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Summary

The increasing availability and performance of automated scientific equipment in the past decades have brought about a revolution in
the biological sciences. The ease with which data can now be generated has led to a new culture of high-throughput science, in which
new types of biological questions can be asked and tackled in a systematic and unbiased manner. High-throughput microscopy,
also often referred to as high-content screening (HCS), allows acquisition of systematic data at the single-cell level. Moreover, it
allows the visualization of an enormous array of cellular features and provides tools to quantify a large number of parameters for each
cell. These features make HCS a powerful method to create data that is rich and biologically meaningful without compromising
systematic capabilities. In this Commentary, we will discuss recent work, which has used HCS, to demonstrate the diversity of
applications and technological solutions that are evolving in this field. Such advances are placing HCS methodologies at the frontier
of high-throughput science and enable scientists to combine throughput with content to address a variety of cell biological questions.
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High-throughput biology

Introduction

Technological developments in the past years have led to the
emergence of high-throughput methods in cell biology (Box 1),
where multiple perturbations of a system are automatically repeated
in a controlled and identical fashion. These capabilities allow the
acquisition of vast amounts of data on a biological system.
Evaluating all aspects of such data using computational and
mathematical tools can then lead to an unbiased systematic
representation of the process studied (Ahn et al., 2006). Technical
breakthroughs, often driven by the pharmaceutical industry, have
pushed this field forwards and have led to major advances in drug
screening (reviewed by Zanella et al., 2010) and numerous
discoveries in basic biology.

The need for systematic and unbiased approaches has always
been at the core of scientific efforts. However, the technology that
is required for such efforts often displays an inverse relationship
between throughput (speed) and content (biological information).
Sydney Brenner referred to this phenomenon by saying that high-
throughput experiments are in danger of creating “low-input,
high-throughput, no-output biology” (Brenner, 2008). Therefore, it
remains a major goal to develop high-throughput science that will
give all the advantages of being systematic, accurate, fast and
unbiased without giving up the requirement to provide profound
and highly informative data.

Among the variety of high-throughput approaches available to
date (Box 1), one of the methods that holds the promise to bridge
the gap between these expectations is high-throughput microscopy,
often also referred to as high-content screening (HCS). This is
mainly owing to the ability of microscopy methods to focus on
single cells at a subcellular resolution, in a time-dependent manner
and to measure a large number of parameters in each frame. In this
Commentary, we focus on the current frontiers of HCS by

presenting the wide range of tools that are utilized and the biological
questions that can be tackled using such approaches. We also
discuss possible ways to increase content while maintaining
throughput at all levels of the screen — from sample design and
preparation through to the acquisition and analysis capabilities of
the high-content imager system.

The power of high-throughput microscopy
High-throughput microscopy can be employed to address a wide
spectrum of biological questions. At the basis of this capability lies
the ever-growing variety of labeling methods (discussed below)
that allow visualization of cellular architecture and function, as
well as developmental or behavioral processes (Fig. 1). In addition,
the technological advance of biological tools and microscopic
platforms now enables screens to be performed in an array of
genetic backgrounds, under different growth conditions and at
various time points, as well as allowing the comparison of multiple
tissues, cell lines or organisms. Combining the richness of
visualization approaches with various experimental strategies
creates nearly endless options for generating biological insights
(Fig. 1). For example, it is now feasible to perform functional
genomics screens by capturing a microscopic phenotype of cells in
which each gene has been knocked out or knocked down
systematically. This can be done, for instance, by RNA interference
(RNAI) in cell culture (Brass et al., 2008; Krishnan et al., 2008;
Moffat et al., 2006; Neumann et al., 2006; Prudencio et al., 2008)
or by using a deletion library, as has been performed in budding
yeast (Vizeacoumar et al., 2010). Additionally, deletion libraries
have been created for fission yeast (Kim et al., 2010) and for
bacteria (e.g. the National BioResource Project E. coli developed
at the National Institute of Genetics, Japan), and these could also
be utilized for HCS.
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Box 1. The repertoire of available high-throughput
platforms

Technological developments in the past few decades have led to
a flourish of large-scale studies that have yielded a wealth of
data. Different types of such systematic high-throughput studies
are geared towards quantifying and analyzing separate aspects
of cell biology, such as genomics, transcriptomics and
proteomics. One of the main differences between these current
technologies is whether they allow readouts on the level of the
population or the single-cell.

Currently, a number of platforms that allow readouts on the
population level are available. These include plate readers (to
study processes such as enzymatic function, protein—protein
interactions and expression levels), deep and next-generation
sequencing platforms (to study genomes and expression
patterns), microarrays (expression chips, intron chips, chromatin
immunoprecipitation, single nucleotide polymorphisms and
genetic diversity), lipid arrays, protein arrays and whole-cell mass
spectrometry (for proteins or metabolites).

