Mechanisms of stimulus feature
selectivity in sensory systems

1. Orientation and direction selectivity in the visual cortex
2. Selectivity to sound frequency in the auditory cortex
3. Feature selectivity in the somatosensory system.



Orientation selectivity in the primary
visual cortex

Hubel and Wiesel experiments

The H&W model — a simple feedforward model

Predictions of the H&W model

Mismatches between H&W model and experimental data
Recurrent models for orientation selectivity

Experiments that support the H&W — intracellular recording data
Advanced imaging experiments and the H&W model
Optogenetic manipulations of specific types of neurons
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Orientation selectivity
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Receptive fields in V1, H&W
experiments
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lext-fig. 2. Common arrangements of lateral geniculate and cortical receptive
ields. A. ‘On’-centre geniculate receptive field. B. ‘Off’-centre geniculate recep-
ive field. C-@. Various arrangements of simple cortical receptive fields. x,
wreas giving excitatory responses (‘on’ responses); A, areas giving inhibitory re-
ponses (‘off’ responses). Receptive-field axes are shown by continuous lines
hrough field centres; in the figure these are all oblique, but each arrangement
weeurs in all orientations.



Data from H&W experiments: flashing
bars : “complex cell”

Text-fig. 4. Responses of a cell with a complex field to stimulation of the left
(contralateral) eye with a slit } x 24°. Receptive field was in the area centralis
and was about 2 x 3° in size. A4-D, }° wide slit oriented parallel to receptive field
axis. E-G, slit oriented at 45 and 90° to receptive-field axis. H, slit oriented as in
A-D, is on throughout the record and is moved rapidly from side to side where indi-
cated by upper beam. Responses from left eye slightly more marked than those
from right (Group 3, see Part II). Time 1 sec.



H&W model for simple cells

Text-fig. 19. Possible scheme for explaining the organization of simple receptive
fields. A large number of lateral geniculate cells, of which four are illustrated in
the upper right in the figure, have receptive fields with ‘on’ centres arranged along
a straight line on the retina. All of these project upon a single cortical cell, and the
synapses are supposed to be excitatory. The receptive field of the cortical cell will
then have an elongated ‘on’ centre indicated by the interrupted lines in the
receptive-field diagram to the left of the figure.



The Feedforward Model

H&W model:

Hubel and Wiesel, 1962



H&W model for complex cells

Text-fig. 20. Possible scheme for explaining the organization of complex receptive
fields. A number of cells with simple fields, of which three are shown schematically,
are imagined to project to a single cortical cell of higher order. Each projecting
neurone has & receptive field arranged as shown to the left: an excitatory region to
the left and an inhibitory region to the right of a vertical straight-line boundary.
The boundaries of the fields are staggered within an area outlined by the inter-
rupted lines. Any vertical-edge stimulus falling across this rectangle, regardless
of its position, will excite some simple-field cells, leading to excitation of the higher-
order cell.



H&W model for
simple cells

A Receptive fields of concentric cells of
retina and lateral geniculate nucleus

Or-center Off-center

B Receptive fields of simple cells of primary visual cortex
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H&W model for complex cells

A, Response to orientation of stimulus

A, Response to position of stimulus
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The Feedforward Model

Hubel and Wiesel model

Hubel and Wiesel, 1962



Predictions of the H&W model for
simple cells do not match the data

Major Failures of the FF model of H&W:

Contrast invariance

Cross-orientation suppression

Mismatch of receptive field maps and orientation tuning
Missing response at the null orientation

Pharmacolgy: blocking GABA(a) causes widening of TC.
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Feedforward Model Fails to Predict Contrast Invariance

Feedforward Model
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Predictions of the H&W model for
simple cells: actual data

Feed-Forward Model Real Simple Cells
A B C D
> -55- Q) @ @
E /\ 5 5 5
E S S —
x | - - -
© ‘ -<\/ ) Q Q
& 75— F =4 4
-90°  0°  90° DV ast w-90° 0° 90° w-90° 0° 90°
Orientation VTh Orientation
E Cellf F G Cell2 H
§16- @200- §16- @60-
£ %) £ )
€ 8+ N @ 100- £ 8+ o 304
> © > =
_:"U I ° ;—J Cxﬁ .. ;
@ 0% . . £ 0 o ok : b = ol
-90° 0° 90° ®  -90° 0° 90° -90° 0° 90° @ -90° 0° 90°

