halfway-binding constant to glucose of 𝐾 = 40	𝜇𝑀, but beta cells express a special 
variant with 𝐾 = 8𝑚𝑀	- perfect as a sensor for the 5mM range. Mutations that affect 
the 𝐾 of glucokinase, reducing it, say, by a factor of five, cause the mutant cell to sense 
five times too much glucose. The mutant beta cells do glycolysis as if there was much 
more glucose around. It’s as if the mutant distorts the glucose axis in the rate plots by 
a factor 5, “thinking” that glucose G is actually 5G. 
If our feedback design did not include 
glucotoxicity, such a mutant that 
interprets 5mM glucose as 25mM would 
have higher proliferation rate (black 
curve) than death rate (red curve). It 
would think ‘Oh, we need more insulin!’ 
and proliferate (Fig 2.16). The mutant cell 
therefore has a growth advantage over 
other beta cells, which sense 5mM 
correctly. The mutant will multiply 
exponentially and eventually take over. 
This is dangerous because when the 
mutant takes over, it pushes glucose down to a set-point level that it thinks is 5mM, but 
in reality is 1mM - causing lethally low glucose. 
Mutant expansion is insidious because as the mutant population starts to push glucose 
slightly below 5mM normal cells begin to die (to reduce insulin and increase glucoe), 
enhancing the mutant’s advantage. 
11.7 Biphasic (U-shaped) response 
curves can protect against mutant 
takeover 
To resist such mutants, we must give 
them a growth disadvantage. This is what 
glucotoxicity does. The mutant cell 
misreads glucose as very high, has a death 
curve that exceeds the proliferation curve, 
and kills itself (Fig 2.17). Mutants are 
removed.  
The downside of this strategy is that it 
creates the unstable fixed point, with its 
vicious cycle. There is thus a tradeoff 
between resisting mutants and resisting disease.  
In our evolutionary past, lifestyle and nutrition was probably such that average glucose 
rarely stayed very high for weeks, and thus the unstable fixed point was rarely crossed. 

                                                
1 A gram of tissue has about 10Y cells. If they divide 1/month, there are about 10Z< divisions in a year. 
Mutation rate is 10[Y/base-pair/division, so there will be about 10 cells expressing each possible point 
mutation. Depending on the tissue, cells are renewed on average every few days (colon epithelium) to a 
few months (most tissues- skin, lung) to never (most neurons).  
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Modern lifestyle makes it more likely for glucose to exceed the unstable point, exposing 
a fragility to disease.  
The glucotoxicity strategy eliminates mutants that strongly misread glucose. However, 
this strategy is still vulnerable to certain mutants of smaller effect: e.g .mutants that 
misread 5mM glucose as a slightly higher level that lies between the two fixed points 
(hatched region in Fig 2.17). Such mutants have a growth advantage, because they are 
too weak to be killed by glucotoxicity, but still have higher proliferation rate than 
removal rate.  
Luckily, such intermediate-effect mutants are much rarer than mutants that strongly 
activate or deactivate signaling. Designs that can help against intermediate mutants are 
found in beta cells: beta cells are arranged in the pancreas in isolated clusters of ~1000 
cells called islets of Langerhans, so that a mutant can take over just one islet and not 
the entire tissue. Slow growth rates for beta-cells also help keep such mutants in check. 
Karin et al ((Karin and Alon, 2017)) estimate that a small fraction of the islets are taken 
over by mutants in a lifetime.  
This mutant-resistance mechanism can be generalized: to resist mutant takeover of a 
tissue-level feedback loop, the feedback signal must be toxic at both low and high 
levels. Such U-shaped phenomena are known as biphasic responses, and occur across 
physiology. Examples include neurotoxicity, in which both under-excited and over-
excited neurons die, and immune-cell toxicity at very low and very high antigen levels. 
These toxicity phenomena are linked with diseases, for example Alzheimer’s and 
Parkinson’s in the case of neurons. 
 
11.8 Summary  
Tissues have robustness constraints beyond those of protein circuits inside cells. First, 
tissues have a fundamental instability due to exponential cell growth dynamics. They 
require feedback to maintain steady-state and a proper size. Such feedback loops use a 
signal related to the tissue function, to make both organ size and function stay at a 
proper stable fixed-point. This fixed point is maintained as the cells constantly turn over 
on the scale of days to months. 
Tissue-level circuits, such as hormone circuits, are also challenged by the fact that they 
need to operate on distant target tissues. These target tissues have variation in their 
interaction parameters, such as insulin resistance. Hormone circuits can show 
robustness to such distant parameters by means of dynamic compensation (DC), which 
arises due to a symmetry of the equations. In dynamic compensation, tissue size grows 
and shrinks in order to precisely buffer the variation in parameters.  
Tissue-level feedback loops need to be protected from another consequence of cell 
growth- the unavoidable production of mutants that misread the signal and can take 
over the tissue. This constraint leads to a third principle: biphasic responses found 
across physiological systems, in which the signal is toxic at both high and low levels. 
Biphasic responses can protect against mutants by giving them a growth disadvantage. 
This comes at the cost of fragility to dynamic instability and disease. Additional 
principles of tissue-level circuits no doubt await to be discovered. 
  



Further reading 
 
History of the minimal model  
(Bergman, 2005) “Minimal model: Perspective from 2005” 
The BIG model 
(Topp et al., 2000) “A model of β-cell mass, insulin, and glucose kinetics: Pathways to 
diabetes” 
Dynamic compensation 
(Karin et al., 2016) “Dynamical compensation in physiological circuits” 
Resistance to mis-sensing mutants 
(Karin and Alon, 2017) “Biphasic response as a mechanism against mutant takeover in 
tissue homeostasis circuits” 
A general resource for models in physiology 
(Keener and Sneyd, no date) “Mathematical Physiology II: Systems Physiology” 
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