By contrast, platforms that allow readouts at the single-cell
level are less abundant to date. These include flow cytometry,
high-throughput microscopy set-ups, high-throughput single-cell
sequencing and DNA methylation assays. Despite their sparsity,
these readouts at the single-cell level are essential for assaying
diversity within a population.

Visualizing biological samples

Biological samples can be imaged directly by using transmitted
light or genetically encoded fluorescent proteins, as well as
indirectly by using labeling techniques such as those using
antibodies or specific dyes. Depending on the biological question
at hand, all of these methods can be used for HCS. The major
advantage of direct imaging is that it can be performed using live
cells. By contrast, indirect imaging requires sample manipulation
but is highly diverse and allows specificity.

Performing label-free HCS

Label-free imaging does not impose manipulations on the biological
sample that might cause artifacts. However, it is not specific, thus
it is usually used to assess morphological changes such as
measuring fat accumulation in adipocytes (Dragunow et al., 2007)
or for analyzing phagokinetic tracks (PKT) (Naffar-Abu-Amara et
al., 2008). Label-free imaging can simplify the sample preparation
stage because it eliminates the need for specific staining; however,
it can also present challenges for image analysis such as non-
homogeneous illumination and contrast enhancement.

Labeling methods for HCS

In order to take full advantage of HCS systems, experiments should
be planned to maximize data content. For example, microscopes
employing current technologies can resolve up to six synthetic
fluorescent colors in a fixed sample and up to three fluorescent
colors in live samples. It should be noted that by methods of color
decomposition or by unique genetic labeling methods, such as the
‘brainbow’ method, it is possible to separate dozens of
combinatorial labeling options (Cachero and Jefferis, 2011; Livet
et al., 2007). However, such methods have only been used in low-
throughput methodologies to date. By utilizing the entire range of
labeling spectra it is possible to multiply the amount of data that
can be extracted from a single experiment. This increase in content
does not only increase the amount of information that can be

gained in relation to the time and amount of work invested but can
potentially also reveal new relationships that might not have been
discovered otherwise. One example that stresses the strength of
employing a multi-color labeling approach is a study that was
aimed at determining the distribution of all yeast organelles relative
to the polarization axis during the creation of mating projections
(a process referred to as ‘shmooing’). This was only made possible
by using a three-color labeling scheme in which organelles were
visualized with a red fluorescent protein (RFP), the projection tip
of the budding yeast was labeled with green fluorescent protein
(GFP) and the DNA in the nucleus was stained with DAPI
(Narayanaswamy et al., 2009). Indeed, the past years have brought
about a wealth of labeling options for imaging biological molecules,
which we will discuss in the following sections (see also Table 1).

Fluorescently tagged antibodies

The use of fluorescently tagged antibodies is the classic method for
specifically labeling cellular components, and this technique is
also widely used in HCS (Brass et al., 2008; Desbordes et al.,
2008; Moffat et al., 2006; Prudencio et al., 2008). The main
advantages of immunostaining are that it is specific and that it does
not require genetic alteration of the cell. The main shortcomings
are that it requires the availability of a good antibody, as well as
cell fixation, and therefore cannot be used for live-cell imaging.
This type of experimental approach has been used in a human
genome-wide RNAI screen that was aimed at identifying genes
associated with West Nile virus (WNV) infection. The screen was
based on fixation of virally infected cells expressing small
interfering RNAs (siRNAs) and immunostaining against the viral
envelope (E) protein (Krishnan et al., 2008). Using this approach,
283 host proteins were found to facilitate WNV infection and 22
host proteins were found to reduce WNV infection.

Fluorescently labeled proteins
Genetically encoded fluorescent proteins can be used in a large
number of screening methods. One approach that is routinely used
is the fusion of a fluorescent protein to a cellular protein, thereby
making it possible to monitor the localization and expression level
of the cellular protein in a living sample. Fusion-protein libraries
are now being developed in a variety of organisms ranging from
bacteria (Kitagawa et al., 2005) and yeast (Huh et al., 2003) to
human cells (Sigal et al., 2007). These libraries allow widespread
use of fluorescently tagged proteins in systematic microscopic
screens. In yeast, the generation of custom-made fusion protein
libraries has been facilitated by automated mating technologies
that allow integration of a genetically encoded probe (or any other
genetic modification) into any systematic yeast library in a matter
of weeks (Cohen and Schuldiner, 2011; Tong and Boone, 2006).
A demonstration of how both acquisition and analysis can be
simplified by utilizing available systematic libraries and by
combining several probes emitting different colors is provided by
a study on the yeast ubiquitin ligase Grrl. To find new targets for
Grrl, the yeast collection of all GFP-tagged proteins (GFP library)
was screened for strains with increased fluorescence in a Agrrl
background relative to that in a wild-type strain; higher expression
of GFP-tagged proteins in these strains indicates a reduced
degradation rate. Thus such proteins are prime candidates for being
Grrl-modified substrates. To increase the accuracy of the method
the authors created an internally controlled three-color system that
allowed auto-focusing of the microscope using the CellTracker
Blue dye and simultaneous measurement of GFP levels in an RFP-
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Labeling methods Experimental strategies

M Labels conjugated to lipids or
carbohydrates

M Hybridization probes for
DNA and/or RNA

| Staining of organelles

M Fusion proteins

B Body morphology

m Organ morphology
M Phenotypic diversity
m Developmental timing

m Viability

m Feeding

® Movement

m Social interactions

labeled population of Agrri strains versus GFP levels in a non-
RFP labeled population of normal control cells (Benanti et al.,
2007).