Orientation Orientation Orientation Orientation



Predictions of the H&W model:
Failure 2: cross-orientation suppression
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Predictions of the H&W model:
Failure 3:
Mismatch of receptive field maps and orientation tuning

a Space domain b Frequency domain
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Predictions of the H&W model:

Failure 4: Missing response at the null orientation

The Feedforward Model

Hubel and Wiesel, 1962



Predictions of the H&W model:

Pharmacolgy

Failure 5

The effect of bicuculline on tuning curve of simple cells
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Predictions of the H&W model:
Failure 5: Pharmacolgy
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Fig. 1. Action of N-methyl bicuculline (Nmb) on simple cell orientation selectivity. Testing orientation
and direction of stimulus motion is indicated above each set of PSTHs. Dotted line subdivides records
into zones corresponding to the two directions of motion. Optimal orientation is arbitrarily referred to
as zero, —, indicates anti-clockwise rotation from optima, -+, clockwise rotation. Each PSTH
constructed from 25 trials. Bin size 50 msecs. Vertical calibration indicates number of counts per bin.

Sillito et al. 1980



Recurrent models for orientation selectivity

Feedforward Inhibitory Recurrent

Figure 1. Models of visual cortical orientation selectivity. a, In feedforward models all ““first-order” cortical neurons (triangle, excitatory; hexagon,
inhibitory) receive converging input (gray arrow) from a population of LGN neurons that cover a strongly oriented region of visual space. The
bandwidth or sharpness of a cortical cell’s orientation tuning is determined by the aspect ratio of its LGN projection. b, Many inhibitory models
employ a mild feedforward bias to establish the initial orientation preference of cortical neurons and utilize inhibitory inputs (white arrows), from
cortical neurons preferring different orientations, to suppress nonpreferred responses. Here, we present a model, ¢, in which recurrent cortical
excitation (black arrows) among cells preferring similar orientations, combined with iso-orientation inhibition from a broader range of orientations,
integrates and amplifies a weak thalamic orientation bias, which is distributed across the cortical columnar population.

Somers et al. 1995
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Recurrent models for orientation selectivity
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Recurrent models for orientation selectivity
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Figure 4. Orientation tuning of postsynaptic potentials. a, Postsynaptic potentials evoked in the example cell by thalamic excitatory, cortical
excitatory, and cortical inhibitory synaptic inputs. LGN EPSPs were very broadly tuned. IPSPs were strongest at the preferred orientation (0°) and
weakest at the cross-orientation (90°). Cortical EPSPs provided the strongest orientation-selective input. Net EPSPs were, therefore, well-tuned for
0° stimuli. b, Averaged EPSP and TPSP inputs for all excitatory (n = 84) cells in the 0° column. Both EPSPs and IPSPs were largest in response
to stimuli of the preferred orientation. Cross-orientation stimuli evoked IPSPs that were only mildly stronger than spontaneously evoked (no stimulus)

IPSPs. All PSPs were scaled by g,.,./(1000 C,).

Somers et al. 1995



The Iceberg Effect

Orientation Tuning
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Experiments that support the H&W — intracellular
recording data. The role of noise in contrast

Contrast invariance
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Experiments that support the H&W — intracellular
recording data. The role of noise in contrast

o invariance
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Experiments that support the H&W :
The role of noise in contrast invariance

1. Contrastinvariance
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Experiments that support the H&W — measurements of
sensory evoked conductance in-vivo

2. TC of excitatory and inhibitory inputs
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Experiments that support the H&W — Excitatory and
inhibitory inputs have similar TC

2. TC of excitatory and inhibitory inputs A
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Experiments that support the H&W — Mismatch of
receptive field maps and orientation tuning.
Intra cellular data show why TC and RF do not match at
spikes level because of the iceberg effect
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Experiments that support the H&W — Mismatch of

receptive fie
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Experiments that support the H&W — Cross-orientation
suppression

E | Figure 2. Cross-orientation Suppressionin
Stimulus RF Contrast LGN response Simple cell a Feedforward Model of Visual Cortex
Luminance saturation Vm (A and B) The spatial receptive fields of LGN
T @ relay cells (colored circles) are superimposed on
est /\/\ @ top of a 32% contrast vertical grating (&) ar
g /S N\ 10 \ :50_ f'_\ ;j N a pllaid composed of 32% horizontal and vertical
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£ = L = Z = (C and 0) Stimulus luminance is plotted as a func-
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= § ] (I and J) The average input to a target V1 simple
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Priebe and Ferster 2012



