Nanofabrication Publications

Filter by Author:
    1
  1. Plasmonic Cavities and Individual Quantum Emitters in the Strong Coupling Limit

    Bitton O. & Haran G. (2022) Accounts of chemical research. 55, 12, p. 1659-1668
  2. 2
  3. Electrical Properties of LaS‐TaS 2 Misfit Layered Compound Nanotubes

    Stolovas D., Popovitz‐Biro R., Sinha S. S., Bitton O., Shahar D., Tenne R. & Joselevich E. (2021) Israel Journal of Chemistry. 62, 3-4
  4. 3
  5. Vortex beams of atoms and molecules

    Luski A., Segev Y., David R., Bitton O., Nadler H., Barnea A. R., Gorlach A., Cheshnovsky O., Kaminer I. & Narevicius E. (2021) Science. 373, 6559, p. 1105-1109
  6. 4
  7. Complex plasmon-exciton dynamics revealed through quantum dot light emission in a nanocavity

    Gupta S. N., Bitton O., Neuman T., Esteban R., Chuntonov L., Aizpurua J. & Haran G. (2021) Nature Communications. 12, 1310
  8. 5
  9. Improving the quality factors of plasmonic silver cavities for strong coupling with quantum emitters

    Bitton O., Gupta S. N., Cao Y., Vaskevich A., Houben L., Yelin T. & Haran G. (2021) Journal of Chemical Physics. 154, 1, 014703
  10. 6
  11. Vacuum Rabi splitting of a dark plasmonic cavity mode revealed by fast electrons

    Bitton O., Gupta S. N., Houben L., Kvapil M., Krapek V., Sikola T. & Haran G. (2020) Nature Communications. 11, 487
  12. 7
  13. In-Plane Nanowires with Arbitrary Shapes on Amorphous Substrates by Artificial Epitaxy

    Ben-Zvi R., Burrows H., Schvartzman M., Bitton O., Pinkas I., Kaplan-Ashiri I., Brontvein O. & Joselevich E. (2019) ACS Nano. 13, 5, p. 5572-5582
  14. 8
  15. Quantum dot plasmonics: from weak to strong coupling

    Bitton O., Gupta S. N. & Haran G. (2019) Nanophotonics. 8, 4, p. 559-575
  16. 9
  17. Gap-mode-assisted light-induced switching of sub-wavelength magnetic domains

    Scheunert G., McCarron R., Kullock R., Cohen S. R., Rechav K., Kaplan-Ashiri I., Bitton O., Hecht B. & Oron D. (2018) Journal of Applied Physics. 123, 14, 143102
  18. 10
  19. Interfacial Electron Beam Lithography: Chemical Monolayer Nanopatterning via Electron-Beam-Induced Interfacial Solid-Phase Oxidation

    Maoz R., Berson J., Burshtain D., Nelson P., Zinger A., Bitton O. & Sagiv J. (2018) ACS Nano. 12, 10, p. 9680-9692
  20. 11
  21. Two-Dimensional Maxwell Fisheye for Integrated Optics

    Bitton O., Bruch R. & Leonhardt U. (2018) Physical Review Applied. 10, 4, 044059
  22. 12
  23. Grazing-incidence optical magnetic recording with super-resolution

    Scheunert G., Cohen S., Kullock R., McCarron R., Rechev K., Kaplan-Ashiri I., Bitton O., Dawson P., Hecht B. & Oron D. (2017) Beilstein Journal of Nanotechnology. 8, 1, p. 28-37
  24. 13
  25. Multiple periodicity in a nanoparticle-based single-electron transistor

    Bitton O., Gutman D. B., Berkovits R. & Frydman A. (2017) Nature Communications. 8, 1, 402
  26. 14
  27. Three-dimensional metamaterials for nonlinear holography

    Prior Y., Bitton O. & Almeida E. (2016) .
  28. 15
  29. Defect-Free Carbon Nanotube Coils

    Shadmi N., Kremen A., Frenkel Y., Lapin Z. J., Machado L. D., Legoas S. B., Bitton O., Rechav K., Popovitz-Biro R., Galvao D. S., Jorio A., Novotny L., Kalisky B. & Joselevich E. (2016) Nano Letters. 16, 4, p. 2152-2158
  30. 16
  31. Enhanced Magnetoresistance in Molecular Junctions by Geometrical Optimization of Spin-Selective Orbital Hybridization

    Rakhmilevitch D., Sarkar S., Bitton O., Kronik L. & Tal O. (2016) Nano Letters. 16, 3, p. 1741-1745
  32. 17
  33. Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit

    Santhosh K., Bitton O., Chuntonov L. & Haran G. (2016) Nature Communications. 7, ncomms1182
  34. 18
  35. Nonlinear metamaterials for holography

    Almeida E., Bitton O. & Prior Y. (2016) Nature Communications. 7, 12533
  36. 19
  37. Influence of gain material concentration on an organic DFB laser

    Palatnik A., Bitton O., Aviv H. & Tischler Y. R. (2016) Optical Materials Express. 6, 9, p. 2715-2724
  38. 20
  39. Field-effect transistors based on WS<sub>2</sub> nanotubes with high current-carrying capacity

    Levi R., Bitton O., Leitus G., Tenne R. & Joselevich E. (2013) Nano Letters. 13, 8, p. 3736-3741