In addition, fusion proteins can act as markers for whole organelles
in many cases. For example, in order to investigate yeast spindle
morphogenesis, GFP-tagged tubulin was inserted into a yeast deletion
library (Vizeacoumar et al., 2010). Another example, in human cells,
is the use of a GFP-tagged version of core histone 2B, which acts as
a marker for chromosomes in all cell cycle stages, to uncover genes
involved in chromosome segregation during cell division using a
high-throughput RNAI time-lapse screen (Neumann et al., 2006). In
both examples mentioned above the protein that was GFP-tagged
was not of interest in itself, rather it was used as a marker to follow
the organelle or cellular structure in which it resides (i.e. spindle or
chromosomes).

In some cases, the marker protein for an organelle can itself
cause a genetic perturbation with a known phenotype, thus allowing
identification of regulatory mechanisms that govern that phenotype.
For example, the overexpression of a GFP-tagged version of Hmg2
(GFP—Hmg2) has led to the identification of the pathways that are
required for the formation of Hmg2-induced membrane
proliferations in the endoplasmic reticulum (ER). By introducing
the overexpressed GFP-Hmg2 into a yeast deletion library and
screening all 4700 mutants for their ER architecture (which was
visualized by the ER localization of GFP-Hmg2 itself) it
was possible to assess how overexpression of this protein affects
the organelle (Federovitch et al., 2008).

Genetically encoded fluorescent proteins can additionally be
used as reporters for promoter activity by simply placing a
fluorescent protein under regulation of endogenous promoters.
This type of approach has been carried out in the nematode worm
Caenorhabditis elegans to map the developmental control and
tissue specificity of various promoters (Hunt-Newbury et al., 2007),
as well as in bacteria (Zaslaver et al., 2006) and yeast (Bell et al.,
1999; Jonikas et al., 2009).

In addition to classical fluorescent proteins, it is also possible to
use enzymatically activated fluorescent labels, such as HaloTag.
HaloTag is a protein that binds specific fluorescent ligands and has
already been shown to be suitable for high-throughput approaches

B Multiple time points

B Multiple genetic
backgrounds

H Multiple growth
conditions

B Multiple drugs

m Cytoskeleton

M Cell shape and cell
polarity

m Organelle structure

m Organelle dynamics

Fig. 1. Combining labeling methods with
experimental strategies to address various
biological questions using HCS. The
combination of diverse labeling methods and
experimental strategies that can be employed in
high-content screening (HCS) produces a
versatile platform for answering numerous
biological questions. Representative examples
of the various available labeling options and
the potential outputs of HCS are shown.

® Migration

m Proliferation
m Differentiation
m Viral infection

(Benyounes et al., 2011; Los et al., 2008). In the event that a large
proteinacious marker interferes with protein function, it is also
possible to fuse the short sequence of the FlAsH (fluorescein
arsenical hairpin) receptor peptide (FRP) that binds the FlAsH
reagent (Griffin et al., 1998).

Labeling of mMRNA and DNA

RNA and DNA are most commonly labeled through hybridization
with fluorescently tagged sequence-specific probes. An example of
this type of technique is the use of high-resolution fluorescent
in situ hybridization (FISH) to comprehensively evaluate mRNA
localization ~ dynamics during Drosophila  melanogaster
embryogenesis (Lecuyer et al., 2007).

In addition, mRNA distribution can be followed by genetically
encoding specific binding sites for RNA-binding proteins into
RNA molecules. Such methods allow specific mRNA visualization
in living cells at a subcellular resolution and hold the promise to
open exciting avenues for screening of factors that affect mRNA
localization and stabilization using live-cell imaging. For example,
MS?2 loops are short sequences that serve as a binding site for the
RNA-binding MS2 coat protein (MS2-CP). These sequences can
be inserted into untranslated regions and coexpressed with a coat
protein fused to GFP. GFP-MS2-CP binding to the MS2 loops
thereby enables in vivo labeling of the RNA molecule (Haim-
Vilmovsky and Gerst, 2011; Lionnet et al., 2011).