1. Experiments that support the H&W — Cross-
orientation suppression
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Experiments that support the H&W:
New insights on the pharmacological effects on TC
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Experiments that support the H&W:

New insights on the pharmacological effects on TC —

the iceberg effect
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Figure 7. A simple cellular model. 4, Tuning of firing rate in control condition. B, Corre-
sponding tuning of membrane potential responses. Dashed line indicates threshold. Shaded
area indicates responses that elicit nonzero firing rates. ¢, Tuning of excitation. D, Tuning of
inhibition, under the simplified assumption that inhibition has the same tuning as excitation
(matching inhibition). In the untuned inhibition version of the model, this curve would be flat.
E-H, Same, under gabazine.

Katzner et al. 2011



Recurrent models for orientation selectivity
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Figure 4. Inhibition Sharpens Stimulus Selective Spike Output via
the “lceberg Effect”

Schematic ilustrates hypothetical tuning curves for firing rate (green),
membrane potential (black), excitatory (red), and inhibitory (blue) conduc-
tances of a cortical neuron to stimulus features (e.g., orientation). Action
potential firing occurs only when membrane potential exceeds a fixed spike
threshold (dotted line). Responses are shown in the presence (left) and
absence (right) of a weakly tuned inhibitory conductance. Inhibition leads to
more narrowly funed spike output by allowing only the strongest (preferred)
excitatory stimuli to drive the membrane potential above spike threshold.
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Two Photon (2P) Imaging studies of the visual cortex

1. Contrastinvariance
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Optogenetic studies of the visual cortex
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Optogenetic studies of the visual cortex
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Cortical circuits amplify tuned thalamic inputs without
altering orientation selectivity
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Auditory cortex — lateral suppression

1. Inhibition?

SUTTER, SCHREINER, MCLEAN, O'CONNOR, AND LOFTUS
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Auditory cortex — Excitation and inhibition are co-tuned

to sound intensity and frequency
1. Inhibition?

a
a 20 nS b e
. -—
l __;.""\ 5nS e
.-j::'" \ . ®
10F /Y |
| . .::'f-. |'| | | \?._\
‘ ® [ | -
b = I8 ‘ | |
% || ) e~ _ _ . | | o Ny
’ 300 |1 ||| 2 4 8 16 32 kHz '\- \ [ \ 66 46 26 6 dB
B ~ | ':,I [
P | |.III J 5nS J i 1 fi 2nS
100 -80 -60 —  _: 20 \ ) 1 1 100 ms
. . i) 7 0 v, mv A‘&—« ‘:}"-. -E::.?:h e ...,_——-00 ms \\L ‘\\ —f %“1—* —_—
i’ A 1.2 2 4 8 16 32 kHz 1.2 1.2 1.2 1.2 kHz
ro o0 46 46 46 46 46 46 dB 66 46 26 6 dB
c d
[~
1.0F - i
7NN n =24 cells 107 71 ) n=10cells
5nS 0.8 ’/ \ . Ny
i £0.8r | T
o \ o
50 ms g 0.6 , \ |\ o | TN
Fi?l . ) \ s, Y . T g 0.6 \\‘\\\\
® 3 ] AL
. g 0.4 \ E 04l | NN
1 o . o =
{ pd AN z N _
0.2 0.2 { S
[ ™~ 10mv 0 0
\ — 50 ms

-2 -1 0 1 2 3 20 0 -20 —40 —60
Frequency (octaves) Level (dB)

&

Wehr and Zador 2003



Auditory cortex — Excitation and inhibition are co-tuned

to sound intensity and frequency
1. Inhibition?
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Auditory cortex — Excitation and inhibition are co-tuned
to sound intensity and frequency
AWAKE

1. Inhibition?
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Inhibition Adapts More than Excitation
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Heiss et al. 2008



Selectivity to direction of whisker deflection

) Raw data Spike response
a Experimental setup (PSTH)

and evoked responses
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Selectivity to direction of whisker deflection:
Excitation but not inhibition is selective
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Selectivity to direction of whisker deflection:
Response to preferred direction is NMDA dependent
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