Lipid labeling
Commercially available lipid dyes are widely used to study lipid
accumulation and metabolism in many different model organisms.
For example, the Nile Red dye, which selectively stains lipid
droplets, has been used in live C. elegans to identify genes (Ashrafi
et al., 2003) or small molecules (Lemieux et al., 2011) that regulate
fat storage. In another attempt to understand the basic biology of
lipid droplets formation, a screen was carried out in human liver
cells that were stained with a lipid droplet imaging kit to identify
microRNAs (miRNAs) that regulate their accumulation (Whittaker
et al., 2010).

Lipid dyes have also been used to study various metabolic
diseases. For example, the sterol dye filipin has been used to stain
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Table 1. Labeling methods in HCS

Cell component of interest

Labeling method

Tons Chemical sensors

Genetically encoded sensors

Fluorescent analogs

Lipid dyes

Anti-lipid antibodies

Lipid-binding fluorescent fusion proteins (for
example: a PH domain fused to GFP)

Antibodies

Fluorescent fusion proteins

Probes

DNA- and/or RNA-binding proteins

Promoter activity by fluorescent reporters

Antibodies

Fluorescent fusion proteins

Lipid dyes

Bright-field microscopy

Membrane lipid dyes

Bright-field microscopy

Antibodies

Sugars
Lipids

Proteins

DNA, RNA

Organelles

Whole cells

cells with lipid storage defects in order to screen for compounds
that partially revert their cholesterol accumulation defect (Pipalia
et al.,, 2006). In another example, a fluorescent analog of
lactosylceramide (BODIPY—LacCer) was used to follow lipid
accumulation in fibroblasts from patients with different lipid-
storage diseases (Chen et al., 1999).

Interestingly, lipid dyes can also be used as a simple means to
stain organelles (see the section below) or cell membranes. For
example, the lipophilic dyes Dil and DiO have been used in a
screen for zebrafish mutants with retinotectal projection defects
(Baier et al., 1996). Unfortunately, there are many more lipid
species than there are available specific conjugated dyes for them.
The lack of reagents to study specific lipid moieties and chain
lengths means this field lags behind the imaging of proteins in
terms of its capacity to be assayed by HCS methods.

Sugar labeling

Fluorescent analogs of sugars are still sparse and limit the use of
HCS for investigating sugar metabolism in cells. One example for
their use is a HCS that measured glucose uptake in cancer cell
lines by using a fluorescent 2-deoxyglucose analog. These direct,
quantitative measurements allowed the full spectrum of metabolic
variability within populations of tumor cells to be dissected in high
resolution in vitro (Hassanein et al., 2010).

Cellular metabolite and ion labeling

Fast modulation of metabolites and ion gradients (e.g. of
neurotransmitters, calcium ions, cAMP etc.) in the cell has a key
role in the regulation of many signal transduction pathways and is
essential for maintaining cellular homeostasis. Several approaches
have been developed to follow the dynamics of changes in
metabolite and ion concentration in vivo with high temporal and
spatial resolution. One of them makes use of chemical sensors that
become fluorescent upon ion binding. For example, a screen for
molecules that affect the cholecystokinin 1 (CCK1) receptor was
performed by staining cells with the Ca>*-activated dye Fluo-4AM
(Staljanssens et al., 2011). In another approach genetically encoded
sensors, such as GCaMP for Ca*", pHluorins for pH and Grx-GFP
for glutathione measurements, can be used to monitor changes
inside the cell (reviewed by Okumoto, 2010). For example, the
genetically encoded yellow fluorescent protein (YFP)-based

CI" sensor YFP H148Q/I152L has been used in a screen to identify
proteins that rescue the phenotype created by a mutated cystic
fibrosis transmembrane conductance regulator (CFTR) channel
(Trzcinska-Daneluti et al., 2009).

Organelle staining

As discussed above, it is possible to use fluorescently tagged
proteins that reside in a specific organelle to study organelle
morphology and dynamics using high-throughput microscopy. An
additional approach to visualizing organelles is the use of
commercially available organelle-specific dyes. Organelle-specific
dyes can replace the need for the time-consuming creation and
integration of fluorescently labeled proteins. Indeed, yeast high-
throughput screens to uncover proteins with a role in organelle
biogenesis and inheritance have used Rhodamine B hexyl ester for
labeling mitochondria (Dimmer et al., 2002), FM4-64 for labeling
the vacuole (LaGrassa and Ungermann, 2005) and BODIPY
493/503 for labeling lipid droplets (Szymanski et al., 2007).
Furthermore, organelle-specific dyes can be implemented as
reporters for different biological processes. For example,
LysoTracker, a marker of acidic compartments, has been used in a
screen to identify Mycobacterium tuberculosis genes that are
involved in phagosome maturation arrest in host macrophages:
because the surface area of the acidified compartment marked with
LysoTracker was shown to be directly proportional to the amount
of bacterial particles within the compartment, the need for additional
staining of the bacteria was relieved (Brodin et al., 2010).

HCS for identifying additional fluorophores

Interestingly, HCS can itself be applied in order to identify new
fluorophores that recognize specific cellular domains or states. For
example, in the search for a fluorophore that allows researchers to
distinguish myoblasts from differentiated myotubes, 1606 optically
active compounds were screened using murine myoblasts and
myotubes. Six compounds with the desired properties were identified
in the screen, and one of them was further tested in a pilot screen for
myogenesis inhibitors (Wagner et al., 2008). In another example, a
combinatorial library of 125 fluorescent styryl molecules was
screened to identify RNA probes that were specific to the malaria
parasite, and three RNA-binding dyes that revealed the morphology
of the live parasite were identified (Cervantes et al., 2009).

In summary, the ever-growing list of fluorescent labeling
technologies, and the ability to combine several of them in a single
experiment in an expanding number of systems, allows new aspects
of cell biology to be explored.

Optimizing the choice of high-content imagers

Apart from sample design and preparation, an important feature
that controls both the content and the throughput obtained from a
given experimental set-up is the type of microscope or high-content
imager that is used. In the past years there has been vast
technological progress in the development of fast automated
microscopes that are especially designed for HCS. The common
denominator of such systems is that they possess sample positioning
and fast autofocusing that can be hardware and/or image based. In
an image-based autofocus, several images in different z-planes of
the object are acquired automatically, followed by an online image
analysis that defines the plane of focus. A hardware-based autofocus
usually uses optical methods to identify the bottom of the surface
on which the cells are plated, and images are subsequently acquired
at a fixed offset from that point (Starkuviene and Pepperkok,
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2007). Each system provides its own combination of optical
features, containing a confocal and/or widefield microscope with
various lenses that defines the maximal magnification and
resolution of the acquired images. These systems are usually
provided as part of an HCS platform or are designed to be
compatible with options for automation, such as a liquid handler
and incubators that enables live- and/or fixed-cell imaging [Table
2, modified from those published in previous reviews (Zanella et
al., 2010; Cohen and Schuldiner, 2011)].

When choosing a system, it is important to remember that
image-based autofocusing is relatively slow (in comparison with
hardware autofocusing) and can cause bleaching, but that it allows
the acquisition of in-focus images even when the cells are
irregularly plated (Dragunow, 2008; Starkuviene and Pepperkok,
2007). Because live-imaging depends on the ability to maintain
samples in a competent state, the maximal speed of the microscope
can dictate the ability to image live or fixed preparations. Therefore,
any screen should be designed according to the capabilities and
limitations of the system.

Although certain similarities exist between the different high-
content imagers, each system is unique, making it more suitable
for certain applications than for others. For example, in order to
take images of thick samples, such as zebrafish embryos (Vogt et

al., 2010), it is advisable to use systems that allow confocal
visualization. By contrast, a platform that provides an advanced
flow cytometer with imaging capabilities is the method of choice
for analyzing images from a large number of cells in suspension.
In addition, this system has the advantage of allowing
muliparametric analysis of the data. This enables powerful statistical
analysis and the ability to work with samples that change their
properties upon adhesion, such as cells of the immune system.
Indeed, using this type of system means it is even possible to
quantify rare events, such as apoptosis or protein translocation
[more details are given elsewhere (Zuba-Surma et al., 2007)].
Systems that allow live-cell imaging and are coupled with liquid-
handling robots enable the study of highly dynamic processes,
such as cell migration and mitosis. The ability to monitor live cells
during a timecourse from the moment of perturbation also allows
primary defects and secondary effects, which might cause a
phenotype, to be distinguished from one another (Neumann et al.,
2006). An example of optimal utilization of time-lapse capabilities
in such set-ups is a recent study that performed an RNAi screen in
human HeLa cells expressing fluorescently labeled chromosomes.
The screen was unique in that it used a special workflow that
coupled solid-phase transfection by siRNA microarrays to automatic
time-lapse microscopy and thereby made it possible to follow the

Table 2. Examples of high-content imagers

Inclusion of
image analysis

System (Company) Optics Platform software Examples of suitable assay types®
BD Pathway 435 (Beckton, Widefield and confocal A compact bench-top platform Yes Fluorescence intensity, morphological analysis
Dickinson and Company)
BD Pathway 855 (Beckton, Widefield and confocal ~Liquid handling Yes Fluorescence intensity, kinetic imaging,
Dickinson and Company) morphological analysis
Beckman Coulter IC 100 Widefield Image cytometer No DNA content, protein expression, cell biology,
(Beckman Coulter) toxicology
Cell Observer or Cell Widefield and confocal ~ Flexible selection of components, Yes Cell biology, cell morphology, pharmacology
Observer HS (Zeiss) adapted to the application
Cellomics ArrayScan VTI Widefield Compatible with all major commercial Yes Cell biology, toxicity
(Thermo Scientific) laboratory robotic systems
HCS A (Leica) Widefield and confocal ~Designed for the main confocal and Yes Cell biology
widefield system platforms of Leica
Microsystems
ImageStreamX (Amnis) Widefield Imaging flow cytometer for Yes Cell biology, morphology, stem cell
analysis of suspended cells differentiation, parasitology, microbiology,
oncology, oceanography
ImageXpress MICRO Widefield On-board liquid handling can be No Cell biology, tissues or small organisms, RNAi
(Molecular devices) combined screening
ImageXpress Ultra Confocal Provides a clean interface with other Yes Compound screening, RNAIi screening, thick
(Molecular devices) automation and/or liquid handling samples, cell biology
systems
IN Cell Analyzer 2000 Widefield Compatible with a wide range Yes Compound screening, RNAI screening, cell
(GE Healthcare) of options for automation biology, tissue microarrays, whole organism
imaging
IN Cell Analyzer 3000 Confocal Cellular screening system. Yes Cell biology, cell morphology
(GE Healthcare) Compatible with externally
scheduled automation packages
Opera (PerkinElmer) Confocal Robotic workstation for live and fixed Yes RNAI screen, cell biology, cytotoxicity
cell assays
Operetta (PerkinElmer) Widefield and confocal ~Robotic workstation for live and fixed Yes RNAI screen, cell biology, cytotoxicity
cell assays
ScanR (Olympus) Widefield Modular and flexible screening station; Yes Cell biology, FISH analysis, tissue sections
can be combined with a liquid
handler and incubator
WiScan (IDEA-biomedicals) Widefield A multi-user platform can be readily Yes Cell morphology, dynamic processes, cell

tailored to perform highly
specialized tasks

biology

“The “cell biology’ assays include assays to study processes such as signaling, colocalization, autophagy, apoptosis, the cell cycle, etc.




[
O
c
Q2
&}
w
©
@)
e
o
©
c
S
S
o
=

3748 Journal of Cell Science 124 (22)

cells throughout the 48 hours following transfection (Neumann
et al., 2010). To score such an enormous amount of data,
phenotypes, including cell division, proliferation, survival and
migration, were analyzed with a computational pipeline (Walter
et al., 2010a). The fact that the entire screen was performed using
time-lapse microscopy demonstrates the great advancement in the
field of high-throughput microscopy, especially when compared
with earlier work in which time-lapse imaging was performed as a
secondary screen (Kittler et al., 2007; Kittler et al., 2004).

Interestingly, HCS can also be used to detect dynamic processes
even in the absence of live imaging. For example, cell migration
can be assayed by HCS in fixed samples, such as assaying for cells
that migrate across a membrane (Mastyugin et al., 2004), by
analyzing phagokinetic tracks (Naffar-Abu-Amara et al., 2008) or
in wound healing assays (Yarrow et al., 2004). Alternatively, a
large number of cells can be used to identify ‘stages’ of a process
across a fixed population, such as in a heterogeneous population
of yeast in various cell cycle stages, which can be identified by the
size of their bud.

The diversity of available HCS platforms promotes the ability
to maximize the content of screens without limiting the throughput
achieved, even in cases where sample design and preparation is
complicated and requires special attention, as in the experiments
that combine siRNA transfections with time-lapse analysis
mentioned above or in experiments that examine animal behavior.

Analysis solutions to maximize throughput and
data mining

“An image is worth a thousand words”. Although this saying was
coined long before automated microscopy was developed, it
expresses the notion that HCS can produce enormous amounts and
diverse types of data. It is not by chance that the terms ‘high-
throughput microscopy’ and ‘HCS” have been used interchangeably
in the field. This is because the main goal of high-throughput
microscopy is to reach a state at which highly resolved functional
and morphological information (or ‘content’) can be extracted
from populations of individual cells. This requires quantitative
analysis at a single-cell level to be carried out for the whole of the
population being imaged. Therefore one major challenge, which
parallels the drive to develop faster and more sensitive acquisition
systems, has been to formulate new and accurate methods of data
extraction and analysis.

Manual image analysis

Manual image analysis is labor intensive, slow and carries the risk
of human errors and bias (Huth et al., 2010). However, most probably
the greatest shortfall of the human eye is that it is not quantitative
and cannot always distinguish subtle effects. Therefore, manual
analysis alone cannot capture the entire content that is found in
microscopic screens, such as small changes in mean overall intensity
and shifts in distribution of a phenotype across a population (noise),
and it cannot decide on a confidence score for its findings. For such
reasons, it is very important to develop automated image analysis to
increase not only throughput but also content.

Automated image analysis

The primary steps in automated analysis solutions usually include
image pre-processing (such as background subtraction),
segmentation (for example threshold, watershed and edge-detection-
based segmentation) and measurements of the required phenotype
in the selected cells by classification (using parameters such as

intensity, size or texture) (Walter et al., 2010b; Wollman and
Stuurman, 2007). The more quantitative and accurate the acquired
data are, the better they serve as a platform for sophisticated data
and statistical analysis, which can then be used to identify insightful
dependencies between unexpected parameters.

Analysis software

Most high-content imagers are supplied with analysis software (often
termed ‘turn-key’ solutions) (Table 2). The analysis software usually
contains a set of readymade solutions for standard applications of
the high-content imager such as quantifying the translocation
of proteins from the cytoplasm to the nucleus (Borchert et al., 2005;
Dull et al., 2010; Granas et al., 2006; Kau et al., 2003; Link et al.,
2009; Straschewski et al., 2010; Xu et al., 2008; Zanella et al., 2007;
Zanella et al., 2008). The combination of high-content imagers and
integrated analysis programs, has contributed to many applications
of HCS in both basic biology and in drug discovery (reviewed by
Dragunow, 2008; Bullen, 2008). For example, an automated imaging
platform alongside its inherent software has been used in a screen of
small molecules aimed to identify inhibitors of the p38 [mitogen-
activated protein kinase 14 (MAPK14)] pathway. To measure p38
pathway activation, the nuclear (active) fraction of the MAPK-
activated protein kinase-2 (MAPKAPK2, also known as MK?2) fused
to enhanced GFP (MK2-EGFP) was measured and quantitatively
reported relative to the cytosolic (non active) fraction (Trask et al.,
2009).

A more powerful turn-key solution is provided by cytometry-like
data analysis programs, which allow parameters to be viewed in a
quantitative manner on a large number of graphs and plots, as well
as populations to be gated and population level analysis to be
performed. Such analysis programs are supplied, for example, by the
ImageStream* flow cytometer and HCS unit and the ScanR analysis
software. In these systems, images and their representation on graphs
and plots are linked, which gives extra power to the person that
manually inspects the data. Using this software, the manual inspector
can visualize the image represented by any data point on a graph at
the click of a button. An example that highlights the strength of such
single-cell-based analyses is a study that aimed to establish a robust
HCS assay to investigate the pharmacological activities of bacterial
extracts on eukaryotic cells. In this study, the ScanR microscopy and
analysis system was used to determine the ploidy and vitality of
ovarian insect cells grown in the presence of crude extracts of ten
different Myxobacteria cultures (Jensen et al., 2009).

However, for more sophisticated analysis requirements, new
custom-made computational tools must be created. Such custom-
made algorithms can be added onto the turn-key analysis platforms
or built independently. One example of such an independent
complete platform, which integrates both image and data analysis,
originated from a HCS with the aim to identify molecular pathways
involved in the assembly of focal adhesions (Winograd-Katz et al.,
2009). To analyze the results obtained from an siRNA screen, these
authors created a data pipeline that included: an image database to
store the large amounts of data accumulated in the screen, a
visualization module to allow displaying of selected images, image
processing, image segmentation, statistical analysis and
multiparametric scoring of changes in treated cells for comparison
with those from control cells (Paran et al., 2006). The
multiparametric image and clustering analyses allowed
identification of different gene families whose perturbation induced
similar effects on focal adhesions, thus revealing major correlations
that could not otherwise have been described (Winograd-Katz
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et al., 2009). Another example comes from the drug-profiling field,
where multiparametric analysis platforms were tailored to meet the
complexity of analyzing HCS for drug effects on single cells (Loo
et al., 2007; Perlman et al., 2004).

A major contribution to the field is the fact that the advanced
applications that are published are often also freely distributed. This
should allow more general use of both sophisticated image analysis
and data analysis. For example, CellProfiler is a free open-source
software for automatic quantitative measurement of phenotypes from
thousands of images (Jones et al., 2008; Kamentsky et al., 2011).
The ability to distinguish between a multitude of phenotypes is
enabled owing to the development of classifications achieved with
machine learning algorithms. These algorithms allow the computer
to learn how to recognize complex patterns in an experimental group
on the basis of examples from both positive and negative control
groups. Using such approaches, it is possible to label many different
objects in the image and assign them to one of several possible
phenotypes. Freely available programs that are able to perform this
feature, such as Enhanced Cell Classifier, allow rapid analysis of
complex phenotypes (Misselwitz et al., 2010). An additional analysis
software program that is available upon request is CalMorph, a high-
throughput image-processing program that was specifically
developed for morphological analysis of the yeast Saccharomyces
cerevisiae (Negishi et al, 2009; Ohtani et al., 2004).
TimeLapseAnalyzer (TLA) is a free program package designed for
live-cell image analysis, including applications such as wound
healing, multiple cell tracking, cell counting and proliferation
quantification (Huth et al., 2011). Yet another example of freely
available software is The Paralle] Worm Tracker, which is a publicly
available automated tracking system that was developed to
quantitatively measure the locomotion of multiple individual
nematode worms in parallel (Ramot et al., 2008).

In summary, according to the phenotype being screened and the
microscopic system being used, it is essential to explore the
different options for data analysis in order to select the optimal
solution to ensure that data of the highest quality is extracted from
the images, which in turn can lead to new biological insights

(Fig. 2).

Sharing the wealth

By their nature, high-throughput approaches generate enormous
amounts of data, which are often organized in online databases that
are available to the community [e.g. The Stanford Microarray
Database (Sherlock et al., 2001)]. The accumulation of so many
databases has led to the foundation of meta-databases and
designated journals [e.g. Databases (Bader et al., 2006; Wren and
Bateman, 2008)].

To this end, one of the goals of the HCS community is to develop
platforms for data sharing. However, a single HCS generates greater
amounts of data (in terms of disk space required for storage) than
thousands of microarray experiments. This sheer computational
weight makes data sharing much more difficult. Nevertheless, it is
of great importance to share images that could be retrieved by
textual annotations. As has been the case in other high-throughput
fields, separating data acquisition from data analysis allows pre-
existing data to be re-analyzed when more sophisticated analysis
programs become available. This should provide the opportunity for
other scientists to use the same images to answer different biological
questions, thereby potentially revealing additional phenotypes that
were not uncovered in the original analysis scheme. Generating
databases that contain the original images also allows separate

‘ Define the biological question ‘

Choose the | <€ - Choose the
labeling method ? | microscopic platform

ol \ / o
N L=

Process images

(background subtraction,
segmentation, etc...)

\
Automated data

/ Machine .
Quality ; . Quality
control extraction learning control

Extract data
Quality Quality

control control

N— Analyze data -

Fig. 2. Choosing a set-up for HCS. Once the biological question has been
defined, the optimal labeling method and, accordingly, the high-content imager
to be utilized are chosen to best visualize the phenotype(s) to be assayed. After
the screen itself is performed, images can be processed and the data is
extracted using a wide variety of automated data extraction software or
machine learning object classifiers. If the results do not pass quality control
(namely, false negatives and false positives implanted in the screen are not
recognized correctly), these steps should be repeated using additional software
to ensure validity of the findings. Finally, data analysis allows biological
hypotheses to be formulated and followed up using various approaches. Most
importantly, efforts should be undertaken to upload data to an accessible
database to enable other research groups to extract data and analyze it using
various methods.

computational research groups to develop sophisticated image and
data analysis software for the existing data. For example, the yeast
GFP fusion localization database allowed the development of
automated yeast image analysis (Chen et al., 2007).

Indeed, some screening efforts have created databases to share
the raw data with the entire scientific community [for example
(Gregan et al., 2005; Hunt-Newbury et al., 2007)]. Some of the
more general screens are even integrated into platforms that offer
additional information on the genes and phenotypes of choice.
Two useful examples of such databases are the Yeast GFP Fusion
Localization Database, which is run by the University of California,
San Francisco (Huh et al., 2003) and the database on epithelial cell
migration, which is hosted by the Cell Migration Consortium
(Simpson et al., 2008). As more screens are published, the HCS
community should strive to make such efforts the norm.

Perspectives

HCS platforms provide a rare opportunity to gather functional and
morphological information on populations of single cells under
various conditions. Despite the temptation to acquire large amounts
of data using the available automated technology, throughput must
not come at the expense of content. Doing so might risk
compromising the scientific insights that can be obtained from the
screen, thus reducing its relevance. Increasing the content alongside
maintaining throughput can be achieved at all levels of screen
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implementation: from sample design and preparation through to
the hardware and software characteristics of the high-content imager
system.

The great technological accomplishments in the field bring the
promise that the future development of tools will increase
the diversity of the biological questions that can be answered using
HCS platforms. From the perspective of labeling techniques, for
example, as more diverse and specific fluorescence probes are
created to measure ions, lipids and sugars, it will be possible to
follow more cellular variables than previously possible. From a
hardware point of view, it is appealing to speculate that high-
resolution microscopes will also be adjusted to high-throughput
experimental systems in the future. From the perspective of the
available software, more sophisticated modes of data storage,
sharing and analysis are being produced daily, which indicates that
a vast number of analysis opportunities still exists.

The ability to specifically label almost any cell component and
visually follow it spatially and temporally holds great potential.
Indeed, HCS can be applied to answer a wide variety of biological
questions ranging from purely basic science to pharmacological
research, as we have discussed extensively in this Commentary.
Most importantly, the real goal of any HCS is to generate hypotheses
that can, and should, be followed up using low-throughput
hypothesis-driven approaches. Only such in-depth explorations of
the mechanisms of the cellular and organismal functions will ensure
that HCS efforts indeed become a powerful tool for generating high-
input, high-throughput and outstanding output biology